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Joint Detection and Estimation of Multiple Objects
From Image Observations

Ba-Ngu Vo, Ba-Tuong Vo, Nam-Trung Pham, and David Suter

Abstract—The problem of jointly detecting multiple objects and
estimating their states from image observations is formulated in
a Bayesian framework by modeling the collection of states as a
random finite set. Analytic characterizations of the posterior dis-
tribution of this random finite set are derived for various prior dis-
tributions under the assumption that the regions of the observa-
tion influenced by individual objects do not overlap. These results
provide tractable means to jointly estimate the number of states
and their values from image observations. As an application, we
develop a multi-object filter suitable for image observations with
low signal-to-noise ratio (SNR). A particle implementation of the
multi-object filter is proposed and demonstrated via simulations.

Index Terms—Random sets, Multi-Bernoulli, probability hy-
pothesis density (PHD), filtering, images, tracking, track before
detect (TBD).

I. INTRODUCTION

T
HIS paper investigates the problem of jointly estimating

the number of objects and their states from image observa-

tions. In radar/sonar applications, the objective is to detect and

locate the targets from radar/sonar images [1], [11]. In spatial

statistics applications, for example, agriculture and forestry, it is

of interest to study the underlying spatial distribution of points

(plants) from partial observations such as aerial images [8], [9],

[14]. The copious amount of available image data renders this

so-called multi-object estimation problem an important part of

estimation theory and practice.

In many applications involving image data, the estimation

is often performed on data that has been preprocessed into

point measurements. For example, in forestry applications,

aerial image observations are converted to spatial point pat-

terns [8], and in radar tracking, radar images are converted to

detections [1], [2], [11]. Compressing the information on the

image into a finite set of points is efficient in terms of memory
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and/or bandwidth as well as computational requirements, and

when combined with point measurement based approaches to

multi-target tracking [1], [2], [7], [10], [11], [13], [23]–[25] can

be very effective for a wide range of applications. However,

this approach may be undesirable for applications with low

signal-to-noise ratio (SNR), since the information loss incurred

in the compression can be significant, and in such cases it

can clearly be advantageous to make use of all information

contained in the image(s).

We formulate the multi-object estimation problem in a

Bayesian framework by modeling the collection of states as a

finite set and computing the posterior distribution of the random

finite set of states given the image observation. Computing the

posterior of a random finite set is intractable in general, even

for the special case of superpositional measurement models,

where the image observation is the sum of the observations

generated by individual states and noise [12]. Hence, drastic

but principled approximations are needed. Under the assump-

tion that the regions of the image influenced by individual

states do not overlap, we derive closed-form expressions of

the posterior for certain classes of priors. These results are

applicable to nonsuperpositional measurement models. As

an application, we develop a multi-object filter suitable for

applications involving image observations with low SNR such

as track-before-detect (TBD) (see, e.g., [17], [18], and [20]).

We also present a tracking example as proof-of-concept for the

proposed approach.

Preliminary results have been announced in the conference

paper [26]. This paper presents a more complete analytical and

numerical study. In Section II, we cast the problem in a Bayesian

framework and detail the observation model considered in this

paper. We present our main results for multi-object Bayesian es-

timation with image observation in Section III. The multi-object

filter and its particle implementation is developed in Section IV,

while numerical examples are presented in Section V. Con-

cluding remarks and extensions are discussed in Section III.

II. MULTI-OBJECT ESTIMATION FROM IMAGES

Let denote the state (or parameter)

vectors, and let denote the image observation

comprising an array of pixel (or bin) values. The value

of the th pixel can be a real number or a vector depending on

the application. For example, in a grayscale image each pixel

value is a real number, whereas in a color image, each pixel

value is a 3-dimensional vector representing the intensities of

the three color channels. Given an image observation , we con-

sider the problem of jointly estimating the number of states and

their values.

1053-587X/$26.00 © 2010 IEEE
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Fig. 1. Hypothetical scenario showing a fundamental inconsistency with vector
representations of multi-object states. Individual states are �� positions. The
estimate is correct but the error is nonzero.

Fig. 2. Hypothetical scenarios showing a fundamental inconsistency with
vector representations of multi-object states. Individual states are �� positions.
How should the error be assigned when the estimated number of objects is
incorrect?

We start by formulating a suitable representation of the

multi-object state and cast the estimation problem in a Bayesian

framework in Section II-A. The observation model considered

in this paper is then described in Section II-B, setting the scene

for the main results in Section IV.

