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Abstract—This paper considers a reconfigurable intelligent
surface (RIS)-aided millimeter wave (mmWave) downlink com-
munication system where hybrid analog-digital beamforming
is employed at the base station (BS). We formulate a power
minimization problem by jointly optimizing hybrid beamforming
at the BS and the response matrix at the RIS, under the signal-
to-interference-plus-noise ratio (SINR) constraints at all users.
The problem is highly challenging to solve due to the non-
convex SINR constraints as well as the unit-modulus phase
shift constraints for both the RIS reflection coefficients and
the analog beamformer. A two-layer penalty-based algorithm
is proposed to decouple variables in SINR constraints, and
manifold optimization is adopted to handle the non-convex unit-
modulus constraints. We also propose a low-complexity sequential
optimization method, which optimizes the RIS reflection coef-
ficients, the analog beamformer, and the digital beamformer
sequentially without iteration. Furthermore, the relationship
between the power minimization problem and the max-min
fairness (MMF) problem is discussed. Simulation results show
that the proposed penalty-based algorithm outperforms the state-
of-the-art semidefinite relaxation (SDR)-based algorithm. Results
also demonstrate that the RIS plays an important role in the
power reduction.

Index Terms—Reconfigurable Intelligent Surface (RIS),
mmWave, hybrid beamforming, sub-connected structure, man-
ifold optimization.

I. INTRODUCTION

The millimeter wave (mmWave) communication over 30-

300 GHz spectrum is a key technology in 5G and beyond

wireless networks to provide high data-rate transmission [2]–

[4]. Compared with sub-6 GHz, the high directivity at high

frequency bands makes mmWave communication much more

sensitive to signal blockage. One promising and cost-effective

solution to overcome the blockage issue is to deploy Recon-

figurable Intelligent Surfaces (RISs). An RIS is an artificial

meta-surface consisting of a large number of passive reflection

Part of this work was presented at IEEE Wireless Commu-
nications and Networking Conference (WCNC) 2021 [1] [DOI:
10.1109/WCNC49053.2021.9417417]. The work of R. Li, B. Guo and
M. Tao was supported in part by the National Natural Science Foundation
of China (NSFC) under Grant 61941106 and Grant 62125108. The work of
Y.-F. Liu was supported in part by NSFC under Grant 12021001 and Grant
11991021. The work of Wei Yu was supported by the Canada Research
Chairs program. (Corresponding author: Meixia Tao.)

R. Li, B. Guo and M. Tao are with Department of Electronic Engineer-
ing, Shanghai Jiao Tong University, Shanghai, China (emails:{renwanglee,
guobei132, mxtao }@sjtu.edu.cn).

Y.-F. Liu is with the State Key Laboratory of Scientific and Engi-
neering Computing, Institute of Computational Mathematics and Scien-
tific/Engineering Computing, Academy of Mathematics and Systems Sci-
ence, Chinese Academy of Sciences, Beijing 100190, China (e-mail:
yafliu@lsec.cc.ac.cn).

W. Yu is with Department of Electrical and Engineering, University of
Toronto, Toronto, ON, Canada, M5S 3G4 (e-mail: weiyu@ece.utoronto.ca).

elements that can be programmed to electronically control the

phase of the incident electromagnetic waves [5], [6]. With the

help of a smart controller, RISs can be controlled to enhance

the desirable signals via coherent combining, or to suppress

the undesirable interference via destructive combining. RISs

are spectrum- and energy-efficient since they do not require

radio frequency (RF) components or dedicated energy sup-

ply. Furthermore, from the implementation perspective, RISs

have appealing advantages such as low profile, light-weight,

and conformal geometry. Recently, RISs have emerged as a

promising technique to enhance the performance of wireless

communication systems, especially in mmWave bands [7]–[9].

As RISs bring a new degree-of-freedom to the optimization

of beamforming design, a key issue of interest in RIS-aided

wireless communication systems is to jointly design the active

beamforming at the multi-antenna base stations (BSs) and the

passive reflection coefficients at the RIS. There have been

several prior studies investigating this problem under different

system setups and assumptions [10]–[15]. Specifically, the

work [10] studies the power minimization problem under

the signal-to-interference-plus-noise ratio (SINR) constraints

and proposes a semidefinite relaxation (SDR) based algorithm

for the joint active and passive beamforming design. The

work [11] extends [10] to the scenario with multiple RISs

and a near-optimal analytical solution is derived. The work

[12] aims to maximize the minimum weighted SINR at

the users and proposes a low-complexity inexact-alternating-

optimization approach. The work [13] focuses on the energy

efficiency problem under individual quality-of-service (QoS)

requirements as well as maximum power constraints. Under

the maximum transmit power constraints, the work [14] aims

to maximize the minimum SINR, and the work [15] aims to

maximize the weighted-sum-rate (WSR) of all users. More-

over, RISs have also been studied under other communication

setups, such as secure communication [16], [17], unmanned

aerial vehicle (UAV) communication [18], [19], and simultane-

ous wireless information and power transfer (SWIPT) systems

[20], [21]. Note that in all these works on joint active-passive

beamforming design, the active beamforming at the BS is

fully digital as in most of the multiple-input-multiple-output

(MIMO) beamforming literature, which requires each antenna

to be connected to one RF chain, and hence has a high

hardware cost.

Unlike the fully digital beamforming structure, hybrid ana-

log and digital (A/D) beamforming at the BS is more practical

in mmWave systems since it employs a reduced number of

RF chains [22], [23]. It is therefore desirable to consider

hybrid beamforming in RIS-aided mmWave communications

http://arxiv.org/abs/2202.06532v1
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as a cost-effective alternative. There are very few works along

this line of research except [24]–[26]. In specific, the work [24]

considers the individual design of the digital beamformer, the

analog beamformer, and the RIS phase shifts to achieve low

error rate in a wideband system. The work [25] investigates

the WSR maximization in a nonorthogonal multiple access

(NOMA) system by jointly designing the power allocation, the

RIS phase shifts and the hybrid beamforming vector. Therein,

the manifold optimization method is adopted for the design of

the phase shifts at both the RIS and the analog beamformer,

while the digital beamforming is obtained by the successive

convex approximation (SCA) based algorithm. The work [26]

focuses on maximizing the spectral efficiency in a single-

user mmWave MIMO system by jointly optimizing the RIS

reflection coefficients and the hybrid beamforming vector at

the BS. The manifold optimization is adopted to handle the

RIS reflection coefficients, and then the digital beamforming

is obtained through the singular value decomposition (SVD)

of the cascaded channel.

In this work, we consider an RIS-aided multi-user downlink

mmWave system, and investigate the joint design of hybrid

beamforming at the BS and reflection coefficients at the

RIS. Unlike the previous works [24]–[26] which all employ

the fully-connected hybrid architecture at the BS with each

RF chain connected to all antenna elements, we employ

the sub-connected hybrid architecture with each RF chain

only connected to a disjoint subset of antenna elements. The

sub-connected architecture is more appealing for its further

reduced hardware cost and power consumption.

