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Abstract

Camera shake during exposure time often results in spa-

tially variant blur effect of the image. The non-uniform blur

effect is not only caused by the camera motion, but also the

depth variation of the scene. The objects close to the cam-

era sensors are likely to appear more blurry than those at

a distance in such cases. However, recent non-uniform de-

blurring methods do not explicitly consider the depth fac-

tor or assume fronto-parallel scenes with constant depth

for simplicity. While single image non-uniform deblurring

is a challenging problem, the blurry results in fact contain

depth information which can be exploited. We propose to

jointly estimate scene depth and remove non-uniform blur

caused by camera motion via exploiting their underlying

geometric relationships, with only single blurry image as

input. To this end, we present a unified layer-based model

for depth-involved deblurring. We provide a novel layer-

based solution using matting to partition the layers and

an expectation-maximization scheme to solve this problem.

This approach largely reduces the number of unknowns and

makes the problem tractable. Experiments on challenging

examples demonstrate that both depth and camera shake re-

moval can be well addressed within the unified framework.

1. Introduction

Motion deblurring problem has drawn much attention in

recent years with demonstrated success. Most approaches

model a blurry image as the integration of intermediate

frames captured by the camera along the motion trajectory,

typically assuming in-plane translational camera motions.

Recent endeavor in nonuniform deblurring further explores

rotational camera motion model [6, 30, 28] and broadens

the application range of deblurring approaches. These ef-

fective methods, however, do not consider large scene depth

variation, which is ubiquitous in real-world scenes.

Figure 1 shows one outdoor image taken by a hand-held

camera. Almost all existing deblurring methods do not per-

form well in this seemingly simple example due to the non-

ignorable depth variation. While some algorithms on depth-
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Figure 1. Depth-aware non-uniform deblurring. (a) blurry image;

(b) restored image by the method [10] assuming constant scene

depth; (c) estimated depth map by our method; (d) restored image

by our method using the estimated depth map.

aware motion deblur have been recent proposed [31, 21],

they nevertheless leverage additional observations for this

challenging task. The inherent limitation of the existing

deblurring methods to handle depth variation is readily ex-

plainable. On the one hand, even with known scene depth,

the solution space of the deblurring problem with depth con-

sideration is typically huge, making it not suitable for prac-

tical applications. On the other hand, depth information is

not usually available and the depth inference from one sin-

gle image is extremely difficult.

In this paper, we propose a unified framework for jointly

restoration of scene depth and the latent clear image. While

depth information is critical in blur removal, the blur im-

age provides an additional cue for depth information. In

addition, rather than inferring depth for isolated pixels [18],
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we extract depth layers and model the layer-wise blur re-

spectively. This makes the problem better constrained and

is the major difference to the previous work. We develop

an expectation-maximization (EM) scheme to solve scene

depth and the latent image alternatively by exploiting their

underlying geometric relationships, from one single blurry

image. We demonstrate that the proposed model effectively

removes non-uniform blur from images with depth varia-

tion.

2. Related Work

The problem of removing spatially invariant blur has

been studied extensively and numerous algorithms have

been proposed. Since blind deconvolution is an ill-posed

problem, prior knowledge or additional information are of-

ten required for effective solutions. In the image deblur-

ring literature, two types of additional information are often

used: natural image priors [8, 17, 24, 19, 5, 7] and addi-

tional image observations [2, 22, 33, 27, 20].

Recently, the problem of removing spatially variant blur

caused by camera motion has attracted much attention due

to its wide range of applications [1, 6, 25, 27, 13, 30, 9,

10, 28, 29, 11, 12]. Early work splits an image into several

regions where each is modeled with a constant PSF and re-

covered by a uniform deblur algorithm [1, 6]. However, the

images are degraded from spatially variant blur even in the

same region as shown in Figure 1. These methods are sensi-

tive to region size which is required to be sufficiently small

for the assumption of uniform PSFs to be hold. Hybrid cam-

era systems have also been used to capture a local blur ker-

nel at each pixel location based on optical flows [27, 13].

The methods with additional inputs are demonstrated to be

effective on image deblurring, but such approaches are not

applicable to single image non-uniform deblurring.

