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Joint Deployment and Task Scheduling

Optimization for Large-Scale Mobile Users in

Multi-UAV Enabled Mobile Edge Computing
Yong Wang, Senior Member, IEEE, Zhi-Yang Ru, Kezhi Wang, Member, IEEE, and Pei-Qiu Huang

Abstract—This paper establishes a new multi-unmanned aerial
vehicle (multi-UAV) enabled mobile edge computing (MEC) sys-
tem, where a number of UAVs are deployed as flying edge clouds
for large-scale mobile users. In this system, we need to optimize
the deployment of UAVs, by considering their number and
locations. At the same time, to provide good services for all mobile
users, it is necessary to optimize task scheduling. Specifically,
for each mobile user, we need to determine whether its task is
executed locally or on a UAV (i.e., offloading decision), and how
many resources should be allocated (i.e., resource allocation).
This paper presents a two-layer optimization method for jointly
optimizing the deployment of UAVs and task scheduling, with the
aim of minimizing the system energy consumption. By analyzing
this system, we obtain the following property: the number of
UAVs should be as small as possible under the condition that all
tasks can be completed. Based on this property, in the upper layer,
we propose a differential evolution algorithm with an elimination
operator to optimize the deployment of UAVs, in which each
individual represents a UAV’s location and the whole population
represents an entire deployment of UAVs. During the evolution,
we first determine the maximum number of UAVs. Subsequently,
the elimination operator gradually reduces the number of UAVs
until at least one task cannot be executed under delay constraints.
This process achieves adaptive adjustment of the number of
UAVs. In the lower layer, based on the given deployment of UAVs,
we transform the task scheduling into a 0-1 integer programming
problem. Due to the large-scale characteristic of this 0-1 integer
programming problem, we propose an efficient greedy algorithm
to obtain the near-optimal solution with much less time. The
effectiveness of the proposed two-layer optimization method and
the established multi-UAV enabled MEC system is demonstrated
on ten instances with up to 1000 mobile users.

Index Terms—Multi-unmanned aerial vehicle, mobile edge
computing, deployment, task scheduling, two-layer optimization,
differential evolution.

I. INTRODUCTION

With the increasing popularity of mobile devices, more

and more new types of mobile applications have emerged,

such as mobile online gaming [1] and speech recognition [2].
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However, these applications are sensitive to latency and re-

quire considerable computation resources. Due to the physical

limitations such as battery power and computation resources,

it poses a great challenge for mobile devices to execute these

applications [3].

Mobile edge computing (MEC), which deploys servers to

the network edge [4], [5], has been considered as a promising

technology to address this challenge. In MEC, mobile devices

can offload their tasks to the servers close to them. Compared

with mobile cloud computing, MEC consumes less transmis-

sion time and energy due to shorter transmission distance.

However, the locations of MEC servers are usually fixed and

cannot be flexibly changed according to the needs of mobile

users, which limits MEC’s capability.

In recent years, unmanned aerial vehicles (UAVs) have

received extensive attention in wireless communications [6]-

[8]. For example, UAVs have been used in areas with limited

communication infrastructures, such as in developing countries

or mountainous areas, as well as in earthquake response,

emergency rescue, and battlefield communication [9]. Very

recently, a UAV-enabled MEC wireless powered system has

been studied in [10], in which a MEC server is mounted on

a UAV (i.e., a flying edge cloud). This kind of system can

provide two advantages: 1) due to the higher altitude, the flying

edge cloud can provide better line-of-sight links to mobile

users with a higher probability, and 2) since the UAV can be

flexibly deployed, it can further shorten the transmission dis-

tance. Overall, this kind of system can provide better services

to mobile users. Therefore, the use of UAVs is expected to

play an important role in improving the performance of MEC.

However, the current study in [10] only considers one

UAV. A question which arises naturally is whether we can

deploy multiple UAVs simultaneously to serve mobile users.

Compared with a single UAV, multiple UAVs can support more

tasks within a shorter time, which can remarkably boost the

applications of MEC in emergency and complicated scenarios.

To this end, we make the first attempt to investigate a new

multi-UAV enabled MEC system, where multiple UAVs are

employed to serve large-scale mobile users on the ground in

a given area. To minimize this system’s energy consumption

while meeting the needs of all mobile users, there exist two

key issues to be addressed: the deployment of UAVs and task

scheduling. Specifically, the purpose of the deployment of

UAVs is to determine the number and locations of UAVs. In

addition, task scheduling includes two aspects: the offloading

decision and resource allocation. The former aims at deter-
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mining whether a task is executed locally or is offloaded to

a UAV. Subsequently, the latter decides how many resources

should be allocated to this task.

Actually, the deployment of a single UAV/multiple UAVs

and the task scheduling in MEC have been extensively studied

individually in wireless communications. Next, we briefly

introduce them.

• Deployment of a single UAV/multiple UAVs: Fan

et al. [11] researched the node placement of a UAV

relaying system, with the aim of maximizing the system

throughput. Bor-Yaliniz et al. [12] optimized the place-

ment of a UAV to maximize the revenue of the network.

Mozaffari et al. [13] designed the efficient deployment

of multiple UAVs as wireless base stations, in which the

total coverage area and the coverage lifetime of UAVs are

maximized. Mozaffari et al. [14] investigated the place-

ment of UAVs for data collection from ground Internet of

Things devices. Lyu et al. [15] presented the placement

of UAVs to supply distributed ground terminals with

wireless coverage, ensuring that each ground terminal

can be served by at least one UAV. Sharma et al. [16]

introduced the assignment of UAVs over geographical

areas to meet high traffic demands. Mozaffari et al. [17]

deployed a UAV as a flying base station to provide

wireless communications to an area.

• Task scheduling: Some researchers have focused on either

the offloading decision or the resource allocation in task

scheduling of MEC. For example, Zhang et al. [18] pro-

posed an energy-efficient offloading decision mechanism

for MEC in 5G heterogeneous networks. Lyu et al. [19]

designed a selective offloading decision scheme in MEC

to minimize the energy consumption of Internet of Things

devices. Wang et al. [20] optimized the resource alloca-

tion in MEC by means of a unifying framework for the

power-performance tradeoff of a mobile service provider.

You et al. [21] investigated the resource allocation for a

multiuser MEC system based on time-division multiple

access and orthogonal frequency-division multiple access.

Recently, much attention has been paid to optimizing

the offloading decision and resource allocation in MEC

simultaneously. For instance, Mao et al. [22] presented

an effective computation offloading strategy for a green

MEC system with energy harvesting devices by optimiz-

ing the offloading decision and the resource allocation

simultaneously. Zhang et al. [23] suggested the simulta-

neous offloading decision and resource allocation opti-

mization in MEC to minimize the energy consumption

and monetary cost from the mobile terminals’ perspec-

tive. Kan et al. [24] introduced the offloading decision

and the resource allocation of the MEC server considering

the variety of tasks’ requirements.

From this introduction, it is clear that the joint optimization

of the deployment of UAVs and task scheduling remains scarce

in current studies. Moreover, in MEC, large-scale mobile users

have rarely been taken into consideration. Due to the fact that

the system developed in this paper involves both multi-UAV

enabled MEC and mobile users, we must jointly optimize the

mobile user 2
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Fig. 1. A multi-UAV enabled MEC system consisting of M mobile users
and N UAVs. As shown in this figure, the tasks of mobile users 1, 2, and 4
are executed on UAV 1; the tasks of mobile users 5, 7, and 8 are executed
on UAV 2; and the rest of the tasks are executed locally.

deployment of UAVs and task scheduling. To the best of our

knowledge, this paper is the first attempt to investigate joint

deployment and task scheduling optimization for large-scale

mobile users in a multi-UAV enabled MEC system.

The main contributions of this paper are summarized as

follows:

• A new multi-UAV enabled MEC system is proposed,

where multiple UAVs are used as flying edge clouds

for large-scale mobile users. This system can further

develop the capability of traditional MEC systems by

using multiple UAVs.

