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Abstract

Existing person re-identification benchmarks and meth-

ods mainly focus on matching cropped pedestrian images

between queries and candidates. However, it is different

from real-world scenarios where the annotations of pedes-

trian bounding boxes are unavailable and the target per-

son needs to be searched from a gallery of whole scene im-

ages. To close the gap, we propose a new deep learning

framework for person search. Instead of breaking it down

into two separate tasks—pedestrian detection and person

re-identification, we jointly handle both aspects in a single

convolutional neural network. An Online Instance Match-

ing (OIM) loss function is proposed to train the network ef-

fectively, which is scalable to datasets with numerous iden-

tities. To validate our approach, we collect and annotate

a large-scale benchmark dataset for person search. It con-

tains 18, 184 images, 8, 432 identities, and 96, 143 pedes-

trian bounding boxes. Experiments show that our frame-

work outperforms other separate approaches, and the pro-

posed OIM loss function converges much faster and better

than the conventional Softmax loss.

1. Introduction

Person re-identification (re-id) [8, 39] aims at match-

ing a target person with a gallery of pedestrian images.

It has many video surveillance applications, such as find-

ing criminals [33], cross-camera person tracking [38], and

person activity analysis [23]. The problem is challeng-

ing because of complex variations of human poses, cam-

era viewpoints, lighting, occlusion, resolution, background

clutter, etc., and thus draws much research attention in re-

cent years [4, 19, 21, 24, 35, 43].

Although numerous person re-id datasets and methods

have been proposed, there is still a big gap between the

problem setting itself and real-world applications. In most

benchmarks [10, 14, 18, 19, 45], the gallery only contains

manually cropped pedestrian images (Figure 1a), while in

∗Tong Xiao and Shuang Li are co-first authors with equal contributions.

(a) Person re-id: matching with manually cropped pedestrians

(b) Person search: finding from whole scene images

Figure 1. Comparison between person re-identification and

person search. The person search problem setting is closer

to real-world applications and more challenging, as detect-

ing pedestrians would inevitably produce false alarms, mis-

detections, and misalignments.

real applications, the goal is to find a target person in a

gallery of whole scene images, as shown in Figure 1b. Fol-

lowing the protocols of these benchmarks, most of the exist-

ing person re-id methods assume perfect pedestrian detec-

tions. However, these manually cropped bounding boxes

are unavailable in practical applications. Off-the-shelf

pedestrian detectors would inevitably produce false alarms,

misdetections, and misalignments, which could harm the fi-

nal searching performance significantly.

In 2014, Xu et al. [36] made the first step towards clos-

ing this gap. They introduced the person search problem

to the community, and proposed a sliding window search-

ing strategy based on a combination of pedestrian detection

and person matching scores. However, the performance is

limited by the handcrafted features, and the sliding window
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framework is not scalable.

In this paper, we propose a new deep learning frame-

work for person search. Different from conventional ap-

proaches that break down the problem into two separate

tasks—pedestrian detection and person re-identification, we

jointly handle both aspects in a single Convolutional Neural

Network (CNN). Our CNN consists of two parts, given a

whole input gallery image, a pedestrian proposal net is used

to produce bounding boxes of candidate people, which are

fed into an identification net to extract features for compar-

ing with the target person. The pedestrian proposal net and

the identification net adapt with each other during the joint

optimization. For example, the proposal net can focus more

on the recall rather than the precision, as false alarms could

be eliminated through the latter features matching process.

Meanwhile, misalignments of proposals are also acceptable,

as they can be further adjusted by the identification net. To

improve the scalability of the whole system, inspired by re-

cent advances in object detection [27], we encourage both

parts to share underlying convolutional feature maps, which

significantly accelerates the inference procedure.