In [30, 28], geometric models are proposed to model the

observed blurry image as the integration of all the interme-

diate images captured by the camera along the motion tra-

jectory. The intermediate images are modeled as the ho-

mographic transformations of the latent image. Based on

this model, the spatially-varying deblurring problem can

be solved by estimating a general camera motion func-

tion and then the latent image. A similar model has been

used to model three degrees of camera motion [9] (with

in-plane translations and rotation) instead of camera rota-

tions in [30]. To reduce the computational loads, fast non-

uniform deblur methods have been developed to speed up

the optimization step [10, 11]. In [14], a dataset for motion

deblurring is constructed by recording and playing back the

camera shake with a robot system. The blurry images are

obtained by taking photos on sharp pictures which assume

constant depth. Notwithstanding the demonstrated success,

the above-mentioned non-uniform deblurring methods do

not consider the effect of scene depth on camera motion

blur or assume constant scene depth for simplicity.

To exploit depth information from the blurry input,

recent methods [6, 25, 3] partition an image into fore-

ground/background and remove the blur caused by object

motion. Coded aperture method has been proposed for de-

blurring and decoded images are used to infer pixel-wise

depth in a Markov random field [18]. Depth effect on trans-

lational blur has also been discussed in [26] where the blur

is estimated from the user specified region with approxi-

mately constant depth to infer depth. In [31], two blurry

images of the same scene are used to infer depth with stereo

techniques and further improve the blur removal. Simi-

larly, a non-uniform motion deblurring method has been

proposed to exploit bilayer-scene constraints from two blur

observations [21]. In this work, we consider single-image

non-uniform blur caused by camera motion and scene depth

variation. Depth estimation from one single image itself is

a difficult problem. A depth estimation method has been

proposed based on the visual depth cues, texture and color,

in [23]. However, the problem becomes more challenging

when a blurry input is given as the depth cues are destroyed

in the presence of motion blur. We address this issue by

exploiting the underlying geometric properties of a blurry

image.

3. Depth-Aware Deblurring

In this section, we present the depth-aware geometric

model of non-uniform blur caused by camera motion, and

propose an EM formulation for joint depth estimation and

latent image recovery.

The commonly used geometric model of camera motion

considers an observed blurry image y as the weighted sum

of the transformed results based on the sharp image x [30,

9, 28],

y =

t∑

j=1

wj(K(θj)x) + n, (1)

where {θj}
t
j=1 denotes the sampled camera poses, the

weights W = (w1, . . . , wt)
⊤ indicate the exposure time the

camera stays at each pose and
∑

j wj = 1, K(θj) is the ma-

trix that warps the latent image x to the transformed result

at a sampled pose θj and n as the observation noise. In this

formulation, K(θj) can also be viewed as a blur kernel basis

of pose θj where the r-th row is the weight vector represent-

ing how the r-th pixel of the latent image x contributes to

the blurry image. In [9], the matrix K(θj) is induced from

the homography Pj of the latent image assuming constant

depth d,

Pj = C(Rj +
1

d
Tj [0, 0, 1])C

−1, (2)

where Rj and Tj denote the rotational and translational

components of pose θj , and C is the intrinsic matrix of

the camera. This equation also shows that depth variation



affects only translational blur. While this model assumes

fronto-parallel scenes, we consider more generic cases with

varying depth in this work. Considering depth variation, the

r-th row of the warping matrix varies with the depth at the

r-th pixel. Thus, we denote K(θj , D) as the matrix induced

by pose θj and depth map D.

For practical applications, recent work simplifies the

camera motion from the six-dimensional space to a three-

dimensional subspace. In [30], only three rotations are used

to approximate the camera motion, while in-plane transla-

tions and rotation are considered in [9, 10, 11]. It has been

shown that these two models achieve similar performance

under some assumptions [14]. In this work, we consider in-

plane translations and rotation of camera motion, since out-

of-plane rotations can be approximated with in-plane trans-

lations at certain depth in the proposed depth-aware model.

To make the problem tractable, we first split the image

into disjoint regions, x =
∑N

i=1 xi for latent image and

y =
∑N

i=1 yi for the blurry image, and assign a constant

depth di to each region xi. Here we use xi to indicate the i-

th region, with the intensity of a pixel same as the one in the

original image x if it belongs to i-th region and 0 otherwise.

We rewrite (1) as

y =

N∑

i=1

yi =

N∑

i=1

t∑

j=1

wj(K(θj , di)xi) + n. (3)

Given only blurry image, there are numerous unknown vari-

ables in (3), which makes it difficult to solve.