• A two-layer optimization method named ToDeTaS is

proposed to jointly optimize the deployment of UAVs

and task scheduling, with the purpose of minimizing the

system energy consumption. Specifically, we optimize

four aspects: the number and locations of UAVs, the

offloading decision, and the resource allocation.

• In the upper layer, a differential evolution (DE) algorithm

with an elimination operator is presented to optimize

the deployment of UAVs. We encode a UAV’s location

into an individual and the whole population represents an

entire deployment of UAVs. After analyzing this system,

to achieve the minimum energy consumption, we should

give a priority to the number of UAVs under the condition

that all tasks can be completed. Based on this property,

we first determine the maximum number of UAVs, and

gradually reduce the number by the elimination operator

if all tasks can be completed. In principle, the number of

UAVs is adaptively adjusted by the elimination operator

and the locations of UAVs are optimized by DE.

• With respect to a given deployment of UAVs in the

upper layer, the task scheduling in the lower layer is

transformed into a 0-1 integer programming problem.

To reduce the computational time for the large-scale

0-1 integer programming problem, an efficient greedy

algorithm is proposed to obtain the near-optimal solution.
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• Extensive experiments have been carried out on ten

instances with up to 1000 mobile users. The experimental

results demonstrate the effectiveness of ToDeTaS and the

multi-UAV enabled MEC system.

The rest of this paper is organized as follows. Section II

introduces the model and problem formulation of the proposed

system. Section III describes the details of our proposed

ToDeTaS. Section IV gives the experimental studies. Section V

discusses two issues. Finally, Section VI concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a multi-UAV enabled

MEC system consisting of M mobile users denoted as M =
{1, 2, . . . ,M} and N UAVs denoted as N = {1, 2, . . . , N}.

In this system, (xi, yi, 0) is the three-dimensional coordinate

of mobile user i (i ∈ M). In addition, we assume that each

mobile user i has a task Ui to be executed. Specifically, Ui

can be described as Ui = (Ci, Di), where Ci describes the

total number of the CPU cycles for completing Ui, and Di

denotes the size of input data of mobile user i. Note that M ,

xi, yi, Ci, and Di can be known a priori. As for N UAVs,

we assume that they are equipped with directional antennas

of fixed beamwidth θ. These UAVs are flying at a constant

altitude H and the location of UAV j (j ∈ N ) is represented

by (Xj , Yj , H). It is worth noting that N , Xj , and Yj cannot

be obtained in advance.

In this system, UAVs are used as flying edge clouds.

Therefore, each task can be executed on its own mobile

device or one of UAVs. As a result, each task has (N + 1)

execution patterns denoted as K = {0, 1, . . . , N}. Specifically,

k = 0 (k ∈ K) indicates that a task is executed on its own

mobile device and k > 0 indicates that a task is executed

on UAV k. Furthermore, we assume that N UAVs serve all

mobile users via frequency division multiple access with an

equal bandwidth allocation. In this paper, we define matrix a

to denote the offloading decision, where ai,k = 1 (i ∈ M
and k ∈ K) if Ui is executed in pattern k; otherwise,

ai,k = 0. For example, in Fig. 1, U1, U2, and U4 are

executed on UAV 1; U5, U7, and U8 are executed on UAV

2; and the rest of the tasks are executed locally. As a result,

a1,1, a2,1, a4,1, a5,2, a7,2, a8,2, a3,0, a6,0, a9,0, a10,0,

and aM,0 = 1, and the rest is equal to zero. In addition,

we define another matrix f to denote the resource allocation,

where fi,k (i ∈ M and k ∈ K) is the computation resources

allocated to Ui in pattern k.

In our system, there are three models: the local execution

model, the MEC execution model, and the UAV hover model.

A. Local Execution Model

When Ui is executed on its own mobile device, the time

spent to complete it is defined as [25]

TL
i,0 =

Ci

fi,0
, ∀i ∈ M. (1)

In addition, the energy used to complete Ui is given as [26]

EL
i,0 = η1(fi,0)

v−1Ci, ∀i ∈ M, (2)

where η1 is the effective switched capacitance and v is a

positive constant.

B. MEC Execution Model

When a task is executed on a UAV, this task is first

transmitted to the UAV, and then it is executed by the MEC

server on the UAV. After execution, the result is returned to

the mobile user.

For mobile user i, its horizontal distance to UAV j is given

as

dMU
i,j =

√

(xi −Xj)2 + (yi − Yj)2,

∀i ∈ M, j ∈ N .
(3)

Obviously, if Ui is executed on UAV j, mobile user i must

be within the coverage area of UAV j. That is, the following

constraint should be satisfied [27]:

C1 : ai,kd
MU
i,j ≤ R, ∀i ∈ M, j ∈ N , k = j, (4)

where R is the coverage radius of each UAV and R = H tan θ.

The distance between two UAVs is expressed as

dUU
j1,j2

=
√

(Xj1 −Xj2)
2 + (Yj1 − Yj2)

2,

∀j1, j2 ∈ N , j1 6= j2.
(5)

Note that any two UAVs must maintain a minimum distance

dUU
min to avoid collision; thus, another constraint holds [28]

C2 : dUU
j1,j2

≥ dUU
min, ∀j1, j2 ∈ N , j1 6= j2. (6)

Due to the computational capability limitations of a MEC

server, each UAV can only execute at most nmax tasks. That

is [29]

C3 :
M
∑

i=1

ai,k ≤ nmax, ∀i ∈ M, k ∈ K\{0}. (7)

The uplink data rate of Ui in pattern k is given as [30]

ri,k = Blog2

(

1 +
Pβ0G0

N0Bθ2((dMU
i,j )2 +H2)

)

,

∀i ∈ M, j ∈ N , k = j,

(8)

where B is the channel bandwidth, P denotes the transmission

power of each mobile device, β0 is the channel power gain

at the reference distance, G0 is a positive constant, and N0 is

the noise power spectrum density.

Then, the total time for completing Ui includes the trans-

mission time and the computation time on UAV j [31]:

TM
i,k =

Di

ri,k
+

Ci

fi,k
, ∀i ∈ M, k = j. (9)

In addition, the total energy used to complete Ui includes

the transmission energy and the computation energy on UAV

j [32]

EM
i,k = P

Di

ri,k
+ η2(fi,k)

v−1Ci, ∀i ∈ M, k = j, (10)

where η2 is the effective switched capacitance.

Similar to [29], we assume that the output of the task can

be returned to the mobile user with negligible transmission

delay.
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C. UAV Hover Model

When a UAV hovers at its fixed location for some time, the

energy for it to hover is expressed as

EH = P0T, (11)

where P0 and T are the hover power and the hover time,

respectively.

Considering that this system contains both multi-UAV en-

abled MEC and mobile users, we need to jointly optimize

the deployment of UAVs and the task scheduling to minimize

the system energy consumption, which includes the energy to

complete all tasks in the local computation patten or the MEC

computation patten and the energy for UAVs’ hover. The joint

deployment and task scheduling optimization problem can be

formulated as

min
N,Xj ,Yj ,ai,k,fi,k

M
∑

i=1

(

ai,0E
L
i,0 +

N
∑

k=1

ai,kE
M
i,k

)

+ βNEH

(12)

s.t. C1 : ai,kd
MU
i,j ≤ R,

∀i ∈ M, j ∈ N , k = j,

C2 : dUU
j1,j2

≥ dUU
min, ∀j1, j2 ∈ N , j1 6= j2,

C3 :
M
∑

i=1

ai,k ≤ nmax,

∀i ∈ M, k ∈ K\{0},

C4 :

N
∑

k=0

ai,k = 1, ∀i ∈ M, k ∈ K,

C5 : fi,k > 0, ∀ai,k = 1, i ∈ M, k ∈ K,

C6 : fi,k = 0, ∀ai,k = 0, i ∈ M, k ∈ K,

C7 : ai,0T
L
i,0 ≤ T, ∀i ∈ M,

C8 : ai,kT
M
i,k ≤ T, ∀i ∈ M, k ∈ K\{0}.

where C4 ensures that all tasks are executed and each task

can only be executed in one pattern; C5 and C6 denote that if

Ui is executed in pattern k, fi,k is greater than 0; otherwise, it

is equal to 0; C7 and C8 are delay constraints for each task;

and β is a weight coefficient and set to 1 in this paper.