A. Multi-Object Bayesian Inferencing

In the context of jointly estimating the number of states and

their values, the collection of states, referred to as the multi-

object state, is naturally represented as a finite set. The rationale

behind this representation traces back to a fundamental consid-

eration in estimation theory: estimation error. Without a mean-

ingful notion of estimation error, the output of an estimator has

little meaning. Simply stacking individual states into a single

vector does not admit a satisfactory notion of error as illustrated

in Figs. 1 and 2, with the ground truth represented by the vector

and the estimate represented by the vector . Intuitively, for

the scenario in Fig. 1, the estimate is correct but the estimation

error is . While this fundamental inconsistency

can be remedied by taking the minimum of the distance over

all permutations of the states, i.e., ,

there is a more serious problem. What is the error when the esti-

mated and true number of states are different, e.g., the scenarios

in Fig. 2? A finite set representation of the multi-object state,

, admits a mathematically consistent notion

of estimation error since distance between sets is a well under-

stood concept.

Fig. 3. An illustration of overlapping and nonoverlapping objects.

In the Bayesian estimation paradigm, the state and measure-

ment are treated as realizations of random variables. Since the

(multi-object) state is a finite set, the concept of a random

finite set (RFS) is required to cast the multi-object estimation

problem in the Bayesian framework. The space of finite subsets

of does not inherit the usual Euclidean notion of integration

and density. Hence, standard tools for random vectors are not

appropriate for RFSs. Mahler’s finite set statistics (FISST) pro-

vides powerful yet practical mathematical tools for dealing with

RFSs [10], [11], based on a notion of integration and density that

is consistent with point process theory [22]. FISST has attracted

substantial interest from academia as well as the commercial

sector with the developments of the probability hypothesis den-

sity (PHD) and cardinalized PHD filters [10], [22], [23], [13],

[24].

Using the FISST notion of integration and density, the poste-

rior probability density of the multi-object state can be

computed from the prior using Bayes rule

(1)

where is the probability density of the observation

given the multi-object state (the specifics of this density is

given in the next subsection), and

is the set integral of a function taking , the space of finite

subsets of , to the real line.

B. Multi-Object Likelihood Function

The type of image observation considered in this work is il-

lustrated in Fig. 3. Objects are assumed to be rigid bodies that

cannot overlap with each other. In ground target tracking, for ex-

ample, the objects would be vehicles or stationary objects that

must be physically separated.

An object with state illuminates a set of pixels denoted by

, for example, could be the set of pixels whose centers

fall within a certain distance from the position of the object.

A pixel , i.e., illuminated by an object with state ,

has value distributed according to , while a pixel
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, i.e., not illuminated by any object, has value distributed

according to . More concisely, the probability density of

the value of pixel , given a state is

(2)

For example, in TBD (see [17, Ch. 11], [4])

where denotes a Gaussian density with mean and

variance , and is the contribution to pixel from the

state , which depends on the point spread function, target lo-

cation and reflected energy. Note that (2) also holds for nonad-

ditive models; see [4], for example.

Under the following assumptions:

• conditioned on the multi-object state, the values of the

pixels are independently distributed, and

• the regions of influences of the objects on the image do not

overlap, i.e., ;

the probability density of the observation conditioned on the

multi-object state is given by

(3)

where

We refer to multi-object likelihood functions of the form (3) as

separable.

Remark: The terms and in the representation of

the separable likelihood function (3) are unique in the following

sense. Suppose that and are scaled by constants

and (independent of ), respectively, i.e., and

becomes and , then

where denotes the number of elements in . This ex-

pression is equal to the multi-object measurement likelihood

for all if and only if .

Consequently, both and cannot be scaled, even

though cancels out in the calculation of the posterior

density via (1), i.e.

III. ANALYTIC CHARACTERIZATION OF THE

MULTI-OBJECT POSTERIOR

This section presents analytic characterizations of the

multi-object posterior distribution for the observation model in

the previous section and three classes of multi-object priors,

namely Poisson, independently and identically distributed

(i.i.d.) cluster, and Multi-Bernoulli. These multi-object priors

are described next in Section III-A, along with a summary of

the mathematical tools used in this work. The main results are

presented in Section III-B.

A. Probability Laws and Statistics for RFS

Apart from the probability density, the probability generating

functional (PGFl) is another fundamental descriptor of an

RFS. Following [3], [10], the probability generating functional

(PGFl) of an RFS on is defined by

(4)

where denotes the expectation operator, is any real-valued

function on such that , and

with by convention.