The main contributions and results of this paper are listed

as follows.

• We first formulate the so-called QoS problem for min-

imizing the total transmit power at the BS subject to

individual SINR constraints at all users. The problem is

highly non-convex due to the deeply coupled variables

and the unit-modulus phase shifts constraints. To tackle

this problem, we propose a two-layer penalty-based algo-

rithm where the block coordinate descent (BCD) method

is adopted in the inner layer to solve a penalized problem

and the penalty factor is updated in the outer layer

until convergence. The penalty method can decouple the

optimization variables and make the problem much easier

to handle. In the BCD method, considering the same unit-

modulus constraints on both the BS analog beamformer

and the RIS response matrix, they can be updated simul-

taneously by using the manifold optimization method.

• In order to reduce the complexity, we propose a sequen-

tial optimization method where the RIS coefficients are

obtained by maximizing the channel gain of the user with

the worst channel state; the analog beamforming is ob-

tained by minimizing the Euclidean distance between the

fully digital beamforming and the hybrid beamforming;

and the digital beamforming is optimally obtained by the

second-order cone program (SOCP) method.

• We discuss a closely related problem of the QoS prob-

lem, which is the max-min fairness (MMF) problem.

The MMF problem is more difficult to solve than the

QoS problem due to its non-smooth objective function.

However, we can solve the MMF problem by solving a

series of QoS problems.

Finally, we conduct comprehensive simulations to validate

the performance of the proposed algorithms. It is shown

that the proposed penalty-based algorithm outperforms the

traditional SDR-based optimization algorithm. Results also

demonstrate that the proposed hybrid beamforming at the BS

can perform closely to a fully digital beamforming system. In

addition, the transmit power at the BS can be greatly reduced

by employing a large number of RIS elements on the BS side

or the user side. Furthermore, it is sufficient for practical use

when both the RIS and the analog beamformer have 3-bit

quantizers.

The rest of the paper is organized as follows. Section

II introduces the RIS-aided mmWave MIMO system model,

and formulates the power minimization problem. A two-

layer penalty-based algorithm is proposed to solve the power

minimization problem in Section III. A low-complexity se-

quential optimization method is proposed in Section IV. The

relationship between the QoS problem and the MMF problem

is studied in Section V. Simulation results are provided in

Section VI. Finally, Section VII concludes this paper.

Notations: The imaginary unit is denoted by j =
√
−1.

Vectors and matrices are denoted by bold-face lower-case

and upper-case letters, respectively. The conjugate, transpose,

conjugate transpose and pseudo-inverse of the vector x are

denoted by x
∗, xT , xH and x

†, respectively. Further, we use

I and O to denote an identity matrix and all-zero matrix of

appropriate dimensions, respectively; we use Cx×y to denote

the space of x × y complex-valued matrices. The notations

arg(·) and Re(·) denote the argument and real part of a

complex number, respectively. The notations E(·) and Tr(·)
denote the expectation and trace operation, respectively; ⊙
represents the Hadamard product; ‖·‖ represents the Frobenius

norm. For a vector x, diag(x) denotes a diagonal matrix

with each diagonal element being the corresponding element

in x. For a vector x, ∇f(xi) denotes the gradient vector

of function f(x) at the point xi. Finally, The distribution

of a circularly symmetric complex Gaussian (CSCG) random

vector with mean vector x and covariance matrix Σ is denoted

by CN (x,Σ); and ∼ stands for “distributed as”.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, we consider an RIS-aided downlink

mmWave communication system where one BS, equipped with

M antennas, communicates with K single-antenna users via

the help of one RIS equipped with F unit cells. The BS

employs the sub-connected hybrid A/D beamforming structure

with N RF chains, each connected to a disjoint subset of

D = M/N antennas. Let sk denote the information signal

intended to user k, for k ∈ K , {1, 2, . . . ,K}. The signals

are assumed to be independent of each other and satisfy

E(|sk|2) = 1. Each of these signals is first weighted by a

digital beamforming vector, denoted as wk ∈ CN×1. These

weighted signal vectors are summed together and each entry is

sent to an RF chain, then multiplied by an analog beamforming
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Fig. 1. An RIS-aided downlink mmWave communication system.

vector, denoted as vn ∈ CD×1, for n ∈ N , {1, 2, . . . , N}.
Each entry of vn, denoted as vn,d, ∀d ∈ D , {1, 2, . . . , D} is

a phase shifter. Discrete phase shifts are considered. Denote

Sa as the set of all possible phase shifts for the analog

beamformer, given by

Sa ,

{

ejθ
∣

∣

∣

∣

θ ∈
{

0,
2π

2Q1
, . . . ,

2π(2Q1 − 1)

2Q1

}}

, (1)

where Q1 is the number of control bits for each analog phase

shifter. In the special case when Q1 = ∞, it becomes con-

tinuous phase shifts. The overall analog beamforming matrix

can be represented as

V =











v1 0 · · · 0

0 v2 · · · 0

0 0
. . . 0

0 0 · · · vN











. (2)

The total transmit power of the BS is given by

Ptransmit =

K
∑

k=1

‖Vwk‖2 = D

K
∑

k=1

‖wk‖2. (3)

The RIS is connected to the BS through an RIS control

link for transmission and information exchange. Let F ,

{1, 2, . . . , F} denote the set of all RIS unit cells, and define

the response matrix at the RIS as

Θ = diag(b1, b2, . . . , bF ), (4)

where bf = βfe
jθf , βf ∈ [0, 1] and θf ∈ [0, 2π) are the

amplitude reflection coefficient and the phase shift of the f -th

unit cell, respectively. In this paper, we assume βf = 1, ∀f ∈
F to maximize the signal reflection. Denote Sr as the set of all

possible phase shifts for the RIS reflection coefficients, given

by

Sr ,

{

ejθ
∣

∣

∣

∣

θ ∈
{

0,
2π

2Q2
, . . . ,

2π(2Q2 − 1)

2Q2

}}

, (5)

where Q2 is the number of control bits for each RIS element.

Again the special case of Q2 = ∞ corresponds to the

continuous phase shifts.