Traditional re-id feature learning mainly employs pair-

wise or triplet distance loss functions [1, 3, 5, 19]. How-

ever, they are not efficient as only several data samples are

compared at each time, and there are O(N2) potential input

combinations, where N is the number of images. Different

sampling strategies could significantly impact the conver-

gence rate and quality, but finding efficient sampling strate-

gies becomes much more difficult as N increases. Another

approach is learning to classify identities with the Softmax

loss function [35], which effectively compares all the sam-

ples at the same time. But as the number of classes in-

creases, training the big Softmax classifier matrix becomes

much slower or even cannot converge. In this paper, we

propose a novel Online Instance Matching (OIM) loss func-

tion to cope with the problems. We maintain a lookup table

of features from all the labeled identities, and compare dis-

tances between mini-batch samples and all the registered

entries. On the other hand, many unlabeled identities could

appear in scene images, which can be served as negatives

for labeled identities. We thus exploit a circular queue to

store their features also for comparison. This is another ad-

vantage brought by the person search problem setting. The

proposed parameter-free OIM loss converges much faster

and better than the Softmax loss in our experiments.

The contribution of our work is three-fold. First, we pro-

pose a new deep learning framework to search a target per-

son from a gallery of whole scene images. Instead of simply

combining the pedestrian detectors and person re-id meth-

ods, we jointly optimize both objectives in a single CNN

and they better adapt with each other. Second, we propose

an Online Instance Matching loss function to learn identifi-

cation features more effectively, which enables our frame-

work to be scalable to large datasets with numerous identi-

ties. Together with the fast inference speed, our framework

is much closer to the real-world application requirements.

At last, we collect and annotate a large-scale benchmark

dataset for person search, covering hundreds of scenes from

street and movie snapshots. The dataset contains 18, 184
images, 8, 432 identities, and 96, 143 pedestrian bounding

boxes. We validate the effectiveness of our approach com-

paring against other baselines on this dataset. The dataset

and code are made public to facilitate further research1.

2. Related Work

Person re-identification. Early person re-identification

methods addressed the problem by manually designing dis-

criminative features [12,34,42], learning feature transforms

across camera views [25,26,30], and learning distance met-

rics [11,22,24,26,46]. Recent years, many researchers have

proposed various deep learning based methods that jointly

handle all these aspects. Li et al. [19] and Ahmed et al. [1]

designed specific CNN models for person re-id. Both the

networks utilize as input a pair of cropped pedestrian im-

ages and employ a binary verification loss function to train

the parameters. Ding et al. [5] and Cheng et al. [3] ex-

ploited triplet samples for training CNNs to minimize the

feature distance between the same person and maximize the

distance between different people. Apart from using pair-

wise or triplet loss functions, Xiao et al. [35] proposed to

learn features by classifying identities. Multiple datasets

are combined together and a domain guided dropout tech-

nique is proposed to improve the feature learning. Several

recent works addressed on solving person re-id on abnormal

images, such as low-resolution images [20], or partially oc-

cluded images [47].

Concurrent with our prior arXiv submission, Zheng et

al. [44] also contributed a benchmark dataset for person

search. They exploited separate detection and re-id meth-

ods with scores re-weighting to solve the problem, while in

this work we propose a deep learning framework that jointly

handles both aspects.

Pedestrian detection. DPM [7], ACF [6], and Checker-

boards [41] are the most commonly used off-the-shelf

pedestrian detectors. They rely on hand-crafted features and

linear classifiers to detect pedestrians. Recent years, CNN-

based pedestrian detectors have also been developed [37,

40]. Various factors, including CNN model structures,

training data, and different training strategies are studied

empirically in [15]. Tian et al. [31] exploited pedestrian and

scene attribute labels to train CNN pedestrian detectors in a

multi-task manner. Cai et al. [2] proposed a complexity-

aware boosting algorithm for learning CNN detector cas-

cades.

1https://github.com/ShuangLI59/person_search
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Figure 2. Our proposed framework. Pedestrian proposal net generates bounding boxes of candidate people, which are fed

into an identification net for feature extraction. We project the features to a L2-normalized 256-d subspace, and train it with

a proposed Online Instance Matching loss. Both the pedestrian proposal net and the identification net share the underlying

convolutional feature maps.

3. Method

We propose a new deep learning framework that jointly

handles the pedestrian detection and person re-identification

in a single convolutional neural network (CNN), as shown

in Figure 2. Given as input a whole scene image, we first

use a stem CNN to transform from raw pixels to convolu-

tional feature maps. A pedestrian proposal net is built upon

these feature maps to predict bounding boxes of candidate

people, which are then fed into an identification net with

RoI-Pooling [9] to extract L2-normalized 256-d features for

each of them. At inference stage, we rank the gallery peo-

ple according to their feature distances to the target person.