The cardinality (number of elements) of , denoted as , is

a discrete random variable whose probability generating func-

tion PGF can be obtained by setting the function in the

PGFl to a constant . Note the distinction between the PGF

and PGFl by the round and square brackets on the argument. The

probability distribution of the cardinality is the Z-trans-

form of the PGF .

The PHD, also known in point process theory as an intensity

function, is a first-order statistical moment of an RFS, which can

be obtained by differentiating the PGFl [3], [10]. For an RFS

on , its PHD is a nonnegative function on such that for

each region

(5)

In other words, the integral of over any region gives the ex-

pected number of elements of that are in . The local maxima

of the PHD are points in with the highest local concentration

of expected number of elements, and can be used to generate

estimates for the elements of .

There are two simple multi-object estimators which can be

obtained from the (posterior) PHD and cardinality distribution.

In the first estimator, the estimated number of states, , is deter-

mined by rounding the PHD mass , and the estimated

states are chosen to be the highest maxima of the PHD . The

second estimator is the same as the first except that the estimated

number of states is , i.e., the maximum a posteriori

cardinality estimate.

The RFSs pertinent to our key results and their PGFls are

summarized in the following, using the standard inner product

notation .
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Poisson: A Poisson RFS on is one that is completely

characterized by its PHD or intensity function [3]. The cardi-

nality of a Poisson RFS is Poisson with mean , and for a

given cardinality the elements of are each independent and

identically distributed with probability density . The

PGFl of a Poisson RFS is

(6)

I.I.D. Cluster: An independent and identically distributed

(i.i.d.) cluster RFS on is completely characterized by a car-

dinality distribution and a PHD that satisfy

[3]. For a given cardinality, the elements of an i.i.d. cluster

RFS are each i.i.d. with probability density . The

PGFl of an i.i.d. cluster RFS is given by

(7)

where is the probability generating function of the cardi-

nality , i.e., the inverse Z-transform of . Note the distinction

between the square brackets for functional and round brackets

for function.

Bernoulli: A Bernoulli RFS on has probability

of being empty, and probability of being a singleton whose

(only) element is distributed according to a probability density

(defined on ). The cardinality distribution of a Bernoulli

RFS is a Bernoulli distribution with parameter . The PGFl of a

Bernoulli RFS is (see [11, p. 375])

(8)

Multi-Bernoulli: A Multi-Bernoulli RFS on is a union

of a fixed number of independent Bernoulli RFSs with ex-

istence probability and probability density (de-

fined on ), , i.e.

Using the independence of the , the PGFl of a

Multi-Bernoulli RFS is given by (see [11, p. 375])

(9)

A Multi-Bernoulli RFS is thus completely described by the

Multi-Bernoulli parameters . The parameter

is the existence probability of the th object while is

the probability density of the state conditioned on its existence.

The idea of characterizing target presence/absence by exis-

tence probability has also been considered in [15] and [21].

For convenience, the PGFl of the form (9) is abbreviated by

. The term Multi-Bernoulli is also used to mean

a PGFl or a probability density of a Multi-Bernoulli RFS.

Since the PHD of a Multi-Bernoulli is given by

and the cardinality of a Multi-Bernoulli RFS is a discrete Multi-

Bernoulli random variable with parameters , esti-

mators based on the PHD and cardinality distribution are appli-

cable. Moreover, a more intuitive multi-object estimator can be

obtained from the existence probabilities (and ). Given

, similar to the PHD-based estimator, the esti-

mated number of states is determined by rounding .

However, the estimated states are chosen to be the means

(or modes) of the probability densities in with

highest existence probabilities.

B. Closed Form Data Updates

We first present a result concerning the posterior PGFl

for the observation likelihood considered in this work (see

Section II-B), which allows, with surprising simplicity, the pos-

terior distribution for Poisson, i.i.d. cluster, and Multi-Bernoulli

RFS to be characterized analytically.

Proposition 1: Suppose that is a random finite set on ,

with prior PGFl , and is a vector observation of with

separable likelihood function, i.e.

Then, the posterior PGFl of given is

Proof: Recall that and denote the prior and

posterior probability densities, respectively. Applying the defi-

nition of the PGFl and using (1), i.e., Bayes rule, to obtain the

posterior probability density gives

For a Poisson RFS prior, which is completely characterized

by the PHD, the following result shows how the PHD is updated

with the observation , i.e., how the posterior PHD is computed

from the prior and the observation.