III. PROPOSED APPROACH

A. Motivation

From the introduction in Section II, it is clear that (12)

is a non-convex nonlinear optimization problem. Therefore,

traditional optimization methods cannot solve it. Evolutionary

algorithms (EAs) have the potential to address it since they

are a kind of population-based heuristic search methods that

does not need the gradient information. However, EAs will

face the following three issues when solving (12):

• In (12), we need to optimize the number of UAVs (N ),

the location of UAV j (Xj and Yj), and the offloading de-

cision (ai,k) and the resource allocation (fi,k) for mobile

user i. Therefore, (2(N+M)+1) decision variables must

be optimized. It is evident that the number of decision

variables increases with the increase of M and/or N .

Due to the fact that we consider a large number of

mobile users in this paper, obviously, this is a large-scale

optimization problem for EAs [33], [34]. For example,

if we consider 1000 mobile users and 100 UAVs, the

number of decision variables is 2201.

• (12) includes an integer decision variable (N ), continuous

decision variables (Xj , Yj , and fi,k), and binary decision

variables (ai,k). Thus, it is an optimization problem with

mixed decision variables. In the evolutionary computation

community, it is a challenging task to solve optimization

problems with mixed decision variables [35].

• The deployment of UAVs and task scheduling are closely

coupled. On the one hand, the available execution patterns

of a task depend on the deployment of UAVs. This is

because a task should be located in the coverage area

of a UAV if it is expected to be executed on this UAV.

On the other hand, for a given deployment of UAVs,

its performance cannot be accurately assessed unless the

corresponding task scheduling is optimal.

Therefore, it is inefficient to optimize (12) directly by EAs.

In this paper, we propose a two-layer optimization method

called ToDeTaS, which decomposes (12) into a two-layer

optimization problem. To be specific, the upper layer optimizes

the deployment of UAVs and the lower layer optimizes the

task scheduling, respectively. ToDeTaS provides the following

technical advantages:

• In the upper layer, the deployment of UAVs original-

ly involves (2N + 1) decision variables. We propose

a new encoding mechanism, by which there are only

two decision variables in the deployment of UAVs. In

addition, in the lower layer, there are originally 2M
decision variables. For a given deployment of UAVs, the

resource allocation in the task scheduling can be obtained

through simple derivations. As a result, there are indeed

M decision variables in the lower layer. Therefore, the

original large-scale optimization problem is decomposed

into two optimization problems that can be solved much

easier than the original one because they have fewer

decision variables.

• In the upper layer, the optimization problem includes

an integer decision variable (N in (12)) and continuous

decision variables (Xj and Yj in (12)). As analyzed later,

the integer decision variable can be removed by our

new encoding mechanism. In addition, the optimization

problem in the lower layer includes binary decision

variables (ai,k in (12)) and continuous decision variables

(fi,k in (12)). Note that the optimal fi,k in (12) can

be easily obtained without any optimization. Therefore,

the original optimization problem with mixed decision

variables is divided into an optimization problem with

continuous decision variables (Xj and Yj in (12)) in

the upper layer and an optimization problem with binary

decision variables (ai,k in (12)) in the lower layer. Thus,

there do not exist any mixed decision variables in the

two-layer optimization problem.

• In ToDeTaS, we first generate a deployment in the upper

layer. Based on the given deployment, it is easy to
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An individual = 

The location of a UAV

The population = 

A deployment of UAVs

UAV 1

(X1 , Y1)

UAV 2

(X2 , Y2)

UAV N

(XN , YN)

Fig. 2. Encoding mechanism in this paper for the deployment of UAVs.

determine feasible execution patterns of each task; thus,

we can obtain the feasible offloading decision with a

higher probability. By optimizing task scheduling in the

lower layer, we can accurately assess the performance

of the deployment of UAVs. Therefore, the upper layer

promotes the feasibility of the lower layer, and the

lower layer enhances the accuracy of the performance

evaluation of the upper layer. As a result, we achieve the

joint deployment and task scheduling optimization.

In summary, ToDeTaS is able to address the three afore-

mentioned issues and provides a promising way to use EAs

to solve (12).

B. ToDeTaS

When traditional EAs optimize the deployment of UAVs

in the upper layer, each individual is usually an entire de-

ployment. As introduced in Section II, UAV j (j ∈ N )

is represented by (Xj , Yj , H), and Xj and Yj should be

optimized. In addition, the number of UAVs is N . Thus, the

length of each individual in traditional EAs is 2N . Due to

the fact that the number of UAVs should be optimized during

the evolution, N may change from one generation to another

generation. Therefore, in traditional EAs, each individual has a

variable length. Under this condition, the deployment of UAVs

is a variable-length optimization problem. Currently, it is very

challenging for EAs to cope with variable-length optimization

problems [36].

We find an interesting phenomenon in the deployment of

UAVs: each UAV has two decision variables (i.e., Xj and

Yj (j ∈ N ) in the x-axis and y-axis), and all elements in

{X1, . . . , XN} have the same upper and lower bounds, as

well as all elements in {Y1, . . . , YN}. Based on this obser-

vation and inspired by Wang et al. [37], we propose a new

encoding mechanism: the location of each UAV is encoded

into an individual and the whole population denotes an entire

deployment, as shown in Fig. 2. This encoding mechanism has

the following advantages: 1) each individual has a fixed length

during the evolution, rather than a variable length, and 2) the

length of each individual is equal to two, which means the

deployment of UAVs is optimized in a very low-dimensional

search space, that is, two.

The general framework of ToDeTaS is presented in Algo-

rithm 1. First, we generate an initial population P with N
individuals (i.e., an initial deployment of UAVs) by Algorithm

Algorithm 1 General Framework of ToDeTaS

1: N = Nmax; // N denotes the number of UAVs and Nmax denotes the
maximum number of UAVs;

2: Generate an initial population P with N individuals (i.e., an initial
deployment of UAVs) by Algorithm 2;

3: Calculate the offloading decision a and the resource allocation f according
to P through Algorithm 5;

4: Evaluate the system energy consumption of {N,P,a, f};
5: FEs = 1; // FEs denotes the number of fitness evaluations
6: flag = 0 and num inf = 0; // flag is the optimization status and

num inf denotes the consecutive infeasible number of {N,P,a, f}
7: while FEs < FEsmax do

8: while flag = 0 and {N,P,a, f} is feasible do

9: {Ntemp,Ptemp,atemp, ftemp} = {N,P,a, f};
10: Perform the elimination operator by Algorithm 3;
11: end while

12: Implement the mutation and crossover operators of DE to produce an
offspring population Q;

13: for i = 1, . . . , N do

14: Utilize the ith individual in Q to update {N,P,a, f} via the
updating operator in Algorithm 4;

15: if {N,P,a, f} is infeasible then

16: num inf = num inf + 1;
17: if num inf = 1000 then

18: flag = 1;
19: Return {N,P,a, f} to its last feasible status, i.e.,

{N,P,a, f} = {Ntemp,Ptemp,atemp, ftemp};
20: Break;
21: end if

22: end if

23: if flag = 0 and {N,P,a, f} is feasible then
24: num inf = 0;
25: Break;
26: end if

27: end for

28: end while

29: return {N,P,a, f}

2. Afterward, we calculate the offloading decision a and

the resource allocation f according to P by Algorithm 5.