We assume that the BS-user direct link is blocked, and thus

the direct path can be ignored. The signal power reflected

two or more times is much lower than that reflected just once

due to the high free-space path loss. Thus, we ignore the

power of the signals that are reflected by the RIS more than

once. In addition, we assume that the channel state information

(CSI) of all links involved is perfectly known at the BS and

all the channels experience quasi-static flat-fading. How to

obtain accurate CSI is an important and challenging issue

in the RIS-aided communication system. The CSI can be

obtained through uplink pilots due to the channel reciprocity

and some early attempts can be found in [27]–[31]. Suppose

that G ∈ CF×M is the channel matrix from the BS to the

RIS, hH
k ∈ C1×F is the channel vector from the RIS to user

k. Then the received signal of user k can be represented as

yk = h
H
k ΘGV

K
∑

j=1

wjsj + nk, ∀k ∈ K, (6)

where nk ∼ CN (0, σ2
k) is the additive white Gaussian noise

at the receiver of user k with zero mean and variance σ2
k . The

received SINR of user k can be expressed as

SINRk =
|hH

k ΘGVwk|2
∑

j 6=k

|hH
k ΘGVwj |2 + σ2

k

, ∀k ∈ K. (7)

B. mmWave Channel Model

We adopt the widely used narrowband clustered channel

model [32] for mmWave communications. Specifically, the

channel matrix between the BS and the RIS can be written

as

G =

√

MF

Ncl1Nray1

Ncl1
∑

i=1

Nray1
∑

l=1

αilaR(φ
Rr
il , δ

Rr
il )aB(φ

B
il , δ

B
il )

H .

(8)

Here, Ncl1 denotes the number of scattering clusters, Nray1
denotes the number of rays in each cluster, and αil denotes

the channel coefficient of the l-th ray in the i-th propagation

cluster. Moreover, aR(φ
Rr
il , δ

Rr
il ) and aB(φ

B
il , δ

B
il ) represent

the receive array response vectors of the RIS and the transmit

array response vectors of the BS respectively, where φRr
il (φBil )

and δRr
il (δBil ) represent azimuth and elevation angles of arrival

at the RIS (or departing from the BS). The channel vector

between the RIS and the k-th user can be represented as

hk =

√

F

Ncl2Nray2

Ncl2
∑

i=1

Nray2
∑

l=1

βilaR(φ
Rt
il , δ

Rt
il ). (9)

Here, Ncl2, Nray2, βil, φ
Rt
il and δRt

il are defined in the same

way as above.

In this paper, we consider the uniform planar array (UPA)

structure at both BS and RIS. Consequently, the array response

vector can be denoted as

az (φ, δ) =
1√
A1A2

[

1, . . . , ej
2π
λ

d1(o sinφ sin δ+p cos δ)

. . . , ej
2π
λ

d1((A1−1) sinφ sin δ)+(A2−1) cos δ)
]T

,

(10)

where z ∈ {R,B}, λ is the signal wavelength, d is the antenna

or unit cell spacing which is assumed to be half wavelength
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distance, 0 ≤ o < A1 and 0 ≤ p < A2, A1 and A2 represent

the number of rows and columns of the UPA in the 2D plane,

respectively.

C. Problem Formulation

We consider the QoS problem which aims to minimize the

transmit power at the BS by jointly optimizing the digital

beamforming matrix W = [w1,w2, . . . ,wK ] ∈ CN×K and

the analog beamforming matrix V at the BS, as well as

the overall response matrix Θ at the RIS, subject to QoS

constraints for all users. The problem can be formulated as

P0 : min
{V,W,Θ}

D

K
∑

k=1

‖wk‖2 (11a)

s.t. SINRk ≥ γk, ∀k ∈ K, (11b)

vn,d ∈ Sa, ∀n ∈ N , ∀d ∈ D, (11c)

bf ∈ Sr , ∀f ∈ F , (11d)

where γk > 0 is the minimum SINR requirement of user k.

The problem P0 is highly non-convex due to the non-

convex SINR constraints (11b) and the unit-modulus phase

shifts constraints (11c), (11d), and thus difficult to be optimally

solved. A commonly used approach to solve such problem

approximately is to apply the BCD technique in conjunction

with the SDR method as in [10], [33]. The BCD technique

updates just one block of variables while fixing all the others at

a time. In particular, at each iteration, the digital beamforming

matrix can be solved via SOCP, while both the analog beam-

forming matrix and the RIS response matrix can be solved via

SDR. Note that SDR cannot guarantee the feasibility due to

the rank-one constraint and thus an additional randomization

procedure is generally needed. Its complexity is high for the

large RIS size. In addition, when the number of users is close

to the number of RF chains, the above approach may become

invalid because the randomization procedure may fail to find a

feasible solution even after a large number of randomization.

In this work, we propose a two-layer penalty-based algorithm

to solve the problem P0 as detailed in the next section.

III. PENALTY-BASED JOINT OPTIMIZATION ALGORITHM

In this section, we propose a two-layer penalty-based

method by exploiting the penalty method, where the BCD

method is adopted in the inner layer to solve a penalized

problem and the penalty factor is updated in the outer layer

until convergence. Specifically, we firstly introduce auxiliary

variables {tk,j} to represent hH
k ΘGVwj such that the vari-

ables W, V and Θ can be decoupled. Then, the non-convex

constraints (11b) can be equivalently written as

|tk,k|2
∑K

j 6=k |tk,j |
2
+ σ2

k

≥ γk, ∀k ∈ K, (12a)

tk,j = h
H
k ΘGVwj , ∀k, j ∈ K. (12b)

Then, the equality constraints (12b) can be relaxed and

added to the objective function as a penalty term. Thereby,

the original problem P0 can be converted to the following

penalized problem

P1(ρ) : min
V,W,Θ,{tk,j}

D

K
∑

k=1

‖wk‖2

+
ρ

2

K
∑

j=1

K
∑

k=1

∣

∣h
H
k ΘGVwj − tk,j

∣

∣

2

(13a)

s.t. (12a), (11c), (11d), (13b)

where ρ > 0 is the penalty factor. Generally, the choice of

ρ is crucial to balance the original objective function and

the equality constraints. It is seen that the objective function

in P1(ρ) is dominated by the penalty term when ρ is large

enough and consequently the equality constraints (12b) can be

well met by the solution. Therefore, we can start with a small

value of ρ to get a good starting point, and then by gradually

increasing ρ, a high precision solution can be obtained.

There are mainly two different methods to handle the

discrete phase shifts. First, the optimal solution can be found

by the exhaustive search method [34]. However, its complexity

is too high to be practical. The second method is to relax the

discrete phases to continuous ones and then apply projection

[11], [35]. As such, in the rest of the paper, we adopt the

projection method. Specifically, we first relax the discrete

phase shifts of analog beamforming and RIS coefficients to

continuous ones, then solve the relaxed problem with the

proposed algorithms, finally project the obtained continuous

solution back to the discrete set.

A. Inner Layer: BCD Algorithm for Solving Problem P1(ρ)

For any given ρ, though the problem P1(ρ) is still non-

convex, all the optimization variables {W, {Θ,V}, {tk,j}}
are decoupled in the constraints. We therefore adopt the BCD

method to optimize each of them alternately.

1) Optimize W: When V, Θ and {tk,j} are fixed, problem

P1(ρ) becomes an unconstrained convex problem. Conse-

quently, the optimal W can be obtained by the first-order

optimality condition, i.e.,

wk = ρA−1
1

K
∑

j=1

h̃
H
j tj,k, ∀k ∈ K, (14)

where h̃j = h
H
j ΘGV and A1 = 2DIN + ρ

K
∑

j=1

h̃
H
j h̃j .

