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RESEARCH Open Access

Joint DOA and multi-pitch estimation based on
subspace techniques
Johan Xi Zhang1*, Mads Græsbøll Christensen2, Søren Holdt Jensen1 and Marc Moonen3

Abstract

In this article, we present a novel method for high-resolution joint direction-of-arrivals (DOA) and multi-pitch
estimation based on subspaces decomposed from a spatio-temporal data model. The resulting estimator is termed
multi-channel harmonic MUSIC (MC-HMUSIC). It is capable of resolving sources under adverse conditions, unlike
traditional methods, for example when multiple sources are impinging on the array from approximately the same
angle or similar pitches. The effectiveness of the method is demonstrated on a simulated an-echoic array
recordings with source signals from real recorded speech and clarinet. Furthermore, statistical evaluation with
synthetic signals shows the increased robustness in DOA and fundamental frequency estimation, as compared with
to a state-of-the-art reference method.

Keywords: multi-pitch estimation, direction-of-arrival estimation, subspace orthogonality, array processing

1. Introduction
The problem of estimating the fundamental frequency,
or pitch, of a period waveform has been of interest to
the signal processing community for many years. Funda-
mental frequency estimators are important for many
practical applications such as automatic note transcrip-
tion in music, audio and speech coding, classification of
music, and speech analysis. Numerous algorithms have
been proposed for both the single- and multi-pitch sce-
narios [1-5]. The problem for single-pitch scenarios is
considered as well-posed. However, in real-world sig-
nals, the multi-pitch scenario occurs quite frequently
[2,6]. The multi-pitch estimation algorithms are often
based on, i.e., various modification of the auto-correla-
tion function [1,7], maximum likelihood, optimal filter-
ing, and subspace techniques [2,3,8]. In real-life
recordings, problems such as frequency overlap of
sources, reverberation, and colored noise will strongly
limit the performance of multi-pitch estimator and esti-
mator designed for single channel recordings often use
simplified signal models. One widely used signal simpli-
fication in multi-pitch estimators, for example, is the
sparseness of the signal, where the frequency spectrum

of sources are assumed to not overlap [2]. This assump-
tion may be appropriate when sources consist of mix-
ture of several speech signals having different pitches
[9]. However, for audio signals it is less likely to be true.
This is especially so in western music, where instru-
ments are most often played in accord, something that
causes the harmonics to overlap or even coincide. With
only single-channel recording it is, therefore, hard, or
perhaps even impossible, to estimate pitches with over-
lapping harmonics, unless additional information, such
as a temporal or spectral model, is included.
Recently, multi-channel approaches have attracted

considerable attention both in single- and multi-pitch
scenarios. By exploring the spatial information of the
sources, more robust pitch estimators have been pro-
posed [10-14]. Most of those multi-channel methods are
still mainly based on auto-correlation function-related
approaches, however, although a few exceptions can be
found in [15-18]. In direction-of-arrival (DOA) estima-
tors, audio and speech signals are often modeled as
broadband signal, and standard subspace methods such
as MUSIC and ESPRIT are only defined for narrow-
band signal model, which then fail to directly operate
on broadband signals [19]. One often used concept is
band-pass filtering of broadband signals into subbands,
where narrow-band estimators can be applied to each
subband [20]. In the narrow-band case, a delay in the
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signal is equivalent to a phase shifts according to the
frequencies of complex exponentials. An alternative
method is, however, as follows: since harmonic signals
consist of sinusoidal components, we can model each
source as multiple narrow-band signal with distinct fre-
quencies arriving at the same DOA.
In this article, we propose a parametric method for sol-

ving the problem of joint fundamental frequency and
DOA estimation based on subspace techniques where the
quantities of interest are jointly estimated using a
MUSIC-like approach. We term the proposed estimator
Multi-channel multi-pitch Harmonic MUSIC (MC-
HMUSIC). The spatio-temporal data model used in MC-
HMUSIC is based on the JAFE data model [21,22]. Ori-
ginally, the JAFE data model was used for estimating
joint unconstrained frequencies and DOAs estimates of
complex exponential using ESPRIT, which is referred as
joint angle-frequency estimation (JAFE) algorithm.
Other-related work with joint frequency-DOA methods
includes [23-25]. In this article, we have parametrized the
harmonic structure of periodic signals in the signal
model to model the fundamental frequency and the
DOA of individual sources. An estimator is constructed
for jointly estimating the parameters of interest. Incor-
porating the DOA parameter in finding the fundamental
frequency may give better robustness against a signal
with overlapping harmonics. Similarly, it can be expected
that the DOA can be found more accurately when the
nature of the signal of interest is taken into account.
The remainder of this article is comprised four sec-

tions: Section 2, in which we will introduce some nota-
tion, the spatio-temporal signal model, for which we
also derive the associated Cramér-Rao lower bound,
along with the JAFE data mode; Section 3, where we
then present the proposed method; Section 4, in which
we present the experimental results obtained using the
proposed method; and, finally, Section 5, where we con-
clude on our work.