Subsequently, we evaluate the system energy consumption

of {N,P,a, f}. During the evolution, if {N,P,a, f} is fea-

sible, which means that all tasks can be executed under

delay constraints, the elimination operator is implemented

in Algorithm 3 to consistently delete one individual until

{N,P,a, f} is infeasible. Then, we apply DE to produce an

offspring population Q. Each individual in Q is used to update

{N,P,a, f} via Algorithm 4. On the one hand, if the updated

{N,P,a, f} is infeasible, we will check num inf , which

denotes the consecutive infeasible number of {N,P,a, f}. If

num inf reaches a predefined threshold value (i.e., 1000 in

this paper), which indicates that N cannot be reduced any

more, {N,P,a, f} will return to its last feasible status and

we will optimize {P,a, f} by DE. On the other hand, if

the updated {N,P,a, f} is feasible, we will implement the

elimination operator on it. The above process continues until

the maximum number of fitness evaluations (FEsmax) is met.

In principle, this paper achieves the joint deployment and

task scheduling optimization through optimizing a 4-tuple:

{N,P,a, f}. Moreover, once num inf = 1000, the optimal

value of N is obtained. Under this condition, both Steps

8-11 (i.e., the elimination operator) and Steps 15-26 are

unnecessary, and we only concentrate on the optimization of

{P,a, f} by DE (i.e., Steps 12-14 and Step 27).

It is noteworthy that the deployment of UAVs in the upper
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Algorithm 2 Initialization

1: num vio = 0;
2: Generate a location for the first UAV randomly and put it into P ;
3: for j = 2 to N do

4: Generate a location for the jth UAV randomly;
5: if the jth UAV satisfies C2 in (12) then

6: Put it into P ;
7: num vio = 0;
8: else

9: num vio = num vio+ 1;
10: if num vio > 200 then

11: Clear P and go to Step 1;
12: end if

13: Go to Step 4;
14: end if

15: end for

16: return P

Algorithm 3 Elimination Operator

1: Choose two individuals with the minimum Euclidean distance from P ,
then calculate their second minimum Euclidean distances and delete the
one with smaller second minimum Euclidean distance from P . If they
have the same second minimum Euclidean distance, then we calculate
their third minimum Euclidean distances and so forth;

2: N = N − 1;
3: Calculate a and f according to P based on Algorithm 5;
4: Evaluate the system energy consumption of {N,P,a, f};
5: FEs = FEs+ 1;
6: return {N,P,a, f} and FEs

layer depends on Algorithm 3 and Algorithm 4, and the task

scheduling in the lower layer depends on Algorithm 5.

C. Initialization

Algorithm 2 introduces the initialization of P , which

contains the locations of N UAVs. First, we randomly generate

a location for the first UAV and put it into P . After that, we

generate a location for the second UAV. If this UAV satisfies

C2 in (12), which suggests that the distance between the first

and second UAVs is not smaller than dUU
min and they will not

collide, then we put it into P . Otherwise, the generation of

the location of the second UAV is unsuccessful. Under this

condition, if the consecutive unsuccessful number is bigger

than 200, we restart the initialization; otherwise, the location

of the second UAV is regenerated by Step 4. Subsequently,

we execute the above process on the third UAV and so forth.

Finally, all UAVs’ locations are successfully generated and an

initial deployment of UAVs is obtained (i.e., P).

D. Upper Layer Optimization

The aim of the upper layer optimization is to determine

the optimal deployment of UAVs, in other words, the optimal

number and locations of UAVs. In ToDeTaS, the number of

UAVs is equal to the population size of P (i.e., N ). Therefore,

the optimization of the number of UAVs is equivalent to

the adjustment of N . By analyzing the multi-UAV enabled

MEC system proposed in this paper, the following property is

obtained.

Property 1: The number of UAVs should be as small as

possible under the condition that all tasks can be executed

under delay constraints.

Algorithm 4 Updating Operator

1: Utilize the ith individual in Q to replace a randomly selected individual
in P and obtain a new population R;

2: if R satisfies C2 in (12) then

3: Calculate the offloading decision a′ and the resource allocation f ′

according to R based on Algorithm 5;
4: Evaluate the system energy consumption of {N,R,a′, f ′};
5: FEs = FEs+ 1;
6: Denote the numbers of completed tasks of {N,R,a′, f ′} and

{N,P,a, f} as NC R and NC P , respectively, and denote the
energy consumption of {N,R,a′, f ′} and {N,P,a, f} as EC R
and EC P , respectively;

7: if NC R > NC P then

8: {N,P,a, f} = {N,R,a′, f ′};
9: else if NC R == NC P == M and EC R < EC P then

10: {N,P,a, f} = {N,R,a′, f ′};
11: end if

12: end if

13: return {N,P,a, f} and FEs

We analyze the rationality of this property in the Appendix.

Based on this property, the population size of P is adjusted as

follows: we first set the initial N as the maximum number of

UAVs (Nmax = M/nmax), and then N is gradually decreased

by the elimination operator in Algorithm 3 until at least one

task cannot be executed under delay constraints. As shown in

Algorithm 3, in each time, we only delete one individual from

P . A question is which individual should be deleted. In this

paper, we consider that the most crowded individual should be

deleted. It is because the UAV corresponding to this individual

may be redundant, thus adding system energy consumption.

The second issue in the upper layer optimization is to

determine the optimal locations of UAVs, which is achieved

by making use of DE. In this paper, the classical DE ver-

sion, DE/rand/1/bin [38], is adopted. For the ith individual

~xi = (xi,1, xi,2) (i ∈ {1, . . . , N}) in P , the mutation and

crossover operators of DE/rand/1/bin are introduced in (13)

and (14), respectively:

~vi = ~xr1 + F ∗ (~xr2 − ~xr3), (13)

ui,j =

{

vi,j , if randj(0, 1) ≤ CR or j = jrand

xi,j , otherwise
,

(14)

where i ∈ {1, . . . , N}; j ∈ {1, 2}; ~xr1, ~xr2, and ~xr3 are

three mutually distinct individuals randomly selected from P;

~vi = (vi,1, vi,2) and ~ui = (ui,1, ui,2) are the mutant vector

and the trial vector, respectively; ui,j , vi,j , and xi,j are the

jth dimension of ~ui, ~vi, and ~xi, respectively; F is the scaling

factor; jrand is an integer randomly selected between 1 and D
to ensure that ~ui is different from ~xi in at least one dimension;

randj(0, 1) denotes a uniformly distributed random number

between 0 and 1 for each j, and CR is the crossover control

parameter.

During the evolution, DE is implemented on P to produce

an offspring population Q. Thereafter, each individual in Q
is utilized to replace a randomly selected individual in P;

thus, P is updated, denoted as R. For R, if it satisfies C2 in

(12), we compute the offloading decision a
′ and the resource

allocation f
′. If {N,R,a′, f ′} can execute more tasks under

delay constraints than {N,P,a, f}, or if both of them can

execute all tasks under delay constraints and the system energy
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consumption of {N,R,a′, f ′} is less than that of {N,P,a, f},

then {N,P,a, f} is replaced with {N,R,a′, f ′}. The updating

operator is given in Algorithm 4.

Regarding Steps 15-22 and Steps 23-26 in Algorithm 1, we

would like to give the following remarks:

• Steps 15-22: flag represents the optimization status.

Specifically, flag = 0 denotes that the elimination

operator can be implemented; instead, flag = 1 denotes

that the elimination operator will not be used any more.

If {N,P,a, f} is still infeasible after 1000 consecutive

updates, we consider that N cannot be reduced and the

optimal number of UAVs has been found (i.e., N + 1).

Thus, we let flag = 1. Under this condition, the fol-

lowings steps will be applied: {N,P,a, f} returns to its

last feasible status, the elimination operator is no longer

used, and we continue to take advantage of the updating

operator to optimize P , that is, the locations of UAVs.

• Steps 23-26: If flag = 0 and {N,P,a, f} is feasible, the

updating operator breaks and the elimination operator is

implemented on {N,P,a, f} to further reduce N .

Overall, in the upper layer optimization, the number of

UAVs is optimized by the elimination operator and the lo-

cations of UAVs are optimized by the updating operator.

Moreover, Steps 15-22 and Steps 23-26 control the switch

between the elimination operator and the updating operator.