2) Optimize {Θ,V}: Let b , [b1, b2, . . . , bF ]
H ,

x ,
[

v
T
1 ,v

T
2 , . . . ,v

T
N

]T ∈ CM×1, and Yj ,

diag{wj,1ID, . . . , wj,NID} ∈ CM×M , where |xm| = 1, ∀m ∈
M , {1, 2, . . . ,M} and wj,n denotes the n-th entry of

wj . Then, we can rewrite Vwj = Yjx ∈ CM×1 so that

the optimization problem is formulated in term of (b,x).
When the digital beamforming matrix W and the auxiliary

variables {tk,j} are fixed, the problem P1(ρ) is reduced to
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(with constant terms ignored)

min
b,x

f(b,x) =
K
∑

j=1

K
∑

k=1

∣

∣b
H
ck,jx− tk,j

∣

∣

2
(15a)

s.t. |b(f)| = 1, ∀f ∈ F , (15b)

|x(m)| = 1, ∀m ∈ M, (15c)

where ck,j = diag(hH
k )GYj ∈ CF×M . In the following,

we would like to adopt three different methods to tackle the

problem (15).

Method One: Alternating Optimization The first idea is

to alternately optimize one of the variables b and x while

keeping the other fixed. When x is fixed, the main obstacles

of the problem (15) lie in the unit-modulus phase shifts

constraints (15b). Note that they form a complex circle man-

ifold M = {b ∈ CF : |b1| = · · · = |bF | = 1} [36].

Therefore, the problem (15) can be efficiently solved by the

manifold optimization technique. In specific, we adopt the

Riemannian conjugate gradient (RCG) algorithm. The RCG

algorithm is widely applied in hybrid beamforming design [37]

and recently applied in RIS-aided systems as well [38], [15].

In the following we briefly review the general procedure of

the RCG algorithm.

Each iteration of the RCG algorithm involves four key

steps, namely, to compute the Riemannian gradient, to do the

transport, to find the search direction and to do the retraction.

Denote f(b) =
K
∑

j=1

K
∑

k=1

∣

∣b
H
ck,jx− tk,j

∣

∣

2
. For any given

point bi, the Riemannian gradient grad f(bi) is defined as

the orthogonal projection of the Euclidean gradient ∇f(bi)
onto the tangent space Tbi

M of the manifoldM at point bi,

which can be expressed as

Tbi
M =

{

b ∈ C
F : Re {b⊙ b

∗
i } = 0F

}

. (16)

The Euclidean gradient at the point bi is given by

∇f(bi) = 2

K
∑

j=1

K
∑

k=1

ck,jx(x
H
c
H
k,jb− tHk,j). (17)

Then, the Riemannian gradient at the point bi is given by

grad f(bi) = ∇f(bi)− Re {∇f(bi)⊙ b
∗
i } ⊙ bi. (18)

With the Riemannian gradient, the optimization technique

in the Euclidean space can be extended to the manifold space.

Here, we adopt the conjugate gradient method, where the

search direction can be updated by

ηi+1 = − gradf(bi+1) + λ1Tbi→bi+1
(ηi) , (19)

where ηi is the search direction at bi, λ1 is the update

parameter chosen as the Polak-Ribiere parameter [36], and

Tbi→bi+1
(ηi) is the transport operation. Note that ηi and ηi+1

lie in different tangent spaces and they cannot be conducted

directly. Therefore, the transport operation Tbi→bi+1
(ηi) is

needed to map the previous search direction from its original

tangent space to the current tangent space at the current point

bi+1. The transport operation is given by

Tbi→bi+1
(ηi) : Tbi

M 7→ Tbi+1
M :

ηi 7→ ηi − Re
{

ηi ⊙ b
∗
i+1

}

⊙ bi+1.
(20)

Algorithm 1 RCG Algorithm for solving problem (15) with

fixed x

Input: {ck,j}, x, b0 ∈ M
1: Calculate η0 = − gradf(b0) according to (18) and set

i = 0;

2: repeat

3: Choose the Armijo backtracking line search step size

λ2;

4: Find the next point bi+1 using retraction according to

(21);

5: Calculate the Riemannian gradient gradf(bi+1) ac-

cording to (18);

6: Calculate the transport Tbi→bi+1
(ηi) according to

(20);

7: Choose the Polak-Ribiere parameter λ1;

8: Calculate the conjugate direction ηi+1 according to

(19);

9: i← i+ 1;

10: until ‖ gradf(bi)‖2 ≤ ǫ1.

Since the updated point may leave the previous manifold

space, a retraction operation Retrb(λ2ηi) is needed to project

the point back to the manifold:

Retrbi
(λ2ηi) : Tbi

M 7→M :

λ2ηi 7→
(bi + λ2ηi)j
∣

∣

∣
(bi + λ2ηi)j

∣

∣

∣

, (21)

where λ2 is the Armijo backtracking line search step size, and

(bi + λ2ηi)j denotes the j-th entry of bi + λ2ηi.

The key steps are introduced above, and the consequent

algorithm for solving the problem (15) with fixed x is sum-

marized in Algorithm 1. Algorithm 1 is guaranteed to converge

to a stationary point [36].

When b is fixed, x can be also updated similarly by the

RCG algorithm.

Method Two: RCG-based Joint Optimization Note that both

b and x of the problem (15) are subject to unit-modulus

constraints. Thus we can concatenate them and treat as a

higher-dimensional vector subject to the same unit-modulus

constraints. Specifically, let z =
[

b
H ,xH

]H ∈ C(F+M)×1,

and we can rewrite the problem (15) as follows

min
z

f(z) =
K
∑

j=1

K
∑

k=1

∣

∣z
H
dk,jz− tk,j

∣

∣

2
(22a)

s.t. |z(i)| = 1, ∀i ∈ Z, (22b)

where dk,j =

[

IF×F

OM×F

]

ck,j [OM×F IM×M ] ∈
C(M+F )×(M+F ) and Z , {1, 2, . . . , F +M}. The Euclidean

gradient of the function f(z) is given by

∇f(z) =









2
K
∑

j=1

∑K
k=1 ck,jx

(

x
H
c
H
k,jb− tHk,j

)

2
K
∑

j=1

∑K
k=1 c

H
k,jb

(

b
H
ck,jx− tk,j

)









. (23)
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Therefore, the problem (22) can be effectively solved by the

RCG algorithm.

Note that the objective function of the problem (15) is

convex over b or x. In the alternating optimization, the

subproblem is reduced to an unconstrained convex problem

in the manifold space. Therefore, the optimal solution can

be obtained for each subproblem by the RCG algorithm.

However, the function f(z) is not jointly convex in b and

x. Thus, in the RCG-based joint optimization, only the sub-

optimal solution can be obtained.