Corollary 1: Under the premise of Proposition 1, if the prior

distribution of is Poisson with PHD , then the posterior dis-

tribution is also Poisson with PHD given by

Proof: Since is Poisson with PHD , its PGFl is given

by . Using Proposition 1
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Thus, the posterior is Poisson with PHD .

A weaker result has been established in [16] where it was

shown that the posterior PHD is proportional to . Corollary

1 shows that the posterior PHD is equal to , and that the

posterior RFS is Poisson. This result can be generalized to i.i.d.

cluster RFSs that are completely characterized by the PHD and

cardinality distribution as follows.

Corollary 2: Under the premise of Proposition 1, if the prior

distribution of is i.i.d. cluster with PHD , and cardinality

distribution , then the posterior is also i.i.d. cluster with PHD

and cardinality distribution given by

(10)

(11)

Proof: Since is i.i.d. cluster with intensity and cardi-

nality distribution , its PGFl is

where is the PGF of the cardinality of .

Using Proposition 1

(12)

where (12) follows from the identity .

To establish that the posterior RFS is indeed an i.i.d.

cluster with PHD (10) and cardinality distribution (11),

we need to show that the posterior PGFl has the form

. Note from (10)

that (since

the quotient of the infinite sums cancel), hence substituting for

in (12) and using (11) gives

Therefore, the posterior is an i.i.d. cluster process with PHD (10)

and cardinality distribution (11).

Remark: The posterior PHD (10) and cardinality distribution

(11) were obtained by differentiating the posterior PGFl

and PGF , respectively. However, for the proof of Corol-

lary 2, it is not necessary to show these steps.

Corollary 1 is a special case of Corollary 2 where the cardi-

nality is Poisson distributed. Whereas Corollaries 1 and 2 char-

acterize the posterior distribution by the PHD and cardinality

distribution, the following result characterizes the posterior dis-

tribution by a set of existence probabilities and probability den-

sities.

Corollary 3: Under the premise of Proposition 1, if the

prior distribution of is Multi-Bernoulli with parameter set

, then the posterior is also Multi-Bernoulli, with

parameter set

(13)

Proof: Since is Multi-Bernoulli, with param-

eter set , its PGFl is given by

. Using Proposition 1

The th term in the above product is the PGFl of a Bernoulli

RFS. Hence, the posterior is Multi-Bernoulli, with parameter

set given by (13).

C. Multiple Sensor Data Update

Each of the corollaries in the Section III-B can be easily ex-

tended to the multiple sensor case, as long as the likelihood

functions of the sensors are separable and that the sensors are

independent conditional on the multi-object state. Suppose that

there are two conditionally independent sensors with observa-

tions and . Then the multi-sensor multi-object posterior

density is

This is the same as updating with first and then (or

vice-versa).

Unlike the PHD or Multi-Bernoulli updates for point mea-

surements, which are approximations, the posterior parameter

updates in Corollaries 1 to 3 exactly capture the necessary and

sufficient statistics of the posterior multi-object densities. As

such, for multiple sensor update, the exact posterior parameters

can be iteratively computed by updating the prior parameters
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with sensor 1, then treating the updated parameters as the prior

parameters and updating this with sensor 2, and so forth. This

procedure is repeated until the list of sensors is exhausted. Since

each updates are exact, the end result is exact and independent

of the order in which the updates are done.

IV. MULTI-OBJECT FILTERING WITH IMAGE DATA

This section considers the multi-object filtering problem for

image data. Unlike the static setting in the previous section, the

multi-object state evolves in time and generates an image obser-

vation at each sampling instance. Hence, not only do the values

of the states evolve, but the number of states also evolves due

to objects appearing or disappearing. Multi-object filtering in-

volves the online estimation of the multi-object state from col-

lected data.

In what follows, we use the Multi-Bernoulli update in the

previous section (Corollary 3) to develop a multi-object filtering

algorithm for image observations. The filtering formulation and

the proposed multi-object filter is described in Section IV-A,

while the particle implementation is described in Section IV-B.

Similar algorithms can be developed using the PHD update

(Corollary 1) or i.i.d. cluster update (Corollary 2). However,

since the observation model is highly nonlinear, particle im-

plementations are employed to approximate the PHD, and

clustering is needed to extract the estimated states from the

particles. The clustering step introduces an additional source

of error as well as being computationally expensive [22]. The

Multi-Bernoulli approach avoids this problem altogether [25].

