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Abstract Let Z0, Z1, . . . , Zn be a sequence of Markov dependent trials with state
space � = {F1, . . . , Fλ, S1, . . . , Sν}, where we regard F1, . . . , Fλ as failures and
S1, . . . , Sν as successes. In this paper, we study the joint distribution of the numbers
of Si -runs of lengths ki j (i = 1, 2, . . . , ν, j = 1, 2, . . . , ri ) based on four different
enumeration schemes. We present formulae for the evaluation of the probability
generating functions and the higher order moments of this distribution. In addi-
tion, when the underlying sequence is i.i.d. trials, the conditional distribution of
the same run statistics, given the numbers of success and failure is investigated.
We give further insights into the multivariate run-related problems arising from a
sequence of the multistate trials. Besides, our results have potential applications to
problems of various research areas and will come to prominence in the future.
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1 Introduction

The concept of runs has been used effectively in a wide range of areas such as
reliability theory, start-up demonstration tests and statistical quality control (see
Inoue, 2004; Chao et al., 1995; Balakrishnan et al. 1997; Shmueli and Cohen,
2000 and references therein). In a sequence of binary trials (success or failure),
the distribution theory of success runs has been developed by many authors under
various enumeration schemes. There are different ways of counting the number of
success runs of length k in the literature (see Fu and Koutras, 1994; Balakrishnan
and Koutras, 2002). It depends on the practical problem which way of counting
should be adopted. The four best-known types of the ways of counting the number
of success runs of length k are as follows:

(i) Type I enumeration scheme: the way of counting the number of non-overlap-
ping and recurrent success runs of length k, in the sense of Feller’s (1968)
counting,

(ii) Type II enumeration scheme: the way of counting the number of success runs
of length at least k, in the sense of Goldstein’s (1990) counting (see Gibbons
1971),

(iii) Type III enumeration scheme: the way of counting the number of overlapping
success runs of length k, in the sense of Ling’s (1988) counting,

(iv) Type IV enumeration scheme: the way of counting the number of success
runs of size exactly k, in the sense of Mood’s (1940) counting.

It is natural to consider multivariate versions of run-related distribution. Let
Z0, Z1, . . . , Zn be a time homogeneous Markov chain defined on the state space
� = {F1, . . . , Fλ, S1, . . . , Sν}, where we regard F1, . . . , Fλ as failures and S1, . . . ,
Sν as successes. For ki = (ki1, ki2, . . . , kiri ) andαi = (αi1, . . . , αiri ) i = 1, 2, . . . ,
ν, let N(n, ki ;αi ) be the ri -dimensional random variables (N (n, ki1;αi1), . . . , N
(n, kiri ;αiri )), where N (n, ki j ;αi j ) represents the number of Si -runs of length ki j
(i = 1, 2, . . . , ν, j = 1, 2, . . . , ri ) in Z0, Z1, . . . , Zn by engaging Type αi j (=
I, II, III, IV) enumeration scheme. In the present paper we develop formulae for
the derivation of the probability generating function (p.g.f.) and the higher or-
der moments of N(n, k;α) = (N(n, k1;α1), . . . , N(n, kν;αν)), where α =
(α1,α2, . . . ,αν) and k = (k1, k2, . . . , kν).

We provide the perspectives on the multivariate run-related problems arising
from the multistate trials. It will be of great value to consider the multivariate run-
related distribution, since this distribution treated here is important not only for
their theoretical interest but also for their applications to various areas.

In the case of binary trials, the distribution theory of runs has been developed
very actively (see Aki and Hirano, 1988; Koutras and Alexandrou 1995; Antzou-
lakos and Chadjiconstantinidis, 2001; Godbole et al., 1997; Han and Aki, 1998).
On the other hand, in the case of multistate trials, although the multivariate ver-
sions of run-related distributions are closely related to many important applications
(see Balakrishnan and Koutras, 2002) and there is need to study such multivari-
ate distributions, the development of the relevant distribution theory is very slow
and insufficient. Shaughnessy (1981) and Bradley (1968) also stated this point
(see Fu, 1996). In fact, many exact multivariate run-related distributions remain
unknown. Moreover, the higher order moments of these distributions have never
been examined. Therefore, it has become evident that a systematic study of multi-
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variate distributions is required in order to tackle multivariate run-related problems.
This is the main motivation for establishing formulae for the evaluation of the p.g.f.
and the higher order moments of the multivariate run-related distribution.

In Sect. 2, when the underlying sequence is a sequence of Markov dependent
multistate trials, we discuss the joint distribution of N(n, k;α)=(N(n, k1;α1), . . . ,
N(n, kν;αν)). We present recursive schemes for the evaluation of the p.g.f. and the
mixed (β1, . . . ,βν)-th moment about zero of N(n, k;α), where β i = (βi1, . . . ,
βiri ), i = 1, 2, . . . , ν. The expression for the double generating function of N(n, k;
α) is given. Sect. 3 studies the joint distribution of N(n, k; α) in the special case
of i.i.d. trials. In Sect. 4, we investigate the conditional distribution of N(n, k;α),
given the numbers of success and failure in the i.i.d. trials. Finally, in Sect. 5,
several interesting practical applications are discussed.