E. Lower Layer Optimization

The lower layer optimization aims to optimize the task

scheduling under a given deployment of UAVs, including the

offloading decision and the resource allocation. For a given

deployment of UAVs, N , Xj , Yj (j ∈ N ), and EH are fixed

in (12). In addition, this deployment must satisfy C2 in (12)

since if it does not satisfy C2, it cannot enter the population

as shown in Step 2 of Algorithm 4. Therefore, we only need

to focus on ai,k and fi,k (i ∈ M and k ∈ K) in (12). By

substituting (2) and (10), which are related to fi,k, to (12),

the lower layer optimization problem can be expressed as:

min
ai,k,fi,k

M
∑

i=1

(

ai,0η1(fi,0)
v−1Ci +

N
∑

k=1

ai,k

(

P
Di

ri,k
+ η2(fi,k)

v−1Ci

)

)

(15)

s.t. C1, C3, C4, C5, C6, C7, and C8.

It can be seen from (15) that the more the computation

resources consumed to complete a task under a certain pattern

(i.e., fi,k), the greater the energy consumption (the objective

function in (15)). It is because the energy consumption in-

creases monotonously with the increase of fi,k. Therefore, to

minimize the energy consumption, fi,k should be as small as

possible. However, when Ui is executed in pattern k, to ensure

that delay constraints C7 and C8 are satisfied, fi,k must not

be smaller than a minimum value, which can be calculated

based on C7 and C8.

Substituting (1) and (9) to C7 and C8, respectively, one can

obtain that

• when Ui is executed in pattern 0:

fi,0 ≥
Ci

T
, ∀i ∈ M; (16)

• when Ui is executed in pattern k:

fi,k ≥
Ci

T − Di

ri,k

, ∀i ∈ M, k ∈ K\{0}. (17)

From (16) and (17), the minimum computation resources are
Ci

T
and Ci

T−
Di
ri,k

, respectively, when Ui is executed in pattern

0 and the other patterns. Thus, each element of the optimal

resource allocation f can be given as

f⋆
i,k =















Ci

T
, if ai,k = 1, k = 0
Ci

T−
Di
ri,k

, if ai,k = 1, k > 0

0, otherwise

, ∀i ∈ M, k ∈ K.

(18)

After obtaining the optimal resource allocation, C5, C6,

C7, and C8 are satisfied, and then we can rewrite the lower

layer optimization problem again by substituting (18) to (15):

min
ai,k

M
∑

i=1

(

ai,0η1(f
⋆
i,0)

v−1Ci +
N
∑

k=1

ai,k

(

P
Di

ri,k
+ η2(f

⋆
i,k)

v−1Ci

)

)

(19)

s.t. C1, C3, and C4.

Remark 1: As mentioned in the Appendix, E⋆
i,k represents

the minimum energy to complete Ui (i ∈ M) in pattern

k (k ∈ K). Actually, E⋆
i,0 = η1(f

⋆
i,0)

v−1Ci, and E⋆
i,k =

P Di

ri,k
+ η2(f

⋆
i,k)

v−1Ci, k ∈ K\{0}.

As can be seen, we only need to optimize ai,k; thus, (19)

is a 0-1 integer programming problem since ai,k = 0 or

1. Although classical mathematical programming methods,

such as the branch and bound algorithm [39], can be used

to solve (19), they are time-consuming due to the large-scale

characteristic in this paper. To this end, we propose a greedy

algorithm to efficiently obtain the near-optimal solution of

(19).

First, we define a candidate pattern set for each task:

• This task can be executed in each candidate pattern under

delay constraints;

• If pattern 0 is one of the candidate patterns, then the

energy consumption of any other candidate pattern is less

than that of pattern 0.

Subsequently, all tasks are divided into three categories:

• The tasks’ candidate pattern sets only contain pattern 0;

• The tasks’ candidate pattern sets do not contain pattern

0;

• The tasks’ candidate pattern sets contain both pattern 0

and other patterns.

Suppose that there are M1, M2, and M3 tasks in the first,

second, and third categories, respectively. Then, offloading

decision a is expressed in the following, each element of which

is initialized to be zero:
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Algorithm 5 Task Scheduling

1: Calculate f based on the given P;
2: Divide the tasks into three categories. Suppose that the first, second, and

third categories have M1, M2, and M3 tasks, respectively;
3: Initialize a = 0 in (20);
4: For the tasks in the first category, a1,0 = · · · = aM1,0 = 1;
5: A = {1, . . . ,M2};
6: while A 6= ∅ do

7: Choose the task with the minimum number of candidate patterns in
the second category (denoted as the sth task);

8: Suppose that this task has ns candidate patterns and the corresponding
minimum energy consumption of these ns candidate patterns is:
E⋆

s,1, . . . , E
⋆
s,ns

;

9: The candidate pattern with min(E⋆
s,1, . . . , E

⋆
s,ns

) is selected, denot-

ed as cs.
10: aM1+s,cs = 1 in a and A = A\{s};
11: The number of tasks that the csth UAV can serve is reduced by one,

and the candidate pattern sets of the rest of the tasks in A are updated;

12: if the candidate pattern sets of all the tasks in A are empty then

13: Break;
14: end if

15: end while

16: B = {1, . . . ,M3};
17: while B 6= ∅ do

18: Suppose that Ui (i = 1, . . . , |B|) in the third category has ni candi-
date patterns, and the corresponding minimum energy consumption of
these ni candidate patterns is: E⋆

i,1, . . . , E
⋆
i,ni

;

19: Normalize ni and (E⋆
i,1, . . . , E

⋆
i,ni

) of Ui (i = 1, . . . , |B|): nor(ni)
and (nor(E⋆

i,1), . . . , nor(E
⋆
i,ni

));

20: Compute nor(ni) ∗ nor(E⋆
i,1), . . . , nor(ni) ∗ nor(E⋆

i,ni
) for

Ui (i = 1, . . . , |B|). Thus, we can obtain
|B|
∑

i=1

ni values. By selecting

the minimum value, we can determine the corresponding task (denoted
as the sth task in the third category) and pattern (denoted as cs);

21: aM1+M2+s,cs = 1 in a and B = B\{s};
22: if Us is executed on a UAV then

23: The number of tasks that this UAV can serve is reduced by one, and
the candidate pattern sets of the rest of the tasks in B are updated;

24: end if

25: end while

26: return {a, f}

a =



































a1,0 a1,1 · · · a1,N

...
...

...
...

aM1,0 aM1,1 · · · aM1,N

aM1+1,0 aM1+1,1 · · · aM1+1,N

...
...

...
...

aM1+M2,0 aM1+M2,1 · · · aM1+M2,N

aM1+M2+1,0 aM1+M2+1,1 · · · aM1+M2+1,N

...
...

...
...

aM1+M2+M3,0 aM1+M2+M3,1 · · · aM1+M2+M3,N



































(20)

We give the priorities of these three categories in descending

order. The tasks in the first category have the highest priority.

This is because they are executed locally (i.e., a1,0 = · · · =
aM1,0 = 1) and do not consume any computation resources

from MEC servers on UAVs. Since the tasks in the second

category can only be executed on UAVs, we need to give

them the second highest priority, with the aim of completing

as many tasks as possible. In addition, the tasks in the third

category can be executed locally in the worst case. Therefore,

they have the lowest priority.

Next, we determine the offloading decision for the tasks in

TABLE I
PARAMETER SETTINGS IN THE MULTI-UAV ENABLED MEC SYSTEM

PROPOSED IN THIS PAPER.

Parameter Value Parameter Value

Ci, i ∈ M [16, 1600]MCycles dUU
min 10m

Di, i ∈ M [10, 1000]KB nmax 10

H 100m B 1MHz

θ π
4

P 1W

fi,0, i ∈ M [0, 0.8]GHz β0 1.42× 10−4

fi,k, i ∈ M, k ∈ K\{0} [0, 10]GHz G0 2.2846

η1 10−27 N0 10−20W/Hz

η2 10−28 P0 1000W

v 3 T 1s

TABLE II
SIDE LENGTHS OF SQUARE AREAS WITH DIFFERENT NUMBERS OF

MOBILE USERS.