3.1. EM Formulation

Since there are numerous unknown variables in (3) and

the equation cannot be solved directly, we propose an EM

formulation to solve the problem. Given the observed image

y, the goal is to estimate the latent image and the weights

of camera motion γ = (x,W ) in terms of the unknown

depth map D. The maximum likelihood estimate (MLE) of

this problem is determined by the marginal likelihood of the

observed image,

L(γ; y) = p(y|γ) =
∑

D

p(y,D|γ). (4)

It can be solved with the EM algorithm by iteratively apply-

ing the following steps:

E-step: Compute the expected value of the log likelihood

function under the current estimate of γ(l),

Q(γ|γ(l)) = Ep(D|y,γ(l))[log p(y,D|γ)], (5)

M-step: Determine γ(l+1) = argmaxγ Q(γ|γ(l)).

We explain these steps in the following sections.

3.1.1 E-step

To express Q(γ|γ(l)), we first consider the likelihood

p(y|x,W,D) =

N∏

i=1

p(yi|xi,W, di), (6)

in terms of disjoint regions. To simplify the problem, we

assume a discrete sampled set of the potential depth values,

{vk}
s
k=1, and introduce an auxiliary variable αi,k indicating

the value of depth di as

αi,k =

{
1, if di = vk,

0, otherwise,
(7)

and
∑s

k=1αi,k=1 since only one depth value is selected for

each region. Instead of estimating the continuous depth val-

ues of {di}i, we resort to finding the values of {αi,k}. The

likelihood p(yi|xi,W, di) for each region is then expressed

as the data fitting term and the auxiliary variable,

p(yi|xi,W, di)

= exp(−
1

2η2
||yi −

t∑

j=1

wjK(θj , di)xi||
2)

= exp(−
1

2η2

s∑

k=1

αi,k||yi −
t∑

j=1

wjK(θj , vk)xi||
2),

(8)

where we assume a zero mean Gaussian prior for signal

noise n ∼ N(0, η2). Here the warping matrix K(θj , vk)
can be pre-computed once the sampling of camera poses

and depth values is determined.

Assuming uniform distribution on p(D), we write the

log-likelihood log p(y,D|γ) using (6) and (8),

log p(y,D|x,W ) = log p(y|x,W,D)p(D|x,W )

∝−
1

2η2

N∑

i=1

s∑

k=1

αi,k||yi −
t∑

j=1

wjK(θj , vk)xi||
2.

(9)

and (5) can be written as

Ep(D|y,(x,W )(l))[log p(y,D|x,W )]

∝−
1

2η2

N∑

i=1

s∑

k=1

E[α
(l)
i,k](||yi −

t∑

j=1

wjK(θj , vk)xi||
2).

(10)

Here E[α
(l)
i,k] denotes the expectation of αi,k in the l-th iter-

ation and it can be computed with the pseudo-likelihood

ᾱ
(l)
i,k = E[α

(l)
i,k] = p(α

(l)
i,k = 1|yi, x

(l)
i ,W (l))

=
exp(− 1

2η2 ||yi −
∑t

j=1 w
(l)
j K(θj , vk)x

(l)
i ||2)

∑s

k′=1 exp(−
1

2η2 ||yi −
∑t

j=1 w
(l)
j K(θj , vk′)x

(l)
i ||2)

,

(11)

which also satisfies
∑s

k=1 ᾱ
(l)
i,k = 1.
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Figure 2. Image partition using matting. (a) blurry image and

patches that are difficult for image partition, (b) one layer using

matting and corresponding matting patches.

3.1.2 M-step

Once all the ᾱ
(l)
i,k are determined, we solve γ in the M-step

with the optimization problem,

γ(l+1) = arg max
(x,W )

N∑

i=1

s∑

k=1

ᾱ
(l)
i,k(||yi−

t∑

j=1

wjK(θj , vk)xi||
2).

(12)

This optimization problem is similar to the existing non-

uniform methods based on the geometric model, except that

the image is partitioned into multiple depth layers. We solve

x and W alternatively in a way similar to the other non-

uniform deblurring algorithms [30, 9, 10, 11] and explain

the detailed steps in Section 3.4.