2 Markov dependent trials

Let Z0, Z1, . . . , Zn be a time homogeneous Markov chain defined on the state
space � = {F1, . . . , Fλ, S1, . . . , Sν}. Assume that

pωiω j = P(Zt = ω j |Zt−1 =ωi ) for t ≥ 1, ωi , ω j ∈ �, i, j = 1, 2, . . . , λ+ ν

and

πωi = P(Z0 = ωi ) for ωi ∈ �, i = 1, 2, . . . , λ+ ν.

For αi j = I, II, III, IV, i = 1, 2, . . . , ν, j = 1, 2, . . . , ri , we define

µ(v;αi j ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
v

ki j

]

αi j = I,

I (v ≥ ki j ) αi j = II,
max
{
0, v − (ki j − 1)

}
αi j = III,

I (v = ki j ) αi j = IV,

where

I (u) =
{

1, u is true,
0, otherwise.

2.1 The probability generating functions

Let P(N(n, k;α) = x) and P(N(n, k;α) = x|Z0 = ωi ) be the probability
function of N(n, k; α) = (N(n, k1;α1), . . . , N(n, kν; αν)) and the conditional
probability function of N(n, k; α) given Z0 = ωi (ωi ∈ �, i = 1, 2, . . . , λ+ ν),
where x = (x11, . . . , x1r1, . . . , xi1, . . . , xiri , . . . , xν1, . . . , xνrν ). Then, the p.g.f.
of N(n, k;α) and the conditional p.g.f. of N(n, k;α) given Z0 = ωi (ωi ∈ �,
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i = 1, 2, . . . , λ+ ν) will be denoted by φn(t;α) and φ(ωi )
n (t;α), respectively, that

is,

φn(t; α)= E
[

t N(n,k1;α1)
1 · · · t N(n,kν ;αν )

ν

]
=
∑

x
P(N(n, k; α)= x)t x11

11 · · · t
xνrν
νrν ,

φ(ωi )
n (t; α) = E

[
t N(n,k1;α1)
1 · · · t N(n,kν ;αν )

ν |Z0 = ωi

]

=
∑

x
P(N(n, k; α) = x|Z0 = ωi )t

x11
11 · · · t

xνrν
νrν ,

where t = (t1, t2, . . . , tν), t i = (ti1, ti2, . . . , tiri ) and t N(n,ki ;αi )
i = t N (n,ki1;αi1)

i1 · · ·
t

N (n,kiri ;αiri )

iri
, i = 1, 2, . . . , ν.

Theorem 2.1 The p.g.f. φn(t;α) and the conditional p.g.f.’s φ(Fi )
n (t;α), i = 1, 2,

. . . , λ, φ(Si )
n (t; α), i = 1, 2, . . . , ν, satisfy the following recursive relation:

φn(t;α) =
λ∑

m=1

πFmφ
(Fm )
n (t;α)+

ν∑

m=1

πSmφ
(Sm )
n (t;α), n ≥ 0, (1)

φ(Fi )
n (t;α) =

λ∑

m=1

pFi Fm φ
(Fm )
n−1 (t; α)+

ν∑

m=1

pFi Sm φ
(Sm)
n−1 (t;α), (2)

n ≥ 1, i = 1, 2, . . . , λ,

φ
(Fi )
0 (t;α) = 1, i = 1, 2, . . . , λ, (3)

φ(Si )
n (t; α) =

λ∑

m=1

n−1∑

v=0

pvSi Si
pSi Fm tµ(v+1;αi )

i φ
(Fm )
n−v−1(t;α)

+
∑

m=1,2,...,ν
m �=i

n−1∑

v=0

pvSi Si
pSi Sm tµ(v+1;αi )

i φ
(Sm )
n−v−1(t;α)

+pn
Si Si

tµ(n+1;αi )

i , n ≥ 1, i = 1, 2, . . . , ν, (4)

φ
(Si )
0 (t;α) = tµ(1;αi )

i , i = 1, 2, . . . , ν, (5)

where tµ(v;αi )

i = tµ(v;αi1)
i1 · · · t

µ(v;αiri )

iri
.
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Proof It is easy to check Eqs. (3) and (5). The proofs of (1) and (2) are easily
completed by observing that

E
[

t N(n,k1;α1)
1 · · · t N(n,kν ;αν )

ν

]

=
λ+ν∑

m=1

P(Z0 = ωm) E
[

t N(n,k1;α1)
1 · · · t N(n,kν ;αν )

ν | Z0 = ωm

]
,

E
[

t N(n,k1;α1)
1 · · · t N(n,kν ;αν )

ν | Z0 = Fi

]

=
λ∑

m=1

P(Z1 = Fm | Z0 = Fi ) E
[

t N(n,k1;α1)
1 · · · t N(n,kν ;αν )

ν | Z1 = Fm

]

+
ν∑

m=1

P(Z1 = Sm | Z0 = Fi ) E
[

t N(n,k1;α1)
1 · · · t N(n,kν ;αν )

ν | Z1 = Sm

]
,

i = 1, 2, . . . , λ.