A. Multi-Bernoulli Filter for Image Data

The multi-object filtering problem can be cast as a Bayes filter

on the space of finite sets . Let denote the image obser-

vation at time , and denotes the history of

image observations from time to time . Then, the multi-object

Bayes recursion propagates the multi-object posterior density

in time [10], [11] according to the following predic-

tion and update steps:

(14)

(15)

where the integrals above are set integrals, is the

multi-object transition density, from time to , and

is the multi-object likelihood at time .

The multi-object transition density encapsulates

the underlying models of motions, births and deaths. A popular

multi-object transition model is the following. Given a multi-

object state at time , each in either con-

tinues to exist at time with probability and moves

to a new state with probability density1 ,

1The same notation is used for multi-object and single-object densities. There
is no danger of confusion since for the single-object case the arguments are
vectors whereas for the multi-object case the arguments are finite sets.

or dies with probability . Thus, given a state

at time , its behavior at time is modeled by the Bernoulli

RFS

with and . The multi-

object state at time is given by the union

(16)

where denotes the Multi-Bernoulli RFS of spontaneous

births. Assuming that the RFSs constituting the union in (16)

are mutually independent, is a Multi-Bernoulli RFS con-

ditioned on . Using FISST, the multi-object transition

density can be derived from the transition equation

(16), [10], [11].

Since objects do not overlap in the image, it is necessary

that the multi-object transition model assigns zero likelihood to

multi-object states that contain overlapping objects. More con-

cisely, if there exist distinct and

such that . However, assuming that the ob-

jects occupy relatively small regions of the image, the standard

multi-object transition model above serves as a reasonable ap-

proximation.

The Bayes recursion (14)–(15) is generally intractable.

However, under the assumption that the extents of the objects

in the image are small, the predicted multi-object density,

is Multi-Bernoulli if is

Multi-Bernoulli [11]. Moreover, by Corollary 3, the updated

multi-object density is also a Multi-Bernoulli if

the objects do not overlap. Hence the prediction step (14) and

update step (15) can be approximated via the following.

Multi-Bernoulli Prediction: Given the posterior Multi-

Bernoulli parameters at time

, the predicted Multi-Bernoulli parameters are

(17)

where

(18)

(19)
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Multi-Bernoulli Update: Given the predicted Multi-

Bernoulli parameters ,

the updated Multi-Bernoulli parameters are

(20)

where

(21)

(22)

Track Merging (Heuristic): To account for the nonoverlap-

ping assumption, estimates that would overlap on the image ob-

servation are merged. A simple way of merging is to combine

the existence probabilities , and densities of hypothe-

sized objects whose estimates fall within a given distance

of each other.

State Extraction (Heuristic): Following [25], an intuitive

state extraction procedure can be used which is based on

the Multi-Bernoulli form of the posterior density: the exis-

tence probability indicates how likely it is that the th

hypothesized track is a true track, and the posterior density

describes estimated statistics of the current state of the

track. Hence, a multi-object state estimate can be obtained

by first estimating the number of objects as the expected or

maximum a posteriori cardinality estimate, and then estimating

the individual states by selecting the corresponding number

of the means or modes from the state or track densities with

the highest existence probabilities. Note also that other state

extraction methods are possible, but for simplicity these will

not be used in this paper.

B. Sequential Monte Carlo Implementation

In the following, we present a generic sequential Monte Carlo

(SMC) implementation for the Multi-Bernoulli prediction step

(17) (taken from [25]) and for the new update (20) step.

SMC Prediction: Suppose that at time , the

(Multi-Bernoulli) posterior multi-object density

is given and each ,

is comprised of a set of weighted samples ,

i.e.

Then, given proposal densities and ,

the predicted (Multi-Bernoulli) multi-object density (17) can be

computed as follows:

where

SMC Update: Suppose that at time , the pre-

dicted (Multi-Bernoulli) multi-object density

is given and

each , is comprised of a set of

weighted samples , i.e.

Then, the updated (Multi-Bernoulli) multi-object density (20)

computed as follows:

where .