3.2. Image Partition

In this work, each blurry image is partitioned into mul-

tiple depth layers. There are two main issues for blurry-

image partition as shown in Figure 2. One is the ringing

artifacts along edges which makes it difficult to segment an

blurry image. Another problem is the ambiguity of the re-

gion boundary, where is likely to be caused by the combina-

tion of objects appear in different layers. To address these

issues, we first process a blurry image with a smoothing

filter (e.g., Gaussian) to suppress the artifacts. We then ap-

ply a matting algorithm [4] on the filtered image to obtain

multi-layer segmentation results, with the scribble for each

layer from the user. The pixel with matting value less than

one is likely to lie on the region boundary and we assign a

weight based on the matting value for the data fitting term.

We present an example in Figure 2 to show how a blurry

image is partitioned into multiple layers.

3.3. Depth Estimation

In Section 3.1.1, we discuss how to compute the expec-

tation of αi,k and use it in the M-step. Considering the ad-

verse effect of the small edges, we apply the L0 smoothing

filter [32] to the estimated latent image x before comput-

ing ᾱi,k. To determine the depth value of each layer, we

discard small values of ᾱi,k and only keep the highest one

k̂i = argmaxsk=1 ᾱi,k. The depth value corresponding to

the highest value ᾱi,k is assigned to the region xi and yi,

di = v
k̂i

. One can also determine the depth by combining

several several top ᾱi,k values.

3.4. ConstantDepth NonUniform Deblurring

In this section, we explain how to solve for x and W by

fixing depth D (we abuse the notation to indicate {ᾱi,k}i,k
in (12)). We adopt the same formulation as existing non-

uniform deblurring methods in an alternating way, i.e., solv-

ing one by fixing the others. At the first iteration, we initial-

ize the weights W using backprojection as [11] to facilitate

the convergence.

Image Prediction: Before the alternative optimization, we

predict the approximate latent image using a bilateral filter

and a shock filter similar to [5]. The bilateral filter is first

applied to reduce noise and remove small edges, and then

the shock filter is used to enhance strong edges. By doing

so, the predicted image x̃ =
∑N

i=1 x̃i contains less artifacts

and sharp edges, which leads to more accurate estimate of

pose weights W as the predicted image resembles the latent

image.

Weight Estimation: Image derivatives have been shown to

be effective for suppressing ringing artifacts in deblurring

problems [24, 5]. Thus, we replace the image intensity with

derivatives in the data fitting term and express the weight

estimation as

W̄ = argmax
W

N∑

i=1

s∑

k=1

ᾱi,k(||∂yi −

t∑

j=1

wjK(θj , vk)∂x̃i||
2)

= argmax
W

N∑

i=1

(||∂yi −

t∑

j=1

wjK(θj , vk̂i
)∂x̃i||

2),

(13)

where ∂ ∈ {∂x, ∂y} represents the derivatives along hor-

izontal and vertical directions. Since W represents the

weights of camera motion trajectory, we add a smoothness

term to enforce continuity and write (13) in a matrix form,

W̄ = argmax
W

||AW − b||2 + λ||ΓW ||2, (14)

where A is the matrix with K(θj , vk̂i
)∂x̃i at index (i, j) and

b = (∂y1, . . . , ∂yN )⊤. Here we denote Γ as the matrix form

of the partial operator ∂. To address computational issues,

we use a similar formulation as [11] by solving it with a

subset of the camera pose space. The subset is determined

by perturbing the one from the last iteration. We use the

conjugate gradient method to minimize (14) and normalize

W with unit sum.



Latent Image Estimation: To recover the latent image, we

solve the following optimization problem,

x̄ =argmax
x

N∑

i=1

s∑

k=1

ᾱi,k(||∂yi −

t∑

j=1

wjK(θj , vk)∂xi||
2)

= argmax
x

N∑

i=1

(||∂yi −

t∑

j=1

wjK(θj , vk̂i
)∂xi||

2).

(15)

Since {xi}
N
i=1 are disjoint regions, we solve xi indepen-

dently with constraints,

x̄i = argmax
xi

||∂yi −

t∑

j=1

wjK(θj , vk̂i
)∂xi||

2 + µ||∂xi||,

(16)

where we use a simple regularization to favor smooth gradi-

ents. For fast optimization, we adopt the strategy of splitting

the image into grids and performing uniform deconvolution

on each region, similar to [10]. It is also possible to use

other constraints or deconvolution schemes [18, 24, 15, 16]

to solve (15). For the final deconvolution, we use the

method with sparse constraints [15] to recover the image.