2. Fundamentals
2.1. Spatio-temporal signal model
Next, the signal model employed throughout the article
will be presented. Without multi-path propagation of
sources, it is given as follows: the signal xi received by
microphone element i arranged in a uniform linear
array (ULA) configuration, i = 1,..., M, is given by

xi(n) =
K∑

k=1

Lk∑
l=1

βl,kej(ωkln+φkl(i−1)) + ei(n),

βl,k = Al,kejγl, k ,

(1)

for sample index n = 0,..., N - 1, where subscript k
denotes the kth source and l the lth harmonic.

Moreover, Al,k is the real-valued positive amplitude of
the complex exponential, Lk is the number of harmo-
nics, K is number of sources, gl,k is the phase of the
individual harmonics, jk is the phase shift caused by
the DOA, and ei(n) is complex symmetric white Gaus-
sian noise. The phase shift between array elements is

given as φk = ωkfs d
c sin(θk) , where d is the spacing

between the elements measured in wavelengths, c is
the speed of propagation in unit [m/s], θk is the DOA
defined for θk Î [-90°, 90°], fs is the signal sampling
frequency. The problem of interest is to estimate ωk

and θk. We in the following assume that the number
of sources K is known and the number of harmonics
Lk of individual sources is known or found in some
other, possibly joint, way. We note that a number of
ways of doing this has been proposed in the past
[26-28,2].

2.2. Cramér-Rao lower bound
We will now proceed to derive the exact Cramér-Rao
lower bound (CRLB) for the problem of estimating the
parameters of interest. First, we define the M × 1 deter-
ministic signal model vector s(n, μ) with column ele-
ment as

si(n, μ) =
K∑

k=1

Lk∑
l=1

βl,kej(ωkln+φkl(i−1)), βl,k = Al,kejγl,k , (2)

where s(n, μ) = [s1(n, μ) ... sM(n, μ)]
T. Furthermore,

the parameter vector μ is given by

μ = [ω1 · · · ωK θ1 · · · θK

A1,1 γ1,1 · · · ALK ,K γLK ,K].
(3)

Recall that the observed signal vector with additive
white noise is given by

x(n) = s(n, μ) + e(n) =

⎡
⎢⎣

s1(n, μ)
...

sM(n, μ)

⎤
⎥⎦ + e(n), (4)

with e(n) being the noise column vector. The CRLB is
defined as the variance of an unbiased estimate of the
pth element of μ, which is lower bounded as

var(μp) ≥ [C−1]pp, (5)

where C is the so-called Fisher information matrix
given by

C =
2
σ 2

Re

(
N−1∑
n=0

∂s(n, μ)H

∂μ

∂s(n, μ)
∂μT

)
. (6)
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The partial derivative matrix is denoted as

∂s(n, μ)
∂μ

=
[

∂s1(n,μ)
∂μ

· · · ∂sM(n,μ)
∂μ

]
, (7)

where vector ∂si(n,μ)
∂μ

is the partial derivatives with

respect to the entries in the vector μ. The expression

for the columns in ∂s(n,μ)
∂μ

is given as

∂si(n,μ)
∂μ

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L1∑
l=1

jl
(
n + (i − 1)fs d

c sin(θ1)
)

βl,1ej(ω1ln+φ1l(i−1))

...
LK∑
l=1

jl
(

n + (i − 1)fs d
c sin(θK)

)
βl,Kej(ωK ln+φK l(i−1))

L1∑
l=1

(
jl(i − 1) ω1fs d

c cos(θ1)
)

βl,1ej(ω1ln+φ1l(i−1))

...
LK∑
l=1

(
jl(i − 1)ωKfs d

c cos(θK)
)

βl,Kej(ωKln+φK l(i−1))

ejγ1,1ej(ω1n+φ1(i−1))

jA1,1ejγ1,1ej(ω1n+φ1(i−1))

...

ejγLK ,K ej(ωKLKn+φKLK (i−1))

jALK ,KejγLK ,K ej(ωKLKn+φKLK (i−1))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

2.3. The JAFE data model
Next, we will introduce the specifics of the JAFE data
model [22,29] that our method is based on. At a time
instant n the received signal from the M array elements
are x(n) = [x1(n) x2(n) ... xM(n)]