At training stage, we propose an Online Instance Matching

(OIM) loss function on top of the feature vectors to super-

vise the identification net, together with several other loss

functions for training the proposal net in a multi-task man-

ner. Below we will first detail the CNN model structure,

and then elaborate on the OIM loss function.

3.1. Model Structure

We adopt the ResNet-50 [13] as our base CNN model.

It has a 7 × 7 convolution layer in front (named conv1),

followed by four blocks (named conv2 x to conv5 x) each

containing 3, 4, 6, 3 residual units, respectively. We exploit

conv1 to conv4 3 as the stem part. Given an input im-

age, the stem will produce 1024 channels of features maps,

which have 1/16 resolutions of the original image.

On top of these feature maps, we build a pedestrian pro-

posal network to detect person candidates. A 512 × 3 × 3
convolutional layer is first added to transform the features

specifically for pedestrians. Then we follow [27] to asso-

ciate 9 anchors at each feature map location, and use a Soft-

max classifier to predict whether each anchor is a pedestrian

or not, as well as a linear regression to adjust their loca-

tions. We will keep the top 128 adjusted bounding boxes

after non-maximum suppression as our final proposals.

To find the target person among all these proposals, we

build an identification net to extract the features of each pro-

posal, and compare against the target ones. We first exploit

an RoI-Pooling layer [9] to pool a 1024 × 14 × 14 region

from the stem feature maps for each proposal. Then they are

passed through the rest conv4 4 to conv5 3 of the ResNet-

50, followed by a global average pooling layer to summa-

rize into a 2048 dimensional feature vector. On one hand,

as the pedestrian proposals would inevitably contain some

false alarms and misalignments, we use again a Softmax

classifier and a linear regression to reject non-persons and

refine the locations. On the other hand, we project the fea-

tures into a L2-normalized 256 dimensional subspace (id-

feat), and use them to compute cosine similarities with the

target person when doing inference. During the training

stage, we supervise the id-feat with the proposed OIM loss

function. Together with other loss functions for detection,

the whole net is jointly trained in a multi-task learning man-

ner, rather than using the alternative optimizations in [27].

3.2. Online Instance Matching Loss

There are three different types of proposals, labeled iden-

tities, unlabeled identities, and background clutter. Suppose

there are L different target people in the training set, when

a proposal matches a target person, we call it an instance

of the labeled identity, and assign a class-id (from 1 to L)

to it accordingly. There are also lots of proposals predicting

pedestrians correctly, but do not belong to anyone of our tar-

get people. We call them unlabeled identities in such cases.

We demonstrate some examples of labeled and unlabeled

identities in Figure 3 with blue and orange bounding boxes,

respectively. Other proposals are just false alarms on other

objects or background regions. In the proposed loss func-

tion, we only consider the labeled and unlabeled identities,

while leave the other proposals untouched.
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Figure 3. Online Instance Matching. The left part shows the labeled (blue) and unlabeled (orange) identity proposals in

an image. We maintain a lookup table (LUT) and a circular queue (CQ) to store the features. When forward, each labeled

identity is matched with all the stored features. When backward, we update LUT according to the id, pushing new features

to CQ, and pop out-of-date ones. Note that both data structures are external buffer, rather than the parameters of the CNN.

As our goal is to distinguish different people, a natural

objective is to minimize the features discrepancy among the

instances of the same person, while maximize the discrep-

ancy among different people. To fulfill this goal, we need to

memorize the features of all the people. This could be done

offline by doing network forward on all the training images,

but it is not practical when using stochastic gradient descent

(SGD) for optimization. Thus in our approach, we choose

an online approximation instead. Denote the features of a

labeled identity inside a mini-batch by x ∈ R
D, where D

is the feature dimension, we maintain a lookup table (LUT)

V ∈ R
D×L to store the features of all the labeled identities,

as demonstrated in Figure 3. During the forward propaga-

tion, we compute cosine similarities between the mini-batch

sample and all the labeled identities by V Tx. During back-

ward, if the target class-id is t, then we will update the t-
th column of the LUT by vt ← γvt + (1 − γ)x, where

γ ∈ [0, 1], and then scale vt to have unit L2-norm.