M 100 200 300 400 500

Side Length (m) 320 450 550 640 710

M 600 700 800 900 1000

Side Length (m) 780 840 900 950 1000

the second and third categories.

• The offloading decision for the tasks in the second

category is given in Steps 5-15 in Algorithm 5. When

determining which task to execute, we first select the task

with the minimum number of candidate patterns, the aim

of which is to complete all tasks with a higher probability.

Afterward, we choose one of the candidate patterns of this

task by considering their minimum energy consumption.

• The offloading decision for the tasks in the third cat-

egory is given in Steps 16-25 in Algorithm 5. When

determining which task to execute, we consider the

number of candidate patterns and the energy consumption

simultaneously. We prefer the tasks with fewer candidate

patterns and less energy consumption; thus, all tasks can

be completed with the system energy consumption being

as little as possible.

Remark 2: Only in the second category, some tasks may

not be executed under delay constraints. For the other two

categories, all tasks can be definitely completed.

Remark 3: In Algorithm 4, it is necessary to compute

the number of completed tasks. Note that the number of

uncompleted tasks is equal to the number of the remaining

tasks in A when Algorithm 5 terminates, that is, the number

of rows in a, in which all the elements are zero.

F. Discussion

The proposed ToDeTaS has the following characteristics:

• This paper optimizes a 4-tuple: {N,P,a, f} to minimize

the energy consumption of the proposed multi-UAV en-

abled MEC system;

• By mining the specific-knowledge of this system, we

propose a new encoding mechanism and adaptively adjust

population size N (i.e., the number of UAVs);

• DE serves as the search engine to optimize P , that is, the

locations of UAVs;

• By exploiting the correlation between the upper layer and

the lower layer, for a given deployment of UAVs in the
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TABLE III
EXPERIMENTAL RESULTS OF DE-VND AND TODE-VND IN TERMS OF MEAN NC AND SR.

M
DE-VND ToDE-VND

Mean NC (Std Dev) SR Mean NC (Std Dev) SR

100 43.07 (1.39) 0.00% 100.00 (0.00) 100.00%

200 81.07 (3.41) 0.00% 200.00 (0.00) 100.00%

300 105.37 (8.86) 0.00% 300.00 (0.00) 100.00%

400 129.13 (12.53) 0.00% 399.97 (0.18) 96.67%

500 145.20 (19.00) 0.00% 499.63 (0.48) 63.33%

600 163.23 (22.38) 0.00% 598.67 (0.75) 6.67%

700 182.90 (31.13) 0.00% 698.47 (0.88) 13.33%

800 199.87 (37.86) 0.00% 797.33 (1.01) 0.00%

900 228.13 (44.69) 0.00% 897.03 (0.84) 0.00%

1000 247.87 (53.49) 0.00% 997.17 (1.07) 0.00%

upper layer, we directly derive the optimal f and propose

a greedy algorithm to efficiently optimize a.

• ToDeTaS includes few parameters: the scaling factor F
and the crossover control parameter CR in DE. Moreover,

due to the low-dimensional search space, F and CR are

not sensitive.

The novelties of this paper can be summarized as follows:

• This paper is the first attempt to establish a multi-UAV

enabled MEC system to serve large-scale mobile users.

• An optimization problem is formulated to jointly optimize

the deployment of UAVs and the task scheduling. The

main challenges of this optimization problem are twofold:

large-scale mixed decision variables and strong coupling

between the deployment of UAVs and the task scheduling.

• We propose a new two-layer optimization method called

ToDeTaS. The two-layer structure is able to deal with

large-scale decision variables and strong coupling be-

tween the deployment of UAVs and the task scheduling.

Moreover, in the upper layer, an integer decision variable

(i.e., the number of UAVs) and continuous decision vari-

ables (i.e., the locations of UAVs) are handled by a new

encoding mechanism and an elimination operator, and in

the lower layer, binary decision variables (i.e., offloading

decision of each mobile user) and continuous decision

variables (i.e., resource allocation of each mobile user)

are tackled by an efficient greedy algorithm. Therefore,

ToDeTaS can also address the challenge caused by mixed

decision variables.

IV. EXPERIMENTAL STUDY

A. Experimental Settings

The parameter settings of the proposed multi-UAV enabled

MEC system are given in Table I [30], [40], [41]. In ad-

dition, we applied ten instances with different numbers of

mobile users to study the performance of ToDeTaS: M =
100, 200, . . . , 1000. We assumed that all mobile users were

distributed in square areas with different side lengths, as shown

in Table II.

The proposed ToDeTaS includes two parameters, which

were set as follows: F = 0.9 and CR = 0.9. The maximum

number of fitness evaluations (FEsmax) was set to 10,000

and 30 independent runs were implemented on ToDeTaS.

In order to compare the performance of different algorithms,

three performance indicators were employed:

• The first performance indicator was the average number

of completed tasks and the standard deviation over 30

independent runs (denoted as ‘Mean NC’ and ‘Std Dev’).

• The second performance indicator was the success rate

(denoted as SR), which means the percentage of success-

ful runs over 30 independent runs. A run is successful if

all tasks can be completed when an algorithm ends.

• If SR of an algorithm is equal to 100%, then we compute

the system energy consumption via (12) (denoted as EC).

Thus, the third performance indicator was the average

system energy consumption (i.e., 1
30

30
∑

i=1

ECi, where ECi

represents the system energy consumption of the ith
independent run) and the standard deviation over 30

independent runs (denoted as ‘Mean EC’ and ‘Std Dev’).

B. Effectiveness of Two-Layer Optimization

We handle the joint deployment and task scheduling opti-

mization by two-layer optimization. Moreover, we optimize

the deployment of UAVs and task scheduling in the upper

and lower layers, respectively. To verify the effectiveness of

the two-layer optimization, we solved (12) by a single-layer

optimization method proposed in [42]. The method in [42]

is designed to solve optimization problems with a variable

number of dimensions, in which different individuals in the

population have different lengths, and the length of each

individual is updated according to a probability-based way.

As pointed out in Section III-B, the deployment of UAVs is a

variable-length optimization problem due to the fact that the

optimal number of UAVs is unknown. Therefore, the method

in [42] was chosen to solve (12) as a single-layer optimization

method in this paper. Note that we made a simple revision

to this method by replacing particle swarm optimization with

DE as the search engine. The resultant method was named

DE-VND. In DE-VND, each initial individual included a

deployment of UAVs as well as task scheduling, both of them

were randomly generated. In addition, we designed a two-layer

version of DE-VND, named ToDE-VND. In ToDE-VND, the

deployment of UAVs in the upper layer was the same with DE-

VND; however, the task scheduling in the lower layer was the

same with ToDeTaS.

The performance of DE-VND was compared with that of

ToDE-VND on the ten instances. In the experiments, DE-

VND and ToDE-VND had the same parameter settings: the
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TABLE IV
EXPERIMENTAL RESULTS OF TODE-VND AND TODETAS IN TERMS OF MEAN NC, SR, AND MEAN EC (J).

M
ToDE-VND ToDeTaS

Mean NC (Std Dev) SR Mean EC (Std Dev) Mean NC (Std Dev) SR Mean EC (Std Dev)

100 100.00 (0.00) 100.00% 7568.24 (498.52) 100.00 (0.00) 100.00% 6435.16 (489.34)

200 200.00 (0.00) 100.00% 17361.06 (640.21) 200.00 (0.00) 100.00% 11761.12 (861.58)

300 300.00 (0.00) 100.00% 27821.53 (1030.27) 300.00 (0.00) 100.00% 18654.89 (1144.66)

400 399.97 (0.18) 96.67% / 400.00 (0.00) 100.00% 25252.44 (1498.72)

500 499.63 (0.48) 63.33% / 500.00 (0.00) 100.00% 31657.92 (1585.73)

600 598.67 (0.75) 6.67% / 600.00 (0.00) 100.00% 38360.55 (1713.31)

700 698.47 (0.88) 13.33% / 700.00 (0.00) 100.00% 44710.19 (1687.06)

800 797.33 (1.01) 0.00% / 800.00 (0.00) 100.00% 51811.82 (2523.99)

900 897.03 (0.84) 0.00% / 900.00 (0.00) 100.00% 54858.37 (1817.12)

1000 997.17 (1.07) 0.00% / 1000.00 (0.00) 100.00% 62516.68 (2471.07)
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Fig. 3. Evolution of the mean EC (J) and the mean NU provided by ToDeTaS on the ten instances.

population size was set to 100, the probabilities p1 to ~xi, p2
to ~xr1, p3 to ~xr2, and p4 to ~xr3 were set to 0.25, 0.25, 0.25 and

0.25, respectively, F = 0.9, CR = 0.9, FEsmax = 10, 000,

and 30 independent runs were implemented. The experimental

results in terms of mean NC and SR are summarized in Table

III.