3.5. Initialization and Implementation Details

We summarize the main steps of the proposed method in

Algorithm 1. In this work, we set the parameters λ = 0.5
and µ = 0.1 in all experiments.

In the beginning, we initialize the depth of each layer to

be the same value. Thus, the first iteration can be viewed

as the non-uniform deblurring without depth variation. Af-

ter applying L0 smoothing filter [32], the estimated latent

image results in a good depth estimation. Figure 3 shows

an synthetic example of the depth estimation in the first it-

eration. The proposed method provides a decent depth es-

timation except the sky region, which does not have much

texture and therefore less important for image deblurring.

With proper depth estimation in the first iteration, the pro-

posed method converges to a solution efficiently.

Algorithm 1 Depth-aware non-uniform deblur

Input: blurry image y

Output: sharp image x and depth map D

Algorithm:

split the image into disjoint regions

initialize depth map D

while (x,W ) do not converge (within a tolerance) do

while x do not converge given D do

latent image prediction

update W using (13)

update xi, ∀i using (16)

end while

update depth map D using (11)

end while

(a) (b)

(c) (d)

Figure 3. Synthetic example of the depth estimation in the first it-

eration. Dark region indicates small depth. (a) synthetic blurry

image; (b) ground truth depth; (c) estimated latent image after

smoothing filter; (b) our estimated depth using (c).

4. Experimental Results

In this section, we evaluate depth estimation results

of the proposed algorithm and compare deblurring per-

formance against several state-of-the-art methods for spa-

tially variant blur. Implemented in MATLAB, it takes

takes about 2.5 hours to process a blurry image of 480 ×
640 pixels on a 3.40 GHz machine with 16 GB RAM.

More experimental results and the MATLAB code are

available at http://eng.ucmerced.edu/people/

zhu/cvpr14_depthdeblur.

4.1. Depth Estimation

Depth estimation from a single image is a difficult task.

The recent approach [23] proposes a MRF-based method to

infer scene depth from visual cues, e.g., texture and color.

In Figure 4, we present an example of natural blurry im-

age and the depth estimation by [23] and our approach. Al-

though our method does not capture subtle depth variation,

it estimates the rough depth well based on the geometry in-

formation contained in the blurry image. In contrast, the

method [23] is not effective in estimating depth from blurry

images where region texture and edge contrast are missing

as a result of motion blur.

We evaluate our depth estimation algorithm on synthetic

images with spatially variant blurs. First, we collect a set of

sharp images and their depth maps (i.e., indoor images with

Kinect sensors and outdoor scenes with laser scanners). We

partition the image into different layers based on the depth

map and assign the average depth to each layer. Synthetic

camera motion trajectories and corresponding weights are

http://eng.ucmerced.edu/people/zhu/cvpr14_depthdeblur
http://eng.ucmerced.edu/people/zhu/cvpr14_depthdeblur


(a) (b) (c)

Figure 4. Comparison with depth-from-single-image method [23]

on a real image. (a) blurry image; (b) estimated depth by [23]; (c)

our estimated depth.

(a) (b) (c)

(d) (e) (f)

Figure 5. Depth estimation results on synthetic images. (a) sharp

image; (b) synthesized blurry image caused by both translational

and rotational blur; (c) synthesized blurry image caused by only

rotational blur; (d) ground-truth depth; (e) our estimated depth

from (b); (f) our estimated depth from (c).

then applied to generate blurry images. For experiments on

depth estimation, 420 pairs of blurry and sharp images gen-

erated from 6 sharp images (3 indoor and 3 outdoor images

from [23]), and 70 randomly synthesized camera motion are

collected. Each sharp image has the depth variation from 2

meters to 20 meters with at least three depth layers. The av-

erage error per pixel is 2 meters and most errors are from the

cases with small camera translations. As demonstrated in

Table 1, our depth estimation becomes more accurate when

there exists more translational camera motion. Figure 5

shows two depth estimation results by the proposed algo-

rithm, from one blurry image caused by both translational

and rotational camera motion and another caused only by

rotational blur. With only rotational blur, our method es-

timates a uniform depth value for each layer as shown in

Figure 5(f). The results, although not accurate with respect

to depth estimation, satisfy our model that depth variation

does not affect rotational motion blur as mentioned in Sec-

Table 1. Average error with respect to the minimal number of

translated pixels in the camera motion.