Method Three: SCA-based Joint Optimization The RCG

algorithm requires multiple projections. If we directly optimize

the phase shifts, the projection procedure is no longer needed.

Then the problem (22) becomes an unconstraint non-convex

problem, i.e.,

min
φ

f(φ) =
K
∑

j=1

K
∑

k=1

∣

∣(ejφ)Hdk,jejφ − tk,j
∣

∣

2
, (24)

where φ = ∠z. Though the above problem is still difficult to

solve optimally, we only need to solve its surrogate problem

by exploiting the SCA technique, and the BCD method will

converge to a stationary solution [39]. Specifically, denote

the surrogate function for f(φ) by g(φ, φ̄). Then, φ can be

updated by solving the following surrogate problem

φ = arg min
φ∈RF+M

g(φ, φ̄). (25)

The surrogate function g(φ, φ̄) needs to satisfy following the

two constraints [39, Proposition 1]:

g(φ̄, φ̄) = f(φ̄), (26a)

g(φ, φ̄) ≥ f(φ). (26b)

We can construct the surrogate function by the second order

Taylor expansion:

g(φ, φ̄) = f(φ̄) +∇f(φ̄)T (φ− φ̄) +
1

2κ
‖φ− φ̄‖2, (27)

where ∇f(φ̄) is the gradient, and κ is chosen to satisfy (26b)

locally within a bounded feasible set. Then, φ is updated by

φ = φ̄− κ∇f(φ̄). (28)

In practice, the parameter κ can be determined by the Armijo

rule:

f(φ̄)− f(φ) ≥ ζκ‖∇f(φ̄)‖2, (29)

where 0 < ζ < 0.5, κ is the largest element in {βκi0}i=0,1,...

that makes (29) satisfied, β > 0 and 0 < κ0 < 1.

3) Optimize {tk,j}: With other variables fixed, problem

P1(ρ) can be reduced to

min
{tk,j}

K
∑

j=1

K
∑

k=1

∣

∣h
H
k ΘGVwj − tk,j

∣

∣

2
(30a)

s.t.
|tk,k|2

∑K
j 6=k |tk,j |

2
+ σ2

k

≥ γk, ∀k ∈ K. (30b)

Algorithm 2 Penalty-based Optimization Algorithm

1: Initialize V, Θ, ρ and {tk,j}, ∀k, j ∈ K.

2: repeat

3: repeat

4: Update W by (14);

5: Update Θ and V by solving problem (15);

6: Update {tk,j} by solving problem (30);

7: until The decrease of the objective value of problem

P1(ρ) is below threshold ǫ2 > 0.

8: Update ρ by (32).

9: until The stopping indicator ξ in (33) is below threshold

ǫ3 > 0.

10: Project Θ and V onto the discrete sets Sr and Sa,

respectively;

11: Update W by solving problem (41) with the projected Θ

and V.

The objective function is convex over {tk,j}. Although the

constraints (30b) are non-convex, they can be translated to the

form of second-order cones as follows,
√

1 +
1

γk
tk,j ≥

∥

∥

∥

∥

A
H
2 ek

σk

∥

∥

∥

∥

2

, ∀k ∈ K, (31)

where A2 ∈ CK×K denotes a matrix with the entry in its

k-th row and j-the column being tk,j , i.e., A2[k, j] = tk,j ,

and ek ∈ CK×1 denotes a vector with the k-th entry being

one and others being zeros. Then, the problem (30) can be

effectively and optimally solved by the SOCP method [40].

B. Outer Layer: Update Penalty Factor

The penalty factor ρ is initialized to be a small number to

find a good starting point, then gradually increased to tighten

the penalty. Specifically,

ρ :=
ρ

c
, 0 < c < 1, (32)

where c is a constant scaling parameter. A larger c may lead

to a more precise solution with a longer running time.

C. Algorithm

The overall penalty-based optimization algorithm is sum-

marized in Algorithm 2. Define the stopping indicator ξ as

follows,

ξ , max
{

|hH
k ΘGVwj − tk,j |2, ∀k, j ∈ K

}

. (33)

When ξ is below a pre-defined threshold ǫ3 > 0, the equality

constraints (12b) are considered to be satisfied and the pro-

posed algorithm is terminated. Since we start with a small

penalty and gradually increase its value, the objective value

of problem P1(ρ) is finally determined by the penalty part

and the equality constraints are guaranteed to be satisfied.

Note that, for any given penalty factor ρ, the objective value

of the problem P1(ρ) solved through the BCD method is

non-increasing over iterations in the inner layer. And the

optimal value of the problem P1(ρ) is bounded by the SINR
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constraints. Thereby, based on the Theorem 4.1 of the work

[41], the proposed Algorithm 2 is guaranteed to converge.

Let us consider the complexity of the proposed algo-

rithm. Let us first compare the complexities of the three

different methods, which are dominated by computing the

Euclidean gradient. Thus, the complexity of Alternating Opt

is O(IbK2F + IxK
2M), where Ib and Ix denote the re-

quired iteration times of the RCG algorithm to update b and

x, respectively. The complexity of RCG-based Joint Opt is

O(IzK2(F + M)), where Iz denotes the required iteration

times of the RCG algorithm to update z. The complexity of

SCA-based Joint Opt is O(IaK2(F +M)), where Ia denotes

the iteration number of the Armijo search. As will be shown

in Section VI-B, the RCG-based joint optimization method

outperforms the other two methods. Thus, we adopt the RCG-

based joint optimization method and analyze its complexity.

It can be shown that the complexity of computing W in (14)

is O(N3+KN2+K2N). Besides, the complexity of solving

problem (30) is O(K3.5). Thereby, the overall complexity of

Algorithm 2 is O(IoutIin(N3 + KN2 + K2N + IzK
2(F +

M) +K3.5)) where Iout and Iin denote the outer and inner

iteration times required for convergence, respectively.

IV. SEQUENTIAL OPTIMIZATION

To reduce the complexity of solving the problem P0, we

develop a sequential optimization approach in this section.

Specifically, we first optimize the RIS response matrix Θ, then

optimize the analog beamformer V, and finally optimize the

digital beamformer W without iteration.