Resampling and Implementation Issues: Like the

Multi-Bernoulli filter [25], for each hypothesized object, the

particles are resampled after the update step, and the number

of particles is reallocated in proportion to the probability of

existence, as well as restricted to be between a maximum of

and minimum of . To reduce the growing number

of tracks (and particles), objects with existence probabilities

below a threshold are discarded.
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The SMC implementation is equivalent to running many par-

ticle filters in parallel and is linear in the number of objects,

while the track merging and removal is quadratic in the number

of objects, since the distances between pairs of estimates need to

be computed. The complexity of the merging step can however

be reduced to with other computational strategies

such as those presented in [5].

Remark: The SMC implementation presented here is remi-

niscent of sequential importance resampling in the particle filter.

On the issue of the proposal function, there are several possible

choices. The use of the predicted density is an obvious choice

which simplifies computations and performs reasonably in most

scenarios. Other choices, such as the track updates from another

filter, may improve upon the results, although such considera-

tions are beyond the scope of this paper.

V. NUMERICAL STUDY

The idea of TBD and its importance in low SNR radar

applications was first investigated in [18]. According to the

latest survey [4], the Histogram Probabilistic Multi-Hypothesis

Tracker (H-PMHT) proposed in [20] is, by far, the best previ-

ously developed multi-target TBD technique.

This section demonstrates the performance of our proposed

Multi-Bernoulli filter in a TBD application. Comparisons with

the H-PMHT implementation as given in [4] will also be shown

as a benchmark where appropriate. For these comparisons, both

H-PMHT and Multi-Bernoulli-TBD are supplied wiht a priori

information on the numbers of targets, and both are given the

same initialization, so as to ensure a fair overall comparison.

Several scenarios are used to illustrate their relative strengths

and weaknesses. In the first, a challenging nonlinear scenario

with a fixed and known number of targets illustrates a typical

situation where the proposed Multi-Bernoulli-TBD filter signifi-

cantly outperforms the H-PMHT. This scenario is then extended

to having an unknown and time varying number of targets to

demonstrate the true capabilities of the Multi-Bernoulli-TBD

filter. In the second, a simplified linear scenario with a fixed and

known number of targets illustrates the limitation of our pro-

posed approach. This scenario also serves to demonstrate that

our implementation of H-PMHT is consistent with that in the

survey [4].

A. Multi-Object Miss Distance

We use the optimal subpattern assignment (OSPA) distance

between the estimated and true multi-object state as the estima-

tion error, since it jointly captures differences in cardinality and

individual elements between two finite sets in a mathematically

consistent yet intuitively meaningful way [19].

An intuitive construction of the OSPA distance between two

finite sets and is as fol-

lows. The set with the smaller cardinality is initially chosen

as a reference. Determine the assignment between the points

of and points of that minimizes the sum of the distances,

subject to the constraint that distances are capped at a prese-

lected maximum or cut-off value . This minimum sum of dis-

tances can be interpreted as the “total localization error”, where

the pairings allocated by giving the points in the “benefit of

the doubt”. All other points (of ) that remain unassigned are

also allocated an error value, whereby each extraneous point is

penalized at the maximum or cut-off value . These errors can

interpreted as “cardinality errors,” which are “penalized at the

maximum rate.” The “total error” incurred is then the sum of the

“total localization error” and the “total cardinality error.” Re-

markably, the “per target error” obtained by normalizing “total

error” by (the larger cardinality of the two given sets) is a

proper metric [19]. In other words, the “per target error” enjoys

all the properties of the usual distance that we normally take for

granted on a Euclidean space.

The OSPA metric is defined as follows. Let

for , and denote the set of per-

mutations on for any positive integer . Then, for

, and and

(23)

if , and if ; and

if .

The OSPA distance is interpreted as a th-order per-target

error, comprised of a th-order per-target localization error and a

th-order per-target cardinality error. The order parameter de-

termines the sensitivity of the metric to outliers, and the cut-off

parameter determines the relative weighting of the penalties

assigned to cardinality and localization errors. When ,

the OSPA distance can be interpreted exactly as the sum of

the “per-target localization error” and the “per-target cardinality

error.” For further details, see [19].

B. Observation Model

A common observation model is used for all our experiments.

At each time step, the observation is a two-dimensional image

consisting of an array of cells with a scalar intensity. In these

demonstrations, the observation region is a 45 m 45 m square

region, and the observation image is a 45 pix 45 pix array,

giving each cell side lengths of m. Since the

observation array is a two dimensional image, the array index

will be treated as an ordered pair of integers , where

. The observation model is then given by the

probability density of the intensity of pixel , at time ,

given a state

(24)

where is the noise variance, is the point spread

function given by

with source intensity , blurring factor , and

being the position of the state . The effective tem-

plate is the 4 pix 4 pix square region whose center is
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Fig. 4. An image observation of 4 targets at time 10.

closest to the position of . A typical observation is shown in

Fig. 4.