From Table III, as far as the mean NC is concerned, ToDE-

VND is significantly better than DE-VND on all instances.

In addition, ToDE-VDE provides higher SR than DE-VND

from M = 100 to 700. Moreover, when M = 100, 200,

and 300, ToDE-VND achieves 100% SR. The superiority of

ToDE-VND against DE-VND can be attributed to two aspects:

1) by the two-layer optimization, (12) is decomposed into

two optimization problems in the upper and lower layers with

fewer numbers of decision variables, and 2) in ToDE-VND,

the lower layer is generated based on the upper layer, which

in turn enhances the accuracy of the evaluation of the upper

layer; thus, the correlation between the upper and lower layers

has been considered. However, in DE-VND, the deployment

of UAVs and task scheduling are optimized independently.

In this case, on the one hand, for a given deployment of

UAVs, the probability that all tasks can be completed in the

task scheduling remarkably decreases. On the other hand,

we cannot provide an accurate evaluation of the deployment

of UAVs based on the corresponding task scheduling. The

aforementioned discussion verifies the effectiveness of the

two-layer optimization, which is the main motivation of this

paper.
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TABLE V
EXPERIMENTAL RESULTS OF TODETAS-BB AND TODETAS IN TERMS OF MEAN EC (J) AND MEAN RUNTIME (S).

M
Mean EC (Std Dev) Mean Runtime

ToDeTaS-BB ToDeTaS ToDeTaS-BB ToDeTaS

100 6536.17 (499.98) 6435.16 (489.34) 93.60 4.56

200 11763.66 (862.13) 11761.12 (861.58) 141.87 9.52

300 18326.72 (1054.57) 18654.89 (1144.66) 250.86 21.05

400 24093.02 (1224.23) 25252.44 (1498.72) 435.97 42.42

500 30298.00 (1383.99) 31657.92 (1585.73) 726.57 67.30

600 36501.72 (1715.53) 38360.55 (1713.31) 1166.16 106.31

700 41486.40 (1610.91) 44710.19 (1687.06) 1741.31 150.84

800 48690.46 (2906.08) 51811.82 (2523.99) 2603.06 213.90

900 52204.68 (1913.62) 54858.37 (1817.12) 3562.85 251.45

1000 58499.03 (2587.03) 62516.68 (2471.07) 4915.91 329.12

/ / / MAR 13.22

C. Effectiveness of Upper Layer Optimization

The difference between ToDE-VND and ToDeTaS is the

upper layer optimization. To be specific, ToDE-VND and

ToDeTaS have different encoding mechanisms and different

ways to deal with the variable-length optimization problem

in (12). Hence, by comparing ToDE-VND with ToDeTaS, we

can study the effectiveness of the upper layer optimization. It

can be seen from Section IV-B that ToDE-VND and ToDeTaS

have the same parameter settings.

Table IV reports the experimental results derived from

ToDE-VND and ToDeTaS in terms of mean NC, SR, and

mean EC. When M = 100, 200, and 300, both ToDE-

VND and ToDeTaS can complete all tasks and provide 100%

SR. Under this condition, we compared their mean EC. It is

clear that the mean EC values resulting from ToDeTaS are

significantly smaller than those of ToDE-VND. In addition,

for the remaining instances, ToDeTaS succeeds in completing

all tasks consistently. In contrast, ToDE-VND’s SR is smaller

than 100% on each instance. More importantly, ToDE-VND

fails to complete all tasks in each run for the instances

with a larger number of mobile users, i.e., M = 800, 900,

and 1000. The reason why ToDeTaS performs better than

ToDE-VND is straightforward: the former searches for the

optimal deployment of UAVs in the search space with a

much lower dimension compared with the latter. Moreover,

ToDeTaS encodes the location of a UAV into an individual,

thus transforming a variable-length optimization problem into

a fixed-length one. It is noteworthy that ToDeTaS adopts an

elimination operator to adaptively adjust the population size.

As a result, an important parameter, i.e., the population size,

has been eliminated.

Fig. 3 plots the evolution of the mean EC and the mean num-

ber of uncompleted tasks (denoted as ‘mean NU’) provided by

ToDeTaS over 30 independent runs on the ten instances. As

shown in Fig. 3, ToDeTaS can consistently complete all tasks

and converge after 5000 fitness evaluations.

D. Effectiveness of Lower Layer Optimization

The lower layer optimization involves the offloading de-

cision and resource allocation. Although in ToDeTaS, the

resource allocation can be determined by simple mathematical

derivations, the offloading decision is still a large-scale 0-

1 integer programming problem due to a large number of

mobile users in this paper. To reduce the computational time

complexity, we propose a greedy algorithm to solve this

problem. One may be interested in the performance difference

between our greedy algorithm and other classical mathematical

programming methods. To this end, we designed a variant

of ToDeTaS, named ToDeTaS-BB, in which the offloading

decision was solved by the branch and bound algorithm [39].

We implemented the branch and bound algorithm via the

Matlab toolbox.

The experimental results of ToDeTaS and ToDeTaS-BB

are presented in Table V in terms of mean EC and mean

runtime. We can observe from Table V that from M = 300
to 1000, overall, ToDeTaS-BB provides slightly less mean EC

than ToDeTaS. It is largely because the branch and bound

algorithm can generate a better offloading decision than the

greedy algorithm and improve the accuracy of evaluation for

the upper layer. It is interesting to note that ToDeTaS is better

than ToDeTaS-BB in terms of the mean EC for a small number

of mobile users, that is, M = 100 and 200. This phenomenon

is not difficult to understand since for a small number of

mobile users, the greedy algorithm is able to generate a high-

quality offloading decision. In addition, the branch and bound

algorithm cannot guarantee the absolute optimal offloading

decision in the Matlab toolbox.

With respect to the mean runtime, it is obvious that ToDe-

TaS performs much faster than ToDeTaS-BB. In this paper, we

defined the mean accelerator rate (MAR) of ToDeTaS against

ToDeTaS-BB:

MAR =
1

10

10
∑

i=1

T1i
T2i

, (21)

where T1i and T2i represent the runtime of ToDeTaS-BB and

ToDeTaS on the ith instance, respectively. As shown in Table

V, ToDeTaS is on average 13.22 times more efficient than its

competitor. After a task is executed, the computational time

complexity of the greedy algorithm in Algorithm 5 depends

mainly on updating the candidate pattern sets of the rest of

the tasks in Steps 11 and 23, which requires MN judgements

in the worst case. Due to the fact that there are M tasks,

the computational time complexity of the greedy algorithm

is O(M2N) in the worst case. In contrast, the computational

time complexity of the branch and bound algorithm is O((N+
1)M ). Therefore, we can conclude that the greedy algorithm

can efficiently optimize the offloading decision with only a
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TABLE VI
EXPERIMENTAL RESULTS OF TODETAS-L, TODETAS-M, AND TODETAS

IN TERMS OF MEAN NC.