A. RIS Design

Looking at the SINR constraints (11b), and we can get

|hH
k ΘGVwk| − γk

∑

j 6=k

|hH
k ΘGVwj | ≥ 0, ∀k ∈ K. (34)

For simplicity, let the transmit beamforming vectors at the

BS be set based on the maximum-ratio transmission (MRT)

principle, i.e., Vwk = (hH
k ΘG)H . Note that the transmit

beamforming vectors here are only used to extract the opti-

mization of the RIS response matrix. The actually adopted

transmit beamforming vectors are designed later. Then, the

problem (34) is translated to

‖hH
k ΘG‖2−γk

∑

j 6=k

‖hH
k ΘGG

H
Θ

H
hj‖ ≥ 0, ∀k ∈ K. (35)

The inequality (35) should be satisfied for all users. Therefore,

in order to ensure the receive signal quality of each user, we

maximize the worst case of the left-hand side of (35) among

all users, i.e.,

max
Θ

min
k∈K

‖hH
k ΘG‖2 − γk

∑

j 6=k

‖hH
k ΘGG

H
Θ

H
hj‖

(36a)

s.t. bf ∈ Sr, ∀f ∈ F . (36b)

The SDR technique can be adopted to solve the above prob-

lem. Specifically, let us introduce an auxiliary variable ̟, and

let B = bb
H . After dropping the rank-one constraint, the

problem (36) can be relaxed into

max
B,̟

̟ (37a)

s.t. Tr(ηkη
H
k B) ≥ ̟ + γk

∑

j 6=k

‖Tr(ζk,jB)‖, ∀k ∈ K,

(37b)

Bf,f = 1, ∀f ∈ F , (37c)

B � 0, (37d)

where ηk = diag(hH
k )G ∈ CF×M and ζk,j =

diag(hH
k )GG

Hdiag(hj) ∈ CF×F . The problem (37) is con-

vex and can be optimally solved by a standard convex solver

such as CVX [42]. After solving the problem (37), the optimal

B can be obtained. Then, we need to obtain the value of b,

which has the direct relationship to B. Generally, there is no

guarantee that the relaxed problem (37) has a rank-one optimal

solution. If rank(B) = 1, then we can obtain the optimal

b by taking the eigenvalue decomposition of B. Otherwise,

if rank(B) > 1, an additional Gaussian randomization pro-

cedure is needed to produce a rank-one solution [10], [43].

Specifically, suppose that the eigenvalue decomposition of B is

B = UΣUH . Then, let b = UΣ1/2
r, where r ∼ CN (0, IF ).

Finally, project b to the pre-defined set Sr, i.e.,

bf = ej∠bf , (38)

where ∠bf = arg min
∠bf∈Sr

|∠bf − ∠bf |. With many indepen-

dently generated r, the one that makes ̟ maximum is taken

as the solution.

B. Analog Beamforming Design

We then optimize the analog beamforming after the RIS has

been configured. The orthogonal match pursuit (OMP) method

is widely adopted to design the analog beamformer [32]. If

the BS adopts the fully digital beamforming structure, the

optimal digital beamforming Wopt can be obtained by solving

the following problem

min
W

D
K
∑

k=1

‖wk‖2 (39a)

s.t.
|hH

k ΘGwk|2
∑

j 6=k

|hH
k ΘGwj |2 + σ2

k

≥ γk, ∀k ∈ K. (39b)

Note that the above problem can be optimally solved by

the SOCP method. We adopt an overlapping codebook A

with an overlapping coefficient µ to improve the spatial

resolution due to the limited resolution of the conventional

DFT codebook [44]. A larger µ represents higher resolution

of the codebook. The codebook can be represented as A =
[aB(ψ1, φ1), . . . , aB(ψ1, φµNz

), . . . ,
aB(ψµNy

, φµNz
)], where Ny and Nz denote the horizontal

and vertical lengths, ψi = 2π(i−1)
µNy

, i = 1, 2, . . . , µNy and

φj = 2π(j−1)
µNz

, j = 1, 2, . . . , µNz , respectively. Then, we can

use a selection matrix T ∈ Rµ2NyNz×N to select proper
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columns. Specifically, the analog beamforming problem can

be formulated as

T
∗ = argmin

T,FBB

‖Wopt −AtTFBB‖F (40a)

s.t.
∥

∥diag
(

TT
H
)∥

∥

0
= N, (40b)

where At = et ⊙ A, t ∈ N , and et is an M × 1 zero-

vector with the entry from (t − 1)D + 1 to tD being one.

Since the structure of analog beamforming is sub-connected,

we use et to modify the codebook. Then, the OMP method

can be applied to obtain the selection matrix T
∗. The analog

beamforming can be recovered, i.e., V = AtT
∗. Finally, the

discrete analog beamforming can be obtained by mapping V

to the nearest discrete value in Sa.

C. Digital Beamforming Design

After obtaining the RIS phase shifts and the analog beam-

forming vector, we need to obtain the optimal digital beam-

forming matrix. The digital beamforming can be obtained by

solving following problem

min
W

D

K
∑

k=1

‖wk‖2 (41a)

s.t.
|hH

k ΘGVwk|2
∑

j 6=k

|hH
k ΘGVwj |2 + σ2

k

≥ γk, ∀k ∈ K. (41b)

Note that the digital beamforming Wopt obtained by solving

the problem (39) is only used for the analog beamforming de-

sign. The problem (41) is the conventional power minimization

problem in the multiple-input-single-output (MISO) system,

which can be effectively and optimally solved by the SOCP

method [40].

Here, we consider the complexity of the sequential opti-

mization. The complexity of the RIS design is dominated by

the SDR technique, which is O(F 6) [45]. The complexity

of the analog beamforming is dominated by the OMP tech-

nique, which is O(µ2MFN3). The complexity of the digital

beamforming design is O(N3.5K3.5) [46]. Thus, the overall

computational complexity of the Sequential Optimization is

O(F 6 + µ2MFN3 +N3.5K3.5). The advantage of this algo-

rithm is that it does not need to perform iterative operations.

V. EXTENSION TO THE MAX-MIN FAIRNESS PROBLEM

A closely related problem of the QoS problem P0 is the

MMF problem, which aims to maximize the performance of

the worse-case user under a fixed total transmit power budget.

In this section, we discuss the relationship between the QoS

problem and the MMF problem, and the extension of the

proposed algorithm to solve the MMF problem. In specific, the

MMF problem is to maximize the weighted minimum SINR

under a total power budget PT , which can be formulated as

Q0 : max
{V,W,Θ}

min
k∈K

1

γk

|hH
k ΘGVwk|2

∑

j 6=k

|hH
k ΘGVwj |2 + σ2

k

(42a)

s.t. D

K
∑

k=1

‖wk‖2 ≤ PT , (42b)

(11c), (11d) (42c)

where γk > 0 denotes the weight parameter of user k. A

larger value of γk indicates that user k has a higher priority

in transmission.

Let us compare the problem P0 and the problem Q0. Let

γ , [γ1, γ2, . . . , γK ]T . For a given set of channels and

noise powers, P0 is parameterized by γ. We use the notation

P0(γ) to account for this, and PT = P0(γ) to denote the

associated minimum power. Similarly, Q0 is parameterized by

γ and PT . Then, Q0(γ, PT ) and ξ = Q0(γ, PT ) are used to

represent the dependence and the associated maximum worst-

case weighted SINR, respectively. Similar to [47], [48], we

have the following proposition.

Proposition 1: The QoS problem P0 and the MMF problem

Q0 have the following relationship:

ξ = Q0(γ,P0(ξγ)), (43a)

PT = P0(Q0(γ, PT )γ). (43b)

Proof: Contradiction argument is used to prove (43a).