Suppose that we have Z0 = Si (i = 1, 2, . . . , ν). For v = 1, 2, . . . , n, let C Si Fm
v be

the event that Si occurs at trials 0, 1, . . . , v − 1 and the first Fm (m = 1, 2, . . . , λ)
occurs at the v-th trial, for v = 1, 2, . . . , n, let C Si Sm

v be the event that Si occurs
at trials 0, 1, . . . , v − 1 and the first Sm (m �= i) occurs at the v-th trial, and
let C Si

n+1 be the event that Si occurs at trials 0, 1, . . . , n and neither the first Fm
(m = 1, 2, . . . , λ) nor the first Sm (m �= i) occur in Z1, Z2, . . . , Zn , that is,

C Si Fm
v = {Z0 = Z1 = · · · = Zv−1 = Si , Zv = Fm} ,
v = 1, . . . , n, i = 1, 2, . . . , ν, m = 1, 2, . . . , λ,

C Si Sm
v = {Z0 = Z1 = · · · = Zv−1 = Si , Zv = Sm} ,
v = 1, . . . , n, i = 1, 2, . . . , ν, m �= i,

C Si
n+1 = {Z0 = Z1 = · · · = Zn−1 = Zn = Si } , i = 1, 2, . . . , ν.

Then, we immediately obtain

E
[

t N(n,k1;α1)
1 · · · t N(n,kν ;αν )

ν | Z0 = Si

]

=
λ∑

m=1

n∑

v=1

P(C Si Fm
v | Z0 = Si ) E

[
t N(n,k1;α1)
1 · · · t N(n,kν ;αν )

ν | C Si Fm
v

]

+
∑

m=1,2,...,ν
m �=i

n∑

v=1

P(C Si Sm
v | Z0 = Si ) E

[
t N(n,k1;α1)
1 · · · t N(n,kν ;αν)

ν | C Si Sm
v

]

+P(C Si
n+1 | Z0 = Si ) E

[
t N(n,k1;α1)
1 · · · t N(n,kν ;αν )

ν | C Si
n+1

]
, i = 1, 2, . . . , ν,

which yields the Eq. (4) due to the homogeneity of Markov chain. The proof is
completed. ��
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We will define the double generating functions	(t, z;α) and	(ωi )(t, z;α) (ωi ∈
�, i = 1, 2, . . . , λ+ ν) as

	(t, z;α) =
∞∑

n=0

φn(t;α)zn,

	(ωi )(t, z;α) =
∞∑

n=0

φ(ωi )
n (t;α)zn .

Using Theorem 2.1, we can obtain the following theorem.

Theorem 2.2 The double generating functions 	(t, z;α) and 	(Fi )(t, z;α), i =
1, 2, . . . , λ,	(Si )(t, z;α), i = 1, 2, . . . , ν, satisfy the following system of equa-
tions:

	(t, z;α) =
λ∑

m=1

πFm	
(Fm)(t, z;α)+

ν∑

m=1

πSm	
(Sm)(t, z;α), (6)

	(Fi )(t, z;α) = 1 +
λ∑

m=1

pFi Fm z	(Fm)(t, z;α)+
ν∑

m=1

pFi Sm z	(Sm)(t, z;α), (7)

i = 1, 2, . . . , λ,

	(Si )(t, z;α) = P(t i , pSi Si z;αi )

×
⎛

⎝1 +
λ∑

m=1

pSi Fm z	(Fm)(t, z;α)

+
ν∑

m �=i

pSi Sm z	(Sm)(t, z;α)

⎞

⎠ , i = 1, 2, . . . , ν, (8)

where

P(t i , pSi Si z;αi ) =
∞∑

v=0

(pSi Si z)
v tµ(v+1;αi )

i , i = 1, 2, . . . , ν. (9)

The formula (6) yields

	(t, z;α) = (πF1 , . . . , πFλ, πS1, . . . , πSν )

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

	(F1)(t, z;α)
...

	(Fλ)(t, z;α)

	(S1)(t, z;α)
...

	(Sν)(t, z;α)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (10)
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Equations (7) and (8) can be expressed as
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

	(F1)(t, z;α)
...

	(Fλ)(t, z;α)

	(S1)(t, z;α)
...

	(Sν )(t, z;α)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= z A

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

	(F1)(t, z;α)
...

	(Fλ)(t, z;α)

	(S1)(t, z;α)
...

	(Sν)(t, z;α)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
...
1

P(t1, pS1 S1 z; α1)
...

P(tν, pSν Sν z;αν)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (11)

where

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

pF1 F1 · · · pF1 Fλ pF1 S1 pF1 S2 · · · pF1 Sν
pF2 F1 · · · pF2 Fλ pF2 S1 pF2 S2 · · · pF2 Sν
...

...
...

...
...

pFλF1 · · · pFλFλ pFλS1 pFλS2 · · · pFλSν
aS1 F1 · · · aS1 Fλ 0 bS1 S2 · · · bS1 Sν
aS2 F1 · · · aS2 Fλ bS2 S1 0 · · · bS1 Sν
...

...
...

...
. . .

...
aSνF1 · · · aSνFλ bSν S1 bSν S2 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and aSi Fj (1 ≤ i ≤ ν, 1 ≤ j ≤ λ), bSi S j (1 ≤ i, j ≤ ν) are given by

aSi Fj = pSi Fj P(t i , pSi Si z;αi ),

bSi S j =
{

0, i = j,
pSi S j P(t i , pSi Si z;αi ), i �= j.