Apart from labeled identities, many unlabeled identi-

ties are also valuable for learning feature representations.

They can be safely used as negative classes for all the

labeled identities. We use a circular queue to store the

features of these unlabeled identities that appear in recent

mini-batches. Denote the features in this circular queue by

U ∈ R
D×Q, where Q is the queue size, we can also com-

pute their cosine similarities with the mini-batch sample by

UTx. After each iteration, we push the new feature vectors

into the queue, while pop the out-of-date ones to keep the

queue size unchanged.

Based on these two data structures, we define the prob-

ability of x being recognized as the identity with class-id i

by a Softmax function

pi =
exp(vTi x/τ)

∑L

j=1
exp(vTj x/τ) +

∑Q

k=1
exp(uT

k x/τ)
, (1)

where higher temperature τ leads to softer probability dis-

tribution. Similarly, the probability of being recognized as

the i-th unlabeled identity in the circular queue is

qi =
exp(uT

i x/τ)
∑L

j=1
exp(vTj x/τ) +

∑Q

k=1
exp(uT

k x/τ)
. (2)

OIM objective is to maximize the expected log-likelihood

L = Ex [log pt] , (3)

and its gradient with respect to x can be derived as

∂L

∂x
=

1

τ









(1− pt)vt −

L
∑

j=1

j ̸=t

pjvj −

Q
∑

k=1

qkuk









. (4)

It can be seen that our OIM loss effectively compares

the mini-batch sample with all the labeled and unlabeled

identities, driving the underlying feature vector to be similar

with the target one, while pushing it away from the others.

Why not Softmax loss? A natural question here is that

why not learning a classifier matrix with a conventional

Softmax loss to predict the class-id. There are mainly two

drawbacks. First, large-scale person search datasets would

have a large number of identities (more than 5, 000 in our

training set), while each identity only has several instances
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and each image only contains a few identities. We need

to learn more than 5, 000 discriminant functions simultane-

ously, but during each SGD iteration we only have positive

samples from tens of classes. The classifier matrix suffers

from large variance of gradients and thus cannot be learned

effectively, even with proper pre-training and high momen-

tum. Second, we cannot exploit the unlabeled identities

with Softmax loss, as they have no specific class-ids.

Although our OIM loss formulation is similar to the Soft-

max one, the major difference is that the OIM loss is non-

parametric. The LUT and circular queue are considered as

external buffer, rather than the network parameters. The

gradients directly operate on the features without the trans-

formation by a classifier matrix. The potential drawback of

this non-parametric loss is that it could overfit more easily.

We find that projecting the features into a L2-normalized

low-dimensional subspace helps reduce overfitting.

Scalability. Computing the partition function in Eq (1)

and Eq (2) could be time consuming when the number

of identities increases. To overcome this problem, we

can approximate the denominators by sub-sampling the la-

beled and unlabeled identities, which results in optimizing

a lower-bound of Eq (3).

4. Dataset

We collect and annotate a large-scale person search

dataset to evaluate of our proposed method. We exploit two

data sources to diversify the scenes. On one hand, we use

hand-held cameras to shoot street snaps around an urban

city. On the other hand, we collect from movie snapshots

that contain pedestrians, as they could enrich the variations

of viewpoints, lighting, and background conditions. In this

section, we will show the basic statistics of our dataset, as

well as define the evaluation protocols and metrics.

4.1. Statistics

After collecting all the 18, 184 images, we first densely

annotate all the 96, 143 pedestrians bounding boxes in these

scenes, and then associate the person that appears across

different images, resulting in 8, 432 labeled identities. The

statistics of two data sources are listed in Table 1. We did

not annotate those people who appear with half bodies or

abnormal poses such as sitting or squatting. Moreover, peo-

ple who change clothes and decorations in different video

frames are not associated in our dataset, since person search

problem requires to recognize identities mainly according

to their clothes and body shapes rather than faces. We en-

sure that the background pedestrians do not contain labeled

identities, and thus they can be safely served as negative

samples for identification. Note that we also ignore the

background pedestrians whose heights are smaller than 50
pixels, as they would be hard to recognize even for human

labelers. The height distributions of labeled and unlabeled

Source / Split # Images # Pedestrians # Identities

StreetSnap 12,490 75,845 6,057

Movie&TV 5,694 20,298 2,375

Training 11,206 55,272 5,532

Test 6,978 40,871 2,900

Overall 18,184 96,143 8,432

Table 1. Statistics of the dataset with respect to data sources

and training / test splits.
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Figure 4. The height distributions of labeled and unlabeled

identities in our dataset.

identities are demonstrated in Figure 4. It can be seen that

our dataset has rich variations of pedestrian scales.