For the problem P0(ξγ), denote the optimal solution and the

associated optimal value as {WP0 ,ΘP0 ,VP0} and PP0

T , re-

spectively. It is observed that the set {WP0 ,ΘP0 ,VP0} is also

a feasible solution with the objective value ξ to the problem

Q0(γ, P
P0

T ). Since Θ and V have unit-modulus constraints,

we can only scale W. Assume there is another solution

{WQ0 ,ΘP0 ,VP0} with bigger objective value ξQ0 > ξ.

Then, we can appropriately scale down the digital beamform-

ing with the SINR constraints of the problem P0(ξγ) still sat-

isfied. The resulting solution {cWQ0 ,ΘP0 ,VP0}(0 < c < 1)
has a smaller transmit power than PP0

T , which contradicts the

optimality of {WP0 ,ΘP0 ,VP0}. (43b) can be proved in the

similar way and the details are omitted.

Generally, the MMF problem Q0 is more difficult to solve

than the QoS problem P0 due to the non-smooth objective

function. Based on Proposition 1, we can solve the MMF

problem by solving a series of QoS problems. Specifically,

let us consider the following problem P2(ς), i.e.,

P2(ς) : min
{V,W,Θ}

D

K
∑

k=1

‖wk‖2 (44a)

s.t. SINRk ≥ ςγk, ∀k ∈ K, (44b)

(11c), (11d). (44c)

For a given set of channels, noise powers and γ, P2 is

parameterized by ς . Note that the problem P2(ς) is a linear

function over ς . A larger ς leads to a larger objective value

of P2. Thus, in order to solve the problem Q0, we can do a

bisection search over ς of the problem P2 until its objective

value is PT . Then, the corresponding result is the solution to

Q0 with the total power budget being PT .



9

BS

Obstacle

RIS

User k

10m

100m

(0,0)

(      ,10)

5m

Fig. 2. The simulated RIS-aided communication scenario.
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Fig. 3. Stopping indicator of the penalty-based algorithm.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed

algorithms. We consider an RIS-aided multiuser mmWave

communication system which operates at 28 GHz with band-

width 251.1886 MHz. Thus, the noise power is σ2
k = −174+

10 log10B = −90 dBm. We consider a 6×6 UPA structure at

the BS with N = 6 RF chains and a total of M = 36 antennas

located at (0 m, 0 m) as shown in Fig. 2. The RIS is located at

(dRIS m, 10 m) and equipped with F1 × F2 unit cells where

F1 = 6 and F2 can vary. Users are uniformly and randomly

distributed in a circle centered at (100 m, 0 m) with radius

5 m. As for the mmWave channel, we set Ncl1 = Ncl2 = 5
clusters, Nray1 = Nray2 = 10 rays per cluster; the azimuth and

elevation angles of arrival and departure follow the Lapacian

distribution with an angle spread of 10 degrees; the complex

gain αil and βil follow the complex Gaussian distribution

CN (0, 10−0.1PL(d)), and PL(d) can be modeled as [49]:

PL(d) = ϕa + 10ϕb log10(d) + ϕc(dB), (45)

where ϕc ∼ N
(

0, σ2
)

, ϕa = 72.0, ϕb = 2.92 and σ =
8.7dB. The auxiliary variables {tk,j} are initialized following

CN (0, 1). The penalty factor is initialized as ρ = 10−3. Other

system parameters are set as follows unless specified otherwise

later: K = 3, F2 = 6, dRIS = 50, c = 0.9, ǫ1 = ǫ3 =
10−7, ǫ2 = 10−4, γk = 10dB, ∀k ∈ K. All simulation curves

are averaged over 100 independent channel realizations. The

simulations are carried out on a computer with Intel i7-7700

CPU at 3.60 GHz and with 16.0 GB RAM.
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Fig. 4. Convergence of the penalty-based algorithm.
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Fig. 5. Convergence comparison with fixed penalty ρ = 1 when solving
problem (15) by different methods.

A. Convergence Performance of the Penalty-based Algorithm

First, let us look at the convergence performance of the

penalty-based algorithm. We show the stopping indicator (33)

of the penalty-based algorithm in Fig. 3 and the average

convergence of the penalty-based algorithm in Fig. 4 in the

case of continuous phase shifts of analog beamformer and

RIS coefficients. These curves are plotted with the average

plus and minus the standard deviation. Note that the transmit

power increases as the total number of iterations increases.

This is because that a larger ρ corresponding to a larger penalty

for violating the equality restrictions, necessitating a higher

transmit power to reduce the penalty term. It is observed that

the stopping indicator can always meet the predefined accuracy

10−7 after about 110 outer layer iterations in Fig. 3. Thus, the

solutions obtained by Algorithm 2 satisfy all SINR constraints.

Fig. 4 shows that the proposed algorithm converges after about

200 total iterations, which means that the inner layer runs

averagely 2 times.
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Fig. 6. Transmit power versus SINR targets when solving problem (15) by
different methods.

Running time (s)
F=10 F=20 F=40 F=80

Alternating Opt 142.9865 152.4747 157.7086 163.2711

RCG-based Joint Opt 134.5921 142.8421 143.1132 148.7838

SCA-based Joint Opt 103.1461 104.0654 105.5587 110.4485

TABLE I
COMPUTATIONAL TIME COMPARISON.

B. Performance and Computational Comparison of Solving

Problem (15) by Different Methods

We first compare the performance of different methods of

solving problem (15) as described in Section III-A2. Fig. 5

illustrates the objective value of P1 versus the iteration number

when the penalty factor ρ is fixed to one. Fig. 6 illustrates

the transmit power versus SINR targets. Though the optimal

solution can be obtained for each subproblem in alternating

optimization, it converges to a worse local optimum compared

with the RCG-based joint optimization as shown in Fig. 5

and Fig. 6. Though the SCA-based joint optimization does

not require projection, it performs worse than the RCG-based

joint optimization as shown in Fig. 5 and Fig. 6. It is also seen

from Fig. 6 that the gap between the SCA-based method and

the RCG-based method decreases as the SINR targets increase.

However, we have tested the results when the SINR target is

20dB, the RCG-based method still outperforms the SCA-based

method.

We further compare the computational time with fixed

penalty ρ = 1 when solving problem (15) by different methods

in Table I. Here, we set the RIS F1 × F2 unit cells where

F1 = 5 and F2 can vary. It is found that the SCA-based

Joint Opt runs the fastest, while the Alternating Opt runs the

slowest.

Overall, the RCG-based Joint Opt converges to the best

point, and the time consumed is somewhere in the middle.

Therefore, the RCG-based Joint Opt is a good choice among

the three methods. In the following, we adopt the RCG-based

joint optimization method.
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Fig. 7. Influence of discrete phase shifts.