From Eqs. (10) and (11), we can proceed to derive a compact formula for the double
generating function 	(t, z;α). The next theorem provides the details.

Theorem 2.3 The double generating function 	(t, z;α) is given by

	(t, z;α) = (πF1 , . . . , πFλ, πS1, . . . , πSν ) [I − z A]−1

⎡

⎢
⎢
⎣

1λ×1
P(t1, pS1 S1 z;α1)

...
P(tν, pSν Sν z;αν)

⎤

⎥
⎥
⎦ ,

where I is the (λ+ ν)× (λ+ ν) identity matrix and P(t i , pSi Si z;αi ),
i = 1, 2, . . . , ν, is given by in (9).

Example 2.1 Joint distribution of (N (n, k11;α11), . . . , N (n, kν1;αν1)). We treat
the special case where r1 = · · · = rν = 1. The double generating function is given
by

	(t, z;α) = (πF1, . . . , πFλ, πS1, . . . , πSν ) [I − z A]−1

⎡

⎢
⎢
⎣

1λ×1
P(t11, pS1 S1 z;α11)

...
P(tν1, pSν Sν z;αν1)

⎤

⎥
⎥
⎦ ,
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where

P(ti1, pSi Si z;αi1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − (pSi Si z)
ki1 ti1 − (pSi Si z)

ki1−1(1 − ti1)
(
1 − pSi Si z

)
(1 − (pSi Si z)

ki1 ti1)
, αi1 = I,

1 − (pSi Si z)
ki1−1(1 − ti1)

1 − pSi Si z
, αi1 = II,

1 − (pSi Si z)
ki1−1(1 − ti1)− pSi Si zti1

(1 − pSi Si z)(1 − pSi Si zti1)
, αi1 = III,

1 − (pSi Si z)
ki1−1(1 − ti1)(1 − pSi Si z)

1 − pSi Si z
, αi1 = IV,

for i = 1, 2, . . . , ν.
In the case of λ = 1, ν = 2, r1 = r2 = 1, Balakrishnan and Koutras (2002)

called the three distributions of the bivariate random variables (N (n, k11; I), N (n,
k21; I)), (N (n, k11; II), N (n, k21; II)) and (N (n, k11; III), N (n, k21; III)) Type I, II
and III Markov-trinomial distributions of order (k11, k21), respectively. The results
presented in this section are generalization of Markov-trinomial distributions.

2.2 Two enumeration schemes

(i)The number of runs of type Si

We denote R(Si )
n by the number of runs of type Si (i = 1, 2, . . . , ν). For exam-

ple, the following sequence of length 23:

S1 S2S2 S1S1S1 F1 S2S2S2 S1S1 S2S2S2S2 S1S1S1S1 F1 S2 S1

contains 5 runs of type S1, 4 runs of type S2 (R(S1)
23 = 5 and R(S2)

23 = 4). By setting
r1 = · · · = rν = 1 and µ(v;αi1) = I (v ≥ 1) for i = 1, 2, . . . , ν in Theorems
2.1–2.3, we can easily deal with this case.
(ii)
-Overlapping enumeration scheme (
 ≥ 0)

Recently, Aki and Hirano (2000) introduced a generalized enumeration scheme
which is called 
-overlapping counting (see Inoue and Aki, 2003 ; Antzoulakos,
2003). In Theorems 2.1–2.3, by setting

µ(v;αi j ) = max

{

0,

[
v − 
i j

ki j − 
i j

] }

,

the results presented in Theorems 2.1–2.3 can be extended to cover this case easily.

2.3 Evaluation of moments

We denote by

ηn(β1, . . . ,βν;α)= E

[
ν∏

i=1

(N(n, ki ;αi ))
β i

]

= E

⎡

⎣
ν∏

i=1

ri∏

j=1

(
N (n, ki j ;αi j )

)βi j

⎤

⎦
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the mixed (β1, . . . ,βν)-th moment about zero, where β i = (βi1, . . . , βiri ), i =
1, 2, . . . , ν. Replacing ti j by eti j (i = 1, 2, . . . , ν, j = 1, 2, . . . , ri ) in φn(t;α),

φ
(Fi )
n (t;α) and φ(Si )

n (t;α), the moment generating functions of N(n, k; α) =
(N(n, k1; α1), . . . , N(n, kν;αν)) are obtained. Here, we write the moment gen-
erating functions as φn(et ; α), φ(Fi )

n (et ;α) and φ(Si )
n (et ; α), respectively. We can

get the mixed (β1, . . . ,βν)-th moments about zero as

ηn(β1, . . . ,βν; α) = ∂β11+···+βνrν

∂tβ11
11 · · · ∂t

βνrν
νrν

φn(e
t ; α)

∣
∣
∣
∣
∣
t=0,

η(Fi )
n (β1, . . . ,βν; α) = ∂β11+···+βνrν

∂tβ11
11 · · · ∂t

βνrν
νrν

φ(Fi )
n (et ;α)

∣
∣
∣
∣
∣
t=0,

i = 1, 2, . . . , λ,

η(Si )
n (β1, . . . ,βν;α) = ∂β11+···+βνrν

∂tβ11
11 · · · ∂t

βνrν
νrν

φ(Si )
n (et ; α)

∣
∣
∣
∣
∣
t=0,

i = 1, 2, . . . , ν.