4.2. Evaluation Protocols and Metrics

We split the dataset into a training and a test subset, en-

suring no overlapped images or labeled identities between

them. Table 1 shows the statistics of these two subsets. We

divide the test identity instances into queries and galleries.

For each of the 2, 900 test identities, we randomly choose

one of his/her instances as the query, while the correspond-

ing gallery set consists of two parts—all the images contain-

ing the other instances and some randomly sampled images

not containing this person. Different queries have different

galleries, and jointly they cover all the 6, 978 test images.

To better understand how gallery size would affect the

person search performance, we define a set of protocols

with gallery size ranging from 50 to 4000. Taking gallery

size of 100 as an example, as each image approximately

contains 6 pedestrians, then our task is to find the target

person among about 600 people. This setting is compa-

rable with existing person re-id datasets (e.g., CUHK-03,

VIPeR) in terms of the number of gallery pedestrians, and is

even more challenging as there could be thousands of back-

ground clutter bounding boxes distracting our attentions.

We employ two kinds of evaluation metrics—cumulative

matching characteristics (CMC top-K) and mean averaged

precision (mAP). The first one is inherited from the person

re-id problem, where a matching is counted if there is at
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least one of the top-K predicted bounding boxes overlaps

with the ground truths with intersection-over-union (IoU)

greater or equal to 0.5. The second one is inspired from

the object detection tasks. We follow the ILSVRC object

detection criterion [29] to judge the correctness of predicted

bounding boxes. An averaged precision (AP) is calculated

for each query based on the precision-recall curve, and then

we average the APs across all the queries to get the final

result.

5. Experiments

To evaluate the effectiveness of our approach and study

the impact of various factors on person search performance,

we conduct several groups of experiments on the new

dataset. In this section, we first detail the baseline meth-

ods and experiment settings in Section 5.1. Then we com-

pare our joint framework with the baselines of using sepa-

rate pedestrian detection and person re-identification in Sec-

tion 5.2. Section 5.3 shows the effectiveness of our pro-

posed Online Instance Matching (OIM) loss. At last, we

present the influence of various factors, including detection

recall and gallery size.

5.1. Experiment Settings

We implement our framework based on Caffe [16, 32]

and py-faster-rcnn [9, 27]. ImageNet-pretrained ResNet-

50 [13] are exploited for parameters initialization. We fix

the first 7×7 convolution layer and the batch normalization

(BN) layers as constant affine transformations in the stem

part, while keep the other BN layers as normal in the identi-

fication part. The temperature scalar τ in Eq. (1) and Eq. (2)

is set to 0.1, the size of the circular queue is set to 5, 000.

All the losses have the same loss weight. Each mini-batch

consists of two scene images. The learning rate is initialized

to 0.001, dropped to 0.0001 after 40K iterations, and kept

unchanged until the model converges at 50K iterations.

We compare our framework with conventional meth-

ods that break down the problem into two separate tasks—

pedestrian detection and person re-identification. Three

pedestrian detection and five person re-id methods are used

in our experiments, resulting in 15 baseline combinations.

For pedestrian detection, we directly use the off-the-shelf

deep learning CCF [37] detector, as well as two other de-

tectors specifically fine-tuned on our dataset. One is the

ACF [6], and the other is Faster-RCNN (CNN) [27] with

ResNet-50, which is equivalent to our framework but with-

out the identification task. The recall-precision curve of

each detector on our dataset are plotted in Figure 5. We also

use the ground truth (GT) bounding boxes as the results of

a perfect detector.

For person re-identification, we use several popular re-

id feature representations, including DenseSIFT-ColorHist

(DSIFT) [42], Bag of Words (BoW) [43], and Local Max-

79.275.7 84.2
Recall (%)

0

20

40

60

80

100

Pr
ec

is
io

n 
(%

)

(59.9%) CCF
(62.9%) ACF
(78.0%) CNN

Figure 5. Recall-Precision curves of different detectors.