C. Influence of Discrete Phase Shifts

We consider that the number of control bits at the analog

beamformer and at the RIS, i.e., Q1 and Q2, can be designed

separately, and each can take values from {1, 2, 3,∞}, where

∞ corresponds to continuous phase shifts. Fig. 7 shows that

when there is only one control bit for both analog beamformer

and RIS, i.e. Q1 = Q2 = 1, the power gap to the ideal case

with continuous phase shifts is up to 7 dB; whenQ1 = Q2 = 2
and Q1 = Q2 = 3, the gap reduces quickly to 1.5 dB and

0.4dB, respectively. This suggests that having 3 bits for the

discrete phase shifts is enough in practice. It is also seen from

Fig. 7 that the BS is more robust to the discrete phase shifts

than the RIS. In specific, the performance at Q1 = 1, Q2 =
∞ is about 2 dB better than that at Q1 = ∞, Q2 = 1. We

believe that the analog beamforming at the BS has a larger

dimension of regulation than the RIS. Specifically, the analog

beamforming contains many RF chains and each RF chain can

serve one user, while all users are served by the same RIS.

Therefore, the BS is more robust to the discrete phase shifts

than the RIS.

D. Performance Comparison with Other Schemes

To demonstrate the efficiency of the proposed algorithms

and to reveal some design insights, we compare the perfor-

mance of the following algorithms when Q1 = 3 and Q2 = 3.

• Penalty-Manifold joint design with hybrid beamforming

structure (Penalty-Manifold HB): This is the proposed

Algorithm 2 for joint design of hybrid beamforming and

RIS phase shifts.

• Penalty-Manifold joint design with fully digital beam-

forming structure (Penalty-Manifold FD): This is the pro-

posed Algorithm 2 but changing the hybrid beamforming

to the fully digital beamforming at the BS. This is done

by setting D = 1.

• Penalty-Manifold joint design with random Θ (Random

Θ): The phase shifts at the RIS are randomly selected to

be feasible values. Then the hybrid beamforming matrices

{W,V} at the BS are obtained by using the penalty-

manifold joint algorithm as in Algorithm 2, where the
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Fig. 8. Transmit power versus SINR targets.
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Fig. 9. Transmit power versus the number of the elements of RIS.

update of Θ is skipped. This is to find out the significance

of optimizing the phase shifts at the RIS.

• Penalty-Manifold joint design with SDR Θ (SDR Θ):

The phase shifts at the RIS are designed by using the

SDR approach as stated in Section IV-A. Then the

hybrid beamforming matrices {W,V} at the BS are

obtained by using the penalty-manifold joint algorithm

as in Algorithm 2, where the udpate of Θ is skipped.

This is again to find out the significance of optimizing

the phase shifts at the RIS.

• BCD-SDR joint design (BCD-SDR): The conventional

BCD method in conjunction with the SDR method, as

mentioned in Section II-C.

• Sequential design: the proposed sequential design where

RIS phase shifts, analog beamforming, and digital beam-

forming are optimized sequentially in Section IV. In order

to make the sequential optimization method be more

effective, we try different overlapping coefficients µ from

1 to 4 and let the best result be the final solution.

Fig. 8 illustrates the transmit power versus SINR targets.

We first observe that the Penalty-Manifold joint design out-

performs the start-of-the-art BCD-SDR joint design, which

verifies the effectiveness of the proposed algorithm. Second,
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Fig. 10. Transmit power versus the horizontal distance of RIS.

Running time (s)
F=10 F=20 F=40 F=80

SDR-BCD 54.2175 61.1350 169.0588 461.3819

Penalty-Manifold FD 96.0028 101.2406 115.0541 116.8831

Sequential Design 15.3721 17.9422 20.1504 37.0946

TABLE II
COMPUTATIONAL TIME COMPARISON.

it is seen that the Penalty-Manifold joint design with random

Θ performs the worst among all the considered schemes. By

simply changing the random Θ to the SDR Θ (while keeping

the joint design of {W,V} unchanged), the transmit power

consumption can be reduced by 4 dB. If Θ is involved in

the Penalty-Manifold joint design, another about 5 dB power

reduction can be obtained. These observations indicate that

the design of RIS phase shifts plays the crucial role for per-

formance optimization. Third, we observe that the sequential

design is about 1dB worse than the joint design with SDR Θ.

This suggests that, when the RIS response matrix is designed

sequentially, further optimizing the hybrid beamforming at the

BS can only bring marginal improvement. Last but not least,

we observe that the power consumed by Penalty-Manifold

beamforming is about 2dB higher than the power consumed

by Penalty-Manifold FD. Note that the hybrid beamforming

has a much lower hardware cost since it only employs N = 6
RF chains at the BS, while the fully digital beamforming has

M = 36 RF chains. This means that the proposed hybrid

beamforming is effective.

The influence of the RIS element number is considered in

Fig. 9. When the RIS element number increases from 12 to 60,

the transmit power decreases about 15dB. Thus, we conclude

that the RIS can greatly reduce the transmit power by installing

a large number of elements.

Fig. 10 illustrates the transmit power versus the RIS hor-

izontal distance. It is seen that as the RIS horizontal dis-

tance dRIS increases, the transmit power increases firstly, and

reaches the peak at 50 m, then decreases. This can be explained

that the received power through the reflection of the RIS in the

far field is proportional to d−2
1 d−2

2 , where d1 and d2 denote

the distances between the BS-RIS and RIS-user, respectively.
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It is found that the RIS can be located near the BS or users

to save energy.

We further compare in Table II the running time for various

values of F . Here, µ is set to be 3. We set the RIS F1 ×
F2 unit cells where F1 = 5 and F2 can vary. It is observed

that the time consumed by the SDR-BCD method increases

greatly as F increases. It is interesting that the computational

time of Penalty-Manifold FD is insensitive to F . And the time

consumed by the Sequential Design is the least among the

algorithms, which means that it has the lowest complexity.

VII. CONCLUSION

In this paper, we investigate an RIS-aied downlink MIMO

system, with the objective of minimizing the transmit power at

the BS by jointly optimizing the hybrid A/D beamforming at

the BS, as well as the overall response-coefficient at the RIS,

subject to individual minimum SINR constraints. The non-

convex problem is first solved by the penalty-based algorithm

with manifold optimization, followed by a low-complexity se-

quential optimization. In particular, we propose three different

methods for optimizing the BS analog beamforming and the

RIS response matrix in the penalty-based algorithm. The RCG-

based joint optimization is found to outperform the other two

methods but it has a slightly higher complexity. Extensive

simulation results demonstrate that the proposed algorithm

outperforms the state-of-art BCD-SDR algorithm. Our sim-

ulation results provide useful insights into the corresponding

wireless system design. In particular, the simulation results

show that utilizing a large number of RIS units could help

reduce the transmit power at the BS greatly. Moreover, 3-bit

quantizers of both the RIS and the analog beamformer could

approach the performance of continuous phase shifters.
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