M
Mean NC

ToDeTaS-L ToDeTaS-M ToDeTaS

100 42.00 99.83 100.00

200 103.00 199.20 200.00

300 149.00 298.63 300.00

400 200.00 397.53 400.00

500 244.00 496.57 500.00

600 283.00 595.67 600.00

700 334.00 693.77 700.00

800 378.00 792.20 800.00

900 455.00 891.23 900.00

1000 515.00 989.00 1000.00
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Fig. 4. Experimental results of ToDeTaS-M and ToDeTaS in terms of mean
N .

slight sacrifice of the system energy consumption, compared

with the branch and bound algorithm.

E. Effectiveness of Our Multi-UAV Enabled MEC System

Finally, we compared two algorithms—ToDeTaS-L and

ToDeTaS-M—with ToDeTaS to verify the effectiveness of

our multi-UAV enabled MEC system. For ToDeTaS-L and

ToDeTaS-M, all tasks can only be executed locally and on

UAVs, respectively. However, for ToDeTaS, a task can be

executed locally or on a UAV.

Table VI shows the experimental results of ToDeTaS-L,

ToDeTaS-M, and ToDeTaS in terms of mean NC over 30

independent runs. As depicted in Table VI, both ToDeTaS-L

and ToDeTaS-M cannot successfully complete all tasks on any

instance. However, ToDeTaS has the capability to complete all

tasks on all ten instances. The poor performance of ToDeTaS-L

and ToDeTaS-M can be explained as follows. For ToDeTaS-L,

if a mobile device cannot complete its task due to the lack of

enough computational resources, then ToDeTaS-L will fail. In

addition, for ToDeTaS-M, due to the nonuniform distribution

of mobile users, some tasks may not be covered by any UAV;

thus, ToDeTaS-M may fail. In principle, ToDeTaS can alleviate

the limitations of these two algorithms.

Note that the mean NC values provided by ToDeTaS-M

are close to those of ToDeTaS in Table VI. In order to

further identify the performance difference, we compared the

mean number of UAVs (i.e., mean N ) of ToDeTaS-M and

ToDeTaS on the ten instances. Fig. 4 shows the experimental

results. From Fig. 4, ToDeTaS is able to complete all tasks

while requiring considerably fewer UAVs than ToDeTaS-M

on each instance. This is because about 40% of the tasks can

be executed locally under delay constraints according to the

parameter settings in Table I. Therefore, ToDeTaS is capable

of reducing about 40% of UAVs compared with ToDeTaS-M.

This comparison confirms the effectiveness of our multi-UAV

enabled MEC system.

V. DISCUSSION

A. On Hyper-Heuristic Approaches for the Task Scheduling in

the Lower Layer

One may be interested in whether hyper-heuristic approach-

es (e.g., genetic programming and particle swarm optimiza-

tion) can work better for the task scheduling in the lower

layer. There is no doubt that hyper-heuristic approaches are

able to solve the task scheduling in the lower layer and

may even obtain a better solution than our greedy algorithm.

However, the computational time complexity of a hyper-

heuristic approach is significantly higher than that of our

greedy algorithm. This is because a hyper-heuristic approach

searches for the optimal solution via an iterative way. In

this paper, we adopted a two-layer optimization method.

Obviously, if the computational time complexity of the lower

layer optimization method is high, it is impossible to apply

the two-layer optimization method in the large-scale scenarios.

Moreover, as can be seen from the experimental studies in

Section IV, our greedy algorithm exhibits good performance.

Overall, by considering the tradeoff between computational

time complexity and accuracy, we made use of a greedy

algorithm to optimize the task scheduling in the lower layer.

B. On Dynamic Environment

Although we only consider the static environment in this

paper, a dynamic environment can also be applied to our

system. We will explain this from the following two aspects.

• If xi, yi, Ci, and Di (i ∈ M) change in different time

slots, then we can use ToDeTaS to jointly re-optimize

the deployment of UAVs and the task scheduling in each

time slot.

• If xi, yi, Ci, and Di change within a time slot, then we

can tighten the delay constraints (i.e., C7 and C8 in (12))

to make the task executed in the time duration less than

T .

VI. CONCLUSION

This paper proposed a new multi-UAV enabled MEC system

to enhance the performance of traditional MEC systems by

making use of multiple UAVs. In this system, it is necessary to

jointly optimize the deployment of UAVs and task scheduling.

When EAs are employed to solve this joint optimization

problem, they face two issues: large-scale search space and

mixed decision variables. Moreover, they usually ignore the

correlation between the deployment of UAVs and task schedul-

ing. In this paper, we proposed a two-layer optimization

method, called ToDeTaS, which considered the deployment

of UAVs as the upper layer optimization problem and the

task scheduling as the lower layer optimization problem. For

the upper layer optimization, a new encoding mechanism was
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suggested, which encoded the location of a UAV into an

individual; thus, the whole population represented an entire de-

ployment and the number of UAVs was equal to the population

size. Then, DE served as the search engine and an elimination

operator was designed to adaptively tune the population size.

In the lower layer optimization, for a given deployment of

UAVs, we first determined the resource allocation, and then

optimized the offloading decision by a greedy algorithm.

Overall, ToDeTaS has the following three advantages:

• Compared with the original joint optimization problem,

the optimization problems in the upper and lower layers

have fewer decision variables, therefore reducing the

dimension of the search space.

• ToDeTaS avoids mixed decision variables by the new

encoding mechanism, the elimination operator, and the

derivation of resource allocation.

• The correlation between the deployment of UAVs and

the task scheduling is fully taken into consideration.

Specifically, the upper layer make the lower layer more

likely to complete all tasks, and the lower layer improves

the accuracy of the evaluation of the upper layer.

The performance of ToDeTaS was investigated by ten in-

stances with up to 1000 mobile users. We also demonstrated

the effectiveness of the two-layer optimization and the pro-

posed system by various performance indicators.

APPENDIX

Suppose that the minimum energy to execute Ui (i ∈ M)
under its delay constraints in pattern k (k ∈ K) is E⋆

i,k. Note

that E⋆
i,k may change with different deployments of UAVs. We

are interested in identifying the maximum energy improve-

ment for Ui in different deployments of UAVs, denoted as

∆E⋆
i . If Ui can be executed locally and if the minimum energy

to complete Ui can be improved by offloading it to a UAV, then

the maximum energy improvement should be less than E⋆
i,0,

that is, ∆E⋆
i < E⋆

i,0 = η1(f
⋆
i,0)

v−1Ci, where f⋆
i,0 is defined in

(18). In addition, if Ui cannot be executed locally, then suppose

that it is executed on UAV j. When mobile user i has the short-

est distance with UAV j (i.e., mobile user i is located directly

below UAV j), we can obtain the ideal minimum energy to

complete Ui: E
⋆
i,k,min = P Di

ri,k,max
+ η2(f

⋆
i,k)

v−1Ci (k = j),
where ri,k,max represents the maximum uplink data rate and

is equal to Blog2

(

1 + Pβ0G0

N0Bθ2((dMU
i,j,min

)2+H2)

)

, f⋆
i,k is defined

in (18), and dMU
i,j,min = 0. On the other hand, when mobile

user i has the longest distance with UAV j (i.e., mobile user

i is located on the boundary of the area covered by UAV

j), we can obtain the ideal maximum energy to complete

Ui: E⋆
i,k,max = P Di

ri,kmin
+ η2(f

⋆
i,k)

v−1Ci (k = j), where

ri,k,min represents the minimum uplink data rate and is

equal to Blog2

(

1 + Pβ0G0

N0Bθ2((dMU
i,j,max

)2+H2)

)

and dMU
i,j,max =

H tan θ. Therefore, under this condition, ∆E⋆
i = E⋆

i,k,max −
E⋆

i,k,min (k = j).
According to the parameter settings in Table I, we can derive

that
M
∑

i=1

∆E⋆
i < EH , which means that the maximum energy

improvement of all tasks in different deployments of UAVs is

less than the energy to hover a UAV. That is, although adding

a UAV can reduce the energy to complete all tasks (i.e., the

first term of the objective function of (12)), the total system

energy consumption (i.e., the objective function of (12)) will

definitely add. Therefore, if all tasks can be executed under

delay constraints, we should use as few UAVs as possible,

which is property 1.
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