We have the next theorem from Theorem 2.1 directly.

Theorem 2.4 The mixed (β1, . . . ,βν)-th moment about zero ηn(β1, . . . ,βν;α),
η
(Fi )
n (β1, . . . ,βν;α)i = 1, 2, . . . , λ and η(Si )

n (β1, . . . ,βν;α)i = 1, 2, . . . , νsat-
isfy the following recursive relation:

ηn(β1, . . . ,βν;α) =
λ∑

m=1

πFmη
(Fm)
n (β1, . . . ,βν;α)

+
ν∑

m=1

πSmη
(Sm)
n (β1, . . . ,βν;α), n ≥ 0,

η(Fi )
n (β1, . . . ,βν;α) =

λ∑

m=1

pFi Fmη
(Fm)
n−1 (β1, . . . ,βν;α)

+
ν∑

m=1

pFi Smη
(Sm)
n−1 (β1, . . . ,βν;α),

n ≥ 1, i = 1, 2, . . . , λ,

η(Si )
n (β1, . . . ,βν;α)

=
λ∑

m=1

n−1∑

v=0

β i∑

bi =0
pvSi Si

pSi Fm (µ(v + 1;αi ))
β i −bi

×
(

β i

bi

)

η
(Fm)
n−v−1(β1, . . . ,β i−1, bi ,β i+1, . . . ,βν;α),

+
∑

m �=i

n−1∑

v=0

β i∑

bi =0
pvSi Si

pSi Sm (µ(v + 1;αi ))
β i −bi
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×
(

β i

bi

)

η
(Sm)
n−v−1(β1, . . . ,β i−1, bi ,β i+1, . . . ,βν;α),

+pn
Si Si
(µ(n + 1;αi ) )

β i δ( (β1, . . . ,β i−1,β i+1, . . . ,βν), 0),
n ≥ 1, i = 1, 2, . . . , ν,

with the initial conditions

η
(Fi )
0 (β1, . . . ,βν;α) = δ((β1, . . . ,βν), 0), i = 1, 2, . . . , λ,

η
(Si )
0 (β1, . . . ,βν;α) = (µ(1;αi ) )

β i δ( (β1, . . . ,β i−1,β i+1, . . . ,βν), 0 ),
i = 1, 2, . . . , ν,

where Kronecker delta δ(x, y) equals one if x = y and zero otherwise,
bi = (bi1, . . . , biri ),

µ(v;αi )
β i −bi =

ri∏

j=1

µ(v;αi j )
βi j −bi j ,

β i∑

bi =0
=

βi1∑

bi1=0

· · ·
βiri∑

biri =0

and

(
β i

bi

)

=
ri∏

j=1

(
βi j

bi j

)

.

In the case of λ = ν = 1, r1 = 1, Antzoulakos and Chadjiconstantinidis (2001)
established recursive formulae for the evaluation of E[( N (n, k11; I) )β11],
E[( N (n, k11; II) )β11] and E[( N (n, k11; III) )β11].

3 I.i.d. trials

Assume that � = {F1, S1, . . . , Sν},
pωiω j = P(Zt = ω j |Zt−1 = ωi ) = pω j for t ≥ 1, ωi , ω j ∈ �,

i, j = 1, 2, . . . , ν + 1

and

πF1 = 1, πS1 = · · · = πSν = 0.

Evidently, the underlying sequence reduces to the i.i.d. trials. In this case, the evalu-
ation of the p.g.f. can be easily performed through the recurrence relation presented
in Theorem 2.1. The double generating function 	(t, z;α) can be expressed in a
more appealing form. More specifically, reduce the recurrences of Theorem 2.2
to the i.i.d. case (pSi S j → pS j , pSi Fj → pFj ) and replace all 	(Fi )(t, z;α),
i = 1, 2, . . . , λ with 	(t, z;α). Then multiply by −P(t i , pSi z;αi ) both side of
(7) and add by parts to (8) and solve the resulting equation w.r.t. 	(Si )(t, z;α),
replace it to (7) and solve w.r.t. 	(t, z;α). Finally we get the following result.
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Proposition 3.1 The double generating function 	(t, z;α) is given by

	(t, z;α) = 1

1 − pF1 z −
∑ν

m=1

pSm z P(tm ,pSm z;αm)

1 + pSm z P(tm ,pSm z;αm)

,

where P(t i , pSi z;αi ), i = 1, 2, . . . , ν, is given by (9) with pSi Si replaced by
pSi (i = 1, 2, . . . , ν).