C. Scenario 1

This scenario considers a nonlinear TBD problem in which

a fixed and known number of targets follow curved paths. Four

targets are present throughout the entire scenario lasting

s. Targets are initialized at separate locations. The single

target state comprises the planar position and

velocity and the turn rate .

Target motions are modeled by a nonlinear nearly constant turn

model given by

where

s, m/s

, and rad/s.

Both the Multi-Bernoulli-TBD and H-PMHT filters are ini-

tialized with the correct target positions. Since H-PMHT as-

sumes prior knowledge of the fixed and known number of tar-

gets, to facilitate a fair comparison, the Multi-Bernoulli-TBD

filter correspondingly assumes no target births nor deaths. The

Fig. 5. True tracks on a 2-D plane for 4 targets.

Fig. 6. Outputs of Multi-Bernoulli-TBD filter and H-PMHT for 4 targets with
nonlinear dynamical model.

simulation uses a maximum of and minimum

of particles per hypothesized track. Tracks with

existence probabilities less than are dropped and a

maximum of tracks are kept.

Fig. 5 shows the true tracks on a 2-D plane. The performance

of the Multi-Bernoulli-TBD and H-PMHT filters are shown for

a single sample run in Fig. 6. Note that while target observations

appear close to one another, they do not overlap. It can be seen

that the Multi-Bernoulli-TBD filter is able to maintain lock on

all target tracks and accurately estimate their locations for the

entire scenario. On the other hand, it is clear that the H-PMHT

filter performs considerably worse. Although H-PMHT is ini-

tially able to track the targets, this is mainly due to being given

correct initialization. The H-PMHT filter then loses these tracks

very quickly due to the relatively high prediction error that gen-

erally leads to large deviations between the virtual and true

measurements. Consequently, although H-PMHT attempts to
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Fig. 7. Monte Carlo averaged OSPA miss distance with � � �� m and � � �

for Multi-Bernoulli-TBD filter and H-PMHT.

find accurate virtual measurements by expectation maximiza-

tion, the large and difficult search space means that it usually

unable to do so.

To confirm these single sample run observations, 1000 Monte

Carlo trials are performed and averaged. Fig. 7 shows the esti-

mation errors in terms of the Monte Carlo averaged OSPA dis-

tance (for m, ) for both the Multi-Bernoulli-TBD

and H-PMHT approaches. These results confirm that the Multi-

Bernoulli-TBD approach performs accurately and consistently

in the sense that it maintains lock on all tracks and correctly es-

timates target positions. The estimation error of the H-PMHT,

while initially smaller than that of the Multi-Bernoulli-TBD, in-

creases rapidly and the filter eventually diverges. This occurs

because the H-PMHT filter is given the correct initialization,

and for the first few times steps, the predictions for the target

states given by the dynamical model happen to fall close to the

true states. After this time however, the predictions for the target

states degrade, which eventually leads to complete track loss and

consequently very high estimation errors.

An indicative assessment of the computational demands of

the two filters is now shown by benchmarking their processing

times on a standard laptop computer. With the same experi-

mental setup, the computational times and estimation errors

of the two filters are compared for varying observation image

resolutions, that is, for varying values of the number of pixels

per metre (and hence total number of pixels) in the observed

image. Figs. 11 and 12 respectively show a comparison of

the processing times and scenario averaged estimation errors.

It can be seen that the processing times for the proposed

Multi-Bernoulli TBD approach are fairly constant across the

range of resolutions surveyed, whereas the processing times

for the reference H-PMHT algorithm appear to increase ex-

ponentially with image resolution. Moreover, the estimation

errors incurred by the Multi-Bernoulli TBD approach are fairly

consistent, whereas the H-PMHT algorithm is still seen to di-

verge as indicated by the large miss distance values. This latest

observation provides further confirmation of the comparative

performance of the two filters, even when the image resolution

is high, meaning that there is a higher information content in the

observations. This can be expected since the Multi-Bernoulli

TBD approach is better able to utilize the information contained

in the observations in comparison to H-PMHT.

Fig. 8. Comparison of the processing times for varying image resolution.

Fig. 9. Comparison of the estimation errors given by the time averaged OSPA
miss distance with � � �� m and � � � for varying image resolution.