APs are listed in the legend.

imal Occurrence (LOMO) [21]. Each feature representa-

tion is used in conjunction with a specific distance metric,

including Euclidean, Cosine similarity, KISSME [17], and

XQDA [21], where KISSME and XQDA are trained on our

dataset. Moreover, by discarding the pedestrian proposal

network in our framework and training the remaining net to

classify identities with Softmax loss from cropped pedes-

trian images, we get another baseline re-id method (IDNet).

This training scheme has been exploited in [35] to learn

discriminative re-id feature representations. In our exper-

iments, when training IDNet with detector boxes, we found

that adding background clutter as a unique class improves

the result, while adding unlabeled identities does not.

The following results are reported using the protocol

with gallery size equal to 100 if not specified.

5.2. Comparison with Detection and Re­ID

We first compare our proposed person search framework

(with or without using unlabeled identities) with other 15
baseline combinations that break down the problem into

separate detection and re-identification tasks. The results

are summarized in Table 2. Our method outperforms the

others by large margin. Comparing with CNN+IDNet, the

gain comes from the joint optimization of the detection and

identification parts, as well as the effective use of unlabeled

identities in the OIM loss.

From Table 2 we can also see that different detectors af-

fect the person search performance significantly for each

re-id method. Directly using an off-the-shelf detector may

not be a good choice when applying existing re-id meth-

ods in the real-world person search applications. Otherwise

the detector could become a bottleneck that diminishes the

returns of better re-id methods.

On the other hand, the relative performance of differ-

ent re-id methods are consistent across all the detectors. It

implies that existing person re-id datasets could still guide

us to design better feature representations, but it may lose

some valuable data, such as unlabeled identities and back-

ground clutter, which come with the person search datasets.
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CMC top-1 (%) CCF ACF CNN GT

DSIFT+Euclidean 11.7 25.9 39.4 45.9

DSIFT+KISSME 13.9 38.1 53.6 61.9

BoW+Cosine 29.3 48.4 62.3 67.2

LOMO+XQDA 46.4 63.1 74.1 76.7

IDNet 57.1 63.0 74.8 78.3

Ours (w/o unlabeled) — — 76.1 78.5

Ours — — 78.7 80.5

mAP (%) CCF ACF CNN GT

DSIFT+Euclidean 11.3 21.7 34.5 41.1

DSIFT+KISSME 13.4 32.3 47.8 56.2

BoW+Cosine 26.9 42.4 56.9 62.5

LOMO+XQDA 41.2 55.5 68.9 72.4

IDNet 50.9 56.5 68.6 73.1

Ours (w/o unlabeled) — — 72.7 75.5

Ours — — 75.5 77.9

Table 2. Comparisons between our framework and separate

pedestrian detection + person re-id methods.

Another interesting phenomenon is that although IDNet

and LOMO+XQDA have similar performance when using

GT or fine-tuned ACF and CNN detectors, IDNet is signif-

icantly better when using off-the-shelf CCF detector. We

observe that the CCF detection results contain many mis-

alignments. Hand-crafted features in such cases are not as

robust as the IDNet counterpart.

5.3. Effectiveness of Online Instance Matching

We validate the effectiveness of the proposed Online In-

stance Matching (OIM) loss by comparing it against Soft-

max baselines with or without pretraining the classifier ma-

trix. The training identification accuracy and test person

search mAP curves are demonstrated in Figure 6. First, we

can see that using Softmax loss without pretraining classi-

fier remains at low accuracy during the whole process. This

phenomenon verifies our analysis in Section 3.2 that learn-

ing a large classifier matrix is difficult. Even with proper

pretraining, the training accuracy still improves slowly, and

the test mAP keeps at around 60%.

On the contrary, the proposed OIM loss starts with a low

training accuracy but converges much faster and also con-

sistently improves the test performance. The parameter-free

OIM loss learns features directly without needing to learn

a big classifier matrix. Moreover, the mismatch between

training and test criterion no longer exists, as both are com-

puted based on the inner product of L2-normalized feature

vectors, which represents the cosine similarity.