Example 3.1 Joint distribution of (N (n, k11;α11), . . . , N (n, kν1;αν1)). We treat
the special case where r1 = · · · = rν = 1. The double generating function is given
by

	(t, z;α) = 1

1 − pF1 z −
∑ν

i=1

pSi z P(ti1, pSi z;αi1)

1 + pSi z P(ti1, pSi z;αi1)

, (12)

where

pSi z P(ti1, pSi z;αi1)

1 + pSi z P(ti1, pSi z;αi1)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pSi z − (pSi z)
ki1 + (pSi z)

ki1 ti1(1 − pSi z)

1 − (pSi z)
ki1

, αi1 = I,

pSi z − (pSi z)
ki1(1 − ti1)

1 − (pSi z)
ki1(1 − ti1)

, αi1 = II,

pSi z − (pSi z)
ki1(1 − ti1)− (pSi z)

2ti1

1 − pSi zti1 − (pSi z)
ki1(1 − ti1)

, αi1 = III,

pSi z − (pSi z)
ki1(1 − ti1)(1 − pSi z)

1 − (1 − ti1)(pSi z)
ki1(1 − pSi z)

, αi1 = IV,

for i = 1, 2, . . . , ν.

Remark 3.1 Inoue and Aki (2004) have also given the formulae for the double
generating function with a different setup. In the case of ν = 2, r1 = r2 = 1,
Balakrishnan and Koutras (2002) derived the double generating functions of the
joint distribution of (N (n, k11; I), N (n, k21; I)), (N (n, k11; II), N (n, k21; II)) and
(N (n, k11; III), N (n, k21; III)). These joint distributions are called Type I, Type II
and Type III trinomial distribution of order (k11, k21).

4 Conditional distributions

In this section, we consider the case where λ = 1. Let Z1, Z2, . . . , Zn be a se-
quence of i.i.d. trials with failure F1, successes S1, . . . , Sν and the probabilities
P(Zt = F1) = pF1 , P(Zt = Si ) = pSi for 1 ≤ t ≤ n, i = 1, 2, . . . , ν. We are
going to investigate the conditional distribution of the run statistics N(n, k;α) =
(N(n, k1; α1), . . . , N(n, kν;αν)), given the numbers Mn,i = si (0 ≤ si ≤ n)
of successes Si (i = 1, 2, . . . , ν) in the n i.i.d. trials. Since Mn,i is a sufficient
statistic for pSi (i = 1, 2, . . . , ν), the conditional distribution which we are search-
ing for does not depend on pSi (i = 1, 2, . . . , ν). In this section, we will use the
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notation	(t, z, pS1, . . . , pSν ;α) and φn(t, pS1, . . . , pSν ;α) instead of	(t, z;α)
and φn(t; α), respectively, that is,

φn(t, pS1, . . . , pSν ; α) =
∑

x
P(N(n, k;α) = x)t x11

11 · · · t
xνrν
νrν , (13)

	(t, z, pS1, . . . , pSν ;α) =
∞∑

n=0

φn(t, pS1, . . . , pSν ;α)zn . (14)

We denote the probability generating function of the conditional probability
function of N(n, k;α), given that Mn,i = si (i = 1, 2, . . . , ν) by

ψn(t, s;α) =
∑

x
P(N(n, k; α) = x | Mn,1 = s1, . . . ,Mn,ν = sν) (15)

×t x11
11 · · · t

xνrν
νrν ,

where s = (s1, . . . , sν).
In this subsection, an explicit formula for the double generating function of the

quantity

an(t, s;α) = n!
s1! · · · sν !(n − s1 − · · · − sν)!ψn(t, s;α)

is established. Each one of the two cases ((a) pF1 �= 0, (b) pF1 = 0) is treated
separately.
(a) The case pF1 �= 0

Theorem 4.1 The generating function of an(t, s;α) takes on the form

∞∑

n=0

∑

s1,...,sν

an(t, s;α)us1
1 · · · usν

ν zn (16)

= 	(t, (1 +∑ν
i=1ui )z,

u1
1+∑ν

i=1 ui
, . . . , uν

1+∑ν
i=1 ui

;α).

Proof Replacing P(N(n, k; α) = x) in (13) by

P(N(n, k;α) = x)

=
∑

s1,...,sν

P(N(n, k;α) = x | Mn,1 = s1, . . . ,Mn,ν = sν)P

×(Mn,1 = s1, . . . ,Mn,ν = sν)

=
∑

s1,...,sν

n!
s1! · · · sν !(n − s1 − · · · − sν)! pn

F1

(
pS1

pF1

)s1

· · ·
(

pSν

pF1

)sν

×P(N(n, k; α) = x | Mn,1 = s1, . . . ,Mn,ν = sν)

and exploiting the expression (14), we have

φn(t, pS1, . . . , pSν ; α) =
∑

s1,...,sν

n!
s1! · · · sν !(n − s1 − · · · − sν)! pn

F1

(
pS1

pF1

)s1

· · ·
(

pSν

pF1

)sν
ψn(t, s;α)
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or equivalently

	(t, z, pS1 , . . . , pSν ;α) =
∞∑

n=0

∑

s1,...,sν

an(t, s;α)

(
pS1

pF1

)s1

· · ·
(

pSν

pF1

)sν
(pF1 z)n . (17)

Setting pSi /pF1 = ui (i = 1, 2, . . . , ν) in (17), we get

	

(

t, z,
u1

1 +∑ν
i=1 ui

, . . . ,
uν

1 +∑ν
i=1 ui

; α

)

=
∞∑

n=0

∑

s1,...,sν

an(t, s;α)us1
1 · · · usν

ν

(
z

1 +∑ν
i=1 ui

)n

,

which manifestly yields the desired result by replacing z by (1 +∑ν
i=1 ui )z. ��

From the representation of Theorem 4.1, the explicit formula for the generating
function of an(t, s; α) is derived.