Unknown number of targets: To further demonstrate the

capabilities of the Multi-Bernoulli-TBD approach, this ex-

periment is extended to having a time varying and unknown

number of targets. A maximum of 4 targets are present at any

time, and there are various target births and deaths throughout

the scenario duration of s. The same dynamical

model is used except that births and deaths are now introduced

into the model to accommodate the time varying number of

targets. The birth process is a Multi-Bernoulli density

where

,

and . The death

process is specified by a uniform single target probability

of target survival . The true tracks on a 2-D

plane are shown Fig. 10. To cope with an increased number

of hypotheses, in addition to track pruning, track merging is

performed with threshold times the pixel width.

The tracking results for a single sample are shown in Fig. 11.

These results suggest that the Multi-Bernoulli-TBD approach is

able to initiate, maintain, terminate and consequently estimate

all target tracks satisfactorily, although there are occasional de-

lays in the initiation and termination of tracks. This is confirmed

by the results of 1000 Monte Carlo trials, for which the average

estimation errors given by the OSPA distance (for m,

) are shown in Fig. 12, along with the breakdown into its

localization and cardinality components. The localization error
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Fig. 10. True tracks on a 2-D plane for 4 targets appearing and disappearing at
different times.

Fig. 11. Output of Multi-Bernoulli-TBD filter with an unknown and time
varying number of targets following a nonlinear dynamical model.

does not grow with time, indicating that the position estimates

are accurate and stable. The cardinality errors are also relatively

stable, exhibiting jumps at instants involving target births or

deaths.

Remark: Although this example addresses a TBD problem,

the proposed Multi-Bernoulli filter can actually be applied to

more general settings. For example, the proposed filter has been

successfully applied in computer vision applications such as

tracking sports players from a video stream [6].

D. Scenario 2

To show the limitation of the proposed filter when the

nonoverlapping assumption is violated, consider the scenario

adopted in the survey [4], with four targets initially colocated

near the origin and moving along straight lines. The target state

comprises only the position and

Fig. 12. Monte Carlo averaged OSPA miss distance with � � �� m and � � �

along with localization and cardinality components.

velocity of the target. The dynamical model is linear Gaussian

given by

(25)

where is the process noise

s is the sampling period, and is the

standard deviation of the process noise. Again, both the

Multi-Bernoulli-TBD and H-PMHT filters are initialized with

the correct target positions, and since H-PMHT assumes prior

knowledge of the fixed and known number of targets, the

Multi-Bernoulli-TBD filter correspondingly assumes no target

births, deaths or spawns. A maximum of and

minimum of particles per hypothesized track is

imposed. Tracks with existence probabilities less than

are dropped and a maximum of tracks are kept.

A comparison between the performance of the Multi-

Bernoulli-TBD and H-PMHT approaches is shown in Fig. 13.

In contrast with the previous scenario, H-PMHT performs better

than the Multi-Bernoulli-TBD filter. The Multi-Bernoulli-TBD

filter performs poorly since the targets are initially colocated,

thereby violating the original rigid objects assumption in

Section II-B. Consequently, the Multi-Bernoulli-TBD filter

cannot verify the target tracks from the observed image due

to the inconsistency with the assumed observational model.

However, H-PMHT performs well in this scenario since the

targets travel along straight lines, thereby allowing easy and

accurate predictions. The virtual measurements computed by

expectation maximization then converge very quickly to the



5140 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 10, OCTOBER 2010

Fig. 13. Outputs of Multi-Bernoulli-TBD and H-PMHT for 4 linear tracks, ini-
tially colocated near the origin.

true measurements. Fig. 13 also shows that we have a valid im-

plementation of H-PMHT, since our numerical result replicates

that in the survey [4].

VI. CONCLUSION

We have demonstrated that the random finite set approach

enabled a tractable solution to the multi-object estimation

problem for image data and proposed a multi-object filter for

image observations. Numerical studies show that the proposed

multi-object filter is more effective than existing methods, when

the regions of the image influenced by individual states do not

overlap. There are, however, a number of limitations of the

proposed multi-object filter. For applications with large images,

the particle implementation suffers from particle degeneracy

due to the reweighting of the particles by a function with ex-

tremely small support. More efficient particle implementations

and analytic implementations are two venues for further work.

Due to the assumption of nonoverlapping objects, the proposed

filter does not handle target crossings. Extending the proposed

approach to accommodate overlapping objects is an important

problem that has wider applicability.
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