We further evaluate the impact of OIM loss on the stan-

dard person re-identification task. We train two differ-

ent base CNNs, Inception [35] (from scratch) and ResNet-
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Figure 6. Comparisons between using the proposed Online

Instance Matching (OIM) and Softmax loss (with and with-

out pretraining the Softmax classifier) in our framework.

The final accuracies and mAPs are shown in the legends.

Network Loss CUHK03 Market1501 Duke

Inception Softmax 73.2 75.8 54.4

Inception OIM 77.7 77.9 61.7

ResNet-50 Softmax 70.8 81.4 62.5

ResNet-50 OIM 77.5 82.1 68.1

Table 3. CMC top-1 accuracy (%) of using Softmax or OIM

loss for standard person re-id task.

50 [13] (ImageNet pretrained), with either Softmax loss

or OIM loss, on three large-scale person re-id datasets,

CUHK03 [19], Market1501 [43], and Duke [28, 48]. Fol-

lowing their own protocols, we evaluate the CMC top-1

accuracy of using different loss functions, as listed in Ta-

ble 3. OIM loss consistently outperforms Softmax loss, re-

gardless of which base CNN is used. We refer readers to

Open-ReID2 benchmarks for more details.

Sub-sampling the identities. As the number of identi-

ties increases, the computation time of the OIM loss could

become the bottleneck of the whole system. Thus we pro-

posed in Section 3.2 to approximate Eq. (1) and Eq. (2) by

sub-sampling both the labeled and unlabeled identities in

the denominators. We validate this approach here by train-

ing the framework with sub-sampling size of 10, 100, and

1000. The test mAP curves are demonstrated in Figure 7a.

2https://github.com/Cysu/open-reid
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Figure 7. Test mAP curves of different factors. The final mAPs are shown in the legend if applicable.

Dimension N/A 128 256 512 1024

top-1 (%) 59.3 65.9 78.7 78.2 78.5

mAP (%) 54.2 62.1 75.5 75.3 75.7

Table 4. Comparisons among different dimensions of L2-

normalized feature subspace. N/A means that we directly

use the L2-normalized 2048-d global pooled feature vector.

In general, sub-sampling a small number of identities re-

laxes the training objective, which leads to slightly inferior

performance but much faster convergence rate. This indi-

cates that our framework is scalable to larger datasets with

even more identities by using proper sub-sampling rate.

Low-dimensional subspace. We further investigate how

the dimension of the L2-normalized feature vector affects

the person search performance. The results are summarized

in Table 4. We observe that using the 2048-d global pooled

feature vector directly with L2-normalization leads to lower

training error, but its test performance is 20% worse. This

suggests that projecting the features into a proper low-rank

subspace is very important to regularize the network train-

ing. In our experiments, 256 to 1024 dimensions have simi-

lar test performance, and we choose 256-d to accelerate the

computation of feature distances.

5.4. Factors for Person Search

Detection Recall. We investigate how detection re-

calls would affect the person search performance by using

LOMO+XQDA as the re-id method and setting different

thresholds on detection scores. A lower threshold reduces

misdetections (increases the recall) but results in more false

alarms. We choose the recall rates ranging from 30% to the

maximum value of each detector. The final person search

mAP under each setting is demonstrated in Figure 7b. An

interesting observation is that higher recall does not nec-

essarily lead to higher person search performance, which

means re-id method could still get confused on some false

alarms. This again indicates that we should not focus solely

on training re-id methods with manually cropped pedestri-

ans, but should consider the detections jointly under the per-

son search problem setting.

Gallery size. Person search could be more challenging

as the gallery size increases. We evaluate several methods

under different test gallery sizes from 50 to full set of 6, 978
images, following the protocols defined in Section 4.2. The

test mAPs are demonstrated in Figure 7c. Note that for

each test query, the corresponding gallery images are ran-

domly sampled from the whole set. All test images are cov-

ered even with small gallery sizes. The performance gaps

among different methods are reduced as the gallery size in-

creases, indicating all the methods may suffer from some

common hard samples, and we could further improve the

performance with hard example minings.

6. Conclusion

In this paper, we propose a new deep learning frame-

work for person search. It jointly handles detection

and identification in a single CNN. An Online Instance

Matching loss function is proposed to train the network

effectively. Its non-parametric nature enables faster yet

better convergence, which is validated through series of

experiments.
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