# of pixels 1 3 5 7 9 11

error (meter) 2.02 1.67 1.47 1.35 1.10 1.03

tion 3. This further demonstrates that our model is able to

infer the geometric information contained in motion blur.

4.2. NonUniform Deblurring

In this section, we compare our methods with several

state-of-the-art single image deblurring methods [9, 10, 31].

The experiments on the synthetic blurry images and real

blurry images are carried out to validate our model and EM

algorithm. We also show that our method can be used to

remove non-uniform blur caused by camera motion on the

scene of small depth variation. Due to space limitations,

only a few results are presented in this section and more re-

sults can be found in the supplementary material. We note

that the dataset [14] is constructed by taking blurry photos

on sharp pictures assuming constant depth, and thus it is not

suitable for evaluating our depth-aware method.

Synthetic Blurry Images: We evaluate deblurring algo-

rithms on the synthetic images obtained using the same pro-

cess as described in Section 4.1. As shown in Figure 6(a),

there are more than two objects at different depths in the

synthetic image, and the objects in the back are less blurry

than those in the front. The state-of-the-art non-uniform de-

blurring method based on constant depth [10] does not work

well (Figure 6(b)) since the data-fitting terms of different

objects penalize each other in weight estimation of camera

motion. However, this problem can be alleviated by consid-

ering depth factor as formulated in this work. In Figure 6(c)

and (d), we demonstrate that the proposed EM formulation

generates reasonable depth estimation and improves the de-

blurred results. We select the text regions to better visualize

the difference.

If the image contains small depth variation, our method

naturally falls back to constant-depth non-uniform deblur-

ring. We present an example in the supplementary material.

Real Blurry Images: In these experiments, we evaluate

the proposed method on the real-world images blurred by

hand-shake. Figure 7 shows some results with compar-

isons to the state-of-the-art methods for spatially variant

blurs [10, 31, 11]. In the Books example, several books and

a cookie box appear in the scene with small depth variation.

In the Boxes example, there are a dozen objects which are

appear in a cluttered scene with large depth variation. The

uniform algorithm [5] and the method [10] assuming con-

stant depth do not perform well in this case, while the pro-

posed method recovers shaper images. Our method is not

able to detect subtle depth change, and instead infers mainly



(a) (b) (c) (d)

Figure 6. Depth-aware non-uniform deblurring on synthetic images. (a) synthetic blurry image; (b) deblurred result of [10]; (c) recovered

image using our method; (d) our estimated depth (best viewed on a high-resolution display).

two different depth layers in this image. However, by sep-

arating the image into two layers, the proposed method

obtains more accurate weight estimation of camera mo-

tion compared to the one using constant depth, which also

demonstrates the effectiveness of the depth-aware model.

We note that the proposed method on real images does not

estimate depth as accurate as in the cases of synthetic im-

ages. One reason is that there are many unknown variables

to be estimated and the error surface is complex with al-

ternating optimization in the M-step. Thus it is difficult

to guarantee convergence to a good local minimum. Some

other reasons include the simplified camera model assump-

tion. Since our model is based on the pinhole model, lens

error and defocus blur due to depth variation may affect the

accuracy of depth estimation for real blurry images.

5. Concluding Remarks

In this paper, we discuss the depth influence on the geo-

metric model of non-uniform blur caused by camera mo-

tion. We present a unified layer-based model for depth-

involved deblurring and propose an EM formulation to re-

cover depth and latent image jointly given only a blurry im-

age. We demonstrate the effectiveness of our depth estima-

tion scheme when there exists certain translations, and the

estimated depth information helps improve the performance

of latent image reconstruction over the state-of-the-art mod-

els that assume constant depth. When the depth variation of

the scene is limited, the proposed algorithm performs sim-

ilarly to the non-uniform deblur algorithms assuming con-

stant depth.

Since our depth-aware blur model is based on multi-

ple layers with constant depth on each, we mainly handle

scenes with multiple objects in frontal views. It may fail

for the scenes where contain elongated objects with large

depth variation. Similar to the existing non-uniform deblur-

ring methods, the computational load of the proposed algo-

rithm is high. Our future work will focus on resolving more

complex scenes of depth variation and efficient solutions to

reduce computational loads.
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