Theorem 4.2 The generating function of an(t, s;α) is given by

	

(

t,
(

1 +
ν∑

i=1
ui

)

z,
u1

1 +∑ν
i=1 ui

, . . . ,
uν

1 +∑ν
i=1 ui

; α

)

(18)

= 1

1 − z −
∑ν

i=1

ui z P(t i , ui z;αi )

1 + ui z P(t i , ui z;αi )

,

where P(t i , ui z;αi ) is given by (9) with pSi Si replaced by ui (i = 1, 2, . . . , ν).

In the case of ν = 1, r1 = 1, Koutras and Alexandrou (1997) investigated the
conditional distributions of run statistics N (n, k11; I), N (n, k11; I) and N (n, k11;
III), given the number Mn,1 = s1 of success S1 (see Balakrishnan and Koutras,
2002).
(b) The case pF1 = 0

Theorem 4.3 The generating function of an(t, s;α) takes on the form

∞∑

n=0

∑

s1,...,sν
s1+···+sν=n

an(t, s; α)us1
1 · · · usν

ν zn (19)

= 	

(

t,
ν∑

i=1
ui z,

u1∑ν
i=1 ui

, . . . , uν∑ν
i=1 ui

;α

)

.
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Proof Replacing P(N(n, k; α) = x) in (13) by

P(N(n, k;α) = x)

=
∑

s1,...,sν
s1+···+sν=n

P(N(n, k;α) = x | Mn,1 = s1, . . . ,Mn,ν = sν)P

×(Mn,1 = s1, . . . ,Mn,ν = sν)

=
∑

s1,...,sν
s1+···+sν=n

n!
s1! · · · sν ! ps1

S1
· · · psν

Sν
P(N(n, k;α) = x |

× Mn,1 = s1, . . . ,Mn,ν = sν),

and exploiting the expression (14), we have

φn(t, pS1, . . . , pSν ;α) =
∑

s1,...,sν
s1+···+sν=n

n!
s1! · · · sν ! ps1

S1
· · · psν

Sν
ψn(t, s; α)

or equivalently

	(t, z, pS1, . . . , pSν ; α) =
∞∑

n=0

∑

s1,...,sν
s1+···+sν=n

an(t, s; α)ps1
S1

· · · psν
Sν

zn . (20)

Setting pSi = ui/
∑ν

i=1 ui (i = 1, 2, . . . , ν) in (20), we get

	

(

t, z,
u1

∑ν
i=1 ui

, . . . ,
uν

∑ν
i=1 ui

;α

)

=
∞∑

n=0

∑

s1,...,sν
s1+···+sν=n

an(t, s; α)us1
1 · · · usν

ν

(
z

∑ν
i=1 ui

)n

,

which manifestly yields the desired result by replacing z by
∑ν

i=1 ui z. ��
From the representation of Theorem 4.3, the explicit formula for the generating

function of an(t, s; α) is derived.

Theorem 4.4 The generating function of an(t, s;α) is given by

	

(

t,
ν∑

i=1
ui z,

u1∑ν
i=1 ui

, . . . , uν∑ν
i=1 ui

;α

)

= 1

1 −
ν∑

i=1

ui z P(t i , ui z;αi )

1 + ui z P(t i , ui z;αi )

, (21)

where P(t i , ui z;αi ) is given by (9) with pSi Si replaced by ui (i = 1, 2, . . . , ν).
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5 Applications

In this section, we consider the special case whereλ = 1 and r1 = · · · = rν = 1. Let
Z1, Z2, . . . , Zn be a sequence of i.i.d. trials with failure F1, successes S1, . . . , Sν
and the probabilities P(Zt = F1) = pF1 , P(Zt = Si ) = pSi for 1 ≤ t ≤ n,
i = 1, 2, . . . , ν. When no confusion is likely to arise, we will write simply ki , αi
and ti instead of ki1, αi1 and ti1, i = 1, 2, . . . , ν.

5.1 Multistate system

It is worth mentioning that the probability P(N(n, k;α) = 0) forαi = I, II, III, i =
1, 2, . . . , ν, is equal to the reliability of a consecutive k1,k2, . . . , kν-out-of-n:MFM
system. According to Boutsikas and Koutras (2002), the consecutive k1,k2, . . . ,
kν-out-of-n:MFM system consists of n linearly arranged components and enter
failure mode s whenever at least ks consecutive components are failed in mode s
(s = 1, 2, . . . , ν). Here, suppose we regard F1 as a working state and S1, . . . , Sν as
failure modes. The exact reliability of the consecutive k1,k2, . . . , kν-out-of-n:MFM
system with Markov dependent components can be evaluated through Theorems
2.1–2.3.

We will study the reliability of the system with i.i.d. components. Let R(n, k)(=
P(N(n, k;α) = 0)) be the reliability of the system with i.i.d. components. Then
the generating function of R(n, k) is obtained by substituting t = 0 in the formula
(12), that is,

∞∑

n=0

R(n, k)zn = 	(0, z;α) = 1

1 − pF1 z −
∑ν

i=1

pSi z − (pSi z)
ki

1 − (pSi z)
ki

. (22)

In the following proposition, we derive a recursive scheme for the evaluation of
R(n, k).

Proposition 5.1 The reliability R(n, k) satisfies the following recursive relation:

R(n, k) = pF1 R(n − 1, k)+
ν∑

i=1

[ n−1
ki

]
∑

v=0

pvki +1
Si

R(n − vki − 1, k) (23)

−
ν∑

i=1

[ n
ki

]
∑

v=1

pvki
Si

R(n − vki , k) for n ≥ min(k1, . . . , kν),

R(n, k) = 1 for n < min(k1, . . . , kν). (24)

Proof From (22), we have

∞∑

n=0

R(n, k)zn =
(

pF1 z +
ν∑

i=1

∞∑

v=0

(
pSi z − (pSi z)

ki
)
(pSi z)

vki

) ∞∑

n=0

R(n, k)zn .

Equating the coefficients of zn on the both sides of the above equation, we obtain
Eq. (24). It is easy to check Eq. (24). The proof is completed. ��
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Fig. 1 The exact distribution of R1000,800,200 and normal distribution N (321, 102.18)

Of course, we can evaluate the exact reliability R(n, k) through the recurrence
relation presented in Theorem 2.1. However, the recurrence relation presented in
Proposition 5.1 is very simple and efficient.

5.2 Randomness tests

In this subsection, we consider the special case of pF1 = 0. Let R(Si )
n,s1,...,sν denote

the number of runs of type Si , given the numbers Mn,i = si (0 ≤ si ≤ n) of
successes Si (i = 1, 2, . . . , ν) in the n i.i.d. trials. Then the total number of runs
Rn,s1,...,sν is defined by

Rn,s1,...,sν =
ν∑

i=1

R(Si )
n,s1,...,sν .

By setting r1 = · · · = rν = 1, t1 = t2 = · · · = tν = t and

P(t i , ui z;αi ) = t

1 − ui z
, i = 1, 2, . . . , ν,

in the formula (22), we can obtain the double generating function (w.r.t. u1, . . . , uν,
z) of n!/s1! · · · sν !E[ t Rn,s1,...,sν ] as follows:

	(t, t, . . . , t
︸ ︷︷ ︸

ν

,
ν∑

i=1
ui z,

u1∑ν
i=1 ui

, . . . , uν∑ν
i=1 ui

;α) = 1

1 −
∑ν

i=1

ui z t

1 − ui z (1 − t)

.

The exact distribution of Rn,s1,...,sν is acquired by the expansion of the gener-
ating function in a multiple Taylor series of z, t and ui (i = 1, 2, . . . , ν), which
nowadays can be easily achieved by computer algebra systems. Furthermore, by
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Fig. 2 The exact distribution of R1000,850,150 and normal distribution N (256, 64.83)
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Fig. 3 The exact distribution of R1000,900,100 and normal distribution N (181, 32.25)

making use of the derivatives of the above generating function up to the second
order with respect to t , the mean and variance of Rn,s1,...,sν can be obtained. (The
details can be worked out easily and are thus omitted here.) More specifically, we
have the following result.

Proposition 5.2 The mean and variance of Rn,s1,...,sν are given by

E[Rn,s1,...,sν ] =
ν∑

i=1

si (n − si + 1)

n
,

V [Rn,s1,...,sν ] =
ν∑

i=1

si (n − si + 1)(si − 1)(n − si )

n2(n − 1)
+
∑

i �= j

si s j (si − 1)(s j − 1)

n2(n − 1)
.
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Fig. 4 The exact distribution of R1000,950,50 and normal distribution N (96, 8.94)

The classical run tests was based on Rn,s1,...,sν (see Rubin et al., 1990; Agin and
Godbole, 1992; Shaughnessy, 1981). Schuster and Gu (1997) provide the recur-
sive scheme for the evaluation of Rn,s1,...,sν . In the case of ν = 2, the randomness
of the sequence is tested statistically by many authors (see Wald and Wolfowitz
1940; Mood 1940; Koutras and Alexandrou, 1997; Lou, 1997). It is well known
that the distribution of Rn,s1,s2 , when the ratio of s1 to s2 remains a positive con-
stant while both numerator and denominator approach infinity, is approximated
by the normal distribution with mean E[Rn,s1,s2 ] = (2s1s2 + n)/n and variance
V [Rn,s1,s2 ] = 2s1s2(2s1s2 − n)/[n2(n − 1)] (see Wald and Wolfowitz, 1940 Brad-
ley, 1968). In Figs. 1–4, however, there is significant differences between the exact
and the approximate probabilities. Therefore, we think that the results presented in
Figs. 1–4 highlight the importance of the exact distribution. As indicated by Brad-
ley (1968), it rapidly becomes difficult to obtain the exact distributions of runs in a
sequence of multistate trials, as the number n of trials increases (see Shaughnessy,
1981). Our results presented in this paper are useful for the numerical and symbolic
calculations.
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