T, which can be written
as

x(n) = A�b + e(n), (9)

where e(n) Î ℂM×1 is the noise vector, and A = [A1 ...
AK] is a Vandermonde matrix containing parameters ωk

and θk for sources k = 1, . . . , K, i.e.,

Ak =
[
a(θk, ωk1) · · · a(θk, ωkLk)

]
, (10)

with a(θ, ω) being the array steering vector given by

a(θ , ω) =
[

1 · · · ejωfs
d
c (M−1) sin(θ)

]T

. (11)

Here, (·)T denotes the vector transpose. Unlike the
steering vector defined in [22,21], where only the DOA
is parametrized, here, a general definition of the vector
(11) is used, in which it depends on both θ and ω [29].
The frequency components are expressed in
�n = diag

([
�n

1 · · · �n
K

])
where the matrix for each

source is given by

�k = diag
([

ejωk · · · ejωkLk
])

. (12)

The complex amplitudes for involving components are
represented by the following vector:

b =
[
β1,1 · · · βL1,1 · · · β1,K · · · βLK ,K

]T . (13)

To capture the temporal behavior, N time-domain
data samples of the array output x(n) are collected to
form the M × N data matrix X, which is defined as

X =
[
x(n) · · · x(N)

]
. (14)

Due to the structure of the harmonic components, the
data matrix is given by

X = A
[
b �b · · · �N−1b

]
+ E, (15)

where E Î ℂM×N is a matrix containing N sample of
the noise vector e(n).
In speech and audio signal processing, it is common

to model each source as a set of multiple harmonics
with model order Lk >1. Due to the narrow-band
approximation of the steering vector, the multiple com-
plex components with distinct frequencies impinge on
the array with identical DOA will result in a non-unique
spatial frequencies which cause a harmonic structure in
the spatial frequencies jkl ∀l as well. The multiple
sources impinge on the array with different DOAs con-
sisting of various frequency components may, for certain
frequency combinations, give the same array steering
vector, which cause the matrix A to be rank deficient.
Normally, this ambiguous mapping of the steering vec-
tor is mitigated by band-pass filtering the signal into its
subbands, where the DOA of the signal is uniquely
modeled by the narrow-band steering vector [20, Chap.
9].
Here, the ambiguities and the rank-deficiency are

avoided by introducing temporal smoothness in order to
restore the rank of A. The temporally smoothed data
matrix is obtained by stacking t times temporally shifted
versions of the original data matrix [22,21,29], given as

Xt =

⎡
⎢⎢⎢⎢⎢⎣

A[b �b · · · �N−tb]

A�[b �b · · · �N−tb]

...

A�t−1[b �b · · · �N−tb]

⎤
⎥⎥⎥⎥⎥⎦ + Et, (16)

where Xt Î ℂtM×N-t+1 is the temporally smoothed data
matrix, and Et is the noise term constructed from E in a
similar way as Xt. In using the signal model where the
amplitudes are assumed stationary for n = 0, . . . , N - 1,
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Xt can be factorized as

Xt =

⎡
⎢⎢⎢⎣

A
A�

...
A�t−1

⎤
⎥⎥⎥⎦ [

b �b · · · �N−tb
]

+ Et. (17)

With some additional definitions, we can also write
this expression more compactly as

Xt = ĀtBt + Et , (18)

where Āt = [A AF ... AFt-1]T and Bt = [b Fb ... FN-t

b]. The temporally smoothed data matrix Xt can maxi-

mally resole up to tM ≥ ∑K
k=1 Lk complex exponentials,

where Āt is linearly independent for any distinct θ and
ω [30].
When multiple sources with distinct DOA with the

same fundamental frequency impinge on the array, it
will result in correlation between the underlying sig-
nals, which will make it harder to separate the corre-
sponding components into its eigenvectors [22,31]. To
mitigate this problem, spatial smoothing is intro-
duced, which works as follows. An array of M sensors
is subdivided into S subarrays. In this article, the sub-
arrays are spatially shifted with one element in each
subarrays, the number of elements in each subarray
being MS = M - S + 1. For s = 1, . . . , S , let
Js ∈ CtMs×tM be the selection matrix corresponding to
the sth subarray for the data matrix Xt. Then, the spa-
tio-temporally smoothed data matrix

Xt,S ∈ CtMs×S(N−t+1) is given by

Xt,s = [J1Xt · · · JSXt] . (19)

Furthermore, Xt,s can be factorized as

Xt,s =
[
J1Āt · · · JSĀt

]⎡
⎢⎣

Bt

. . .
Bt

⎤
⎥⎦ + Et,s, (20)

where Et,s is the noise term constructed from E in a
similar way as Xt,s. Using the shift invariance structure
in Am, the term JsAm for s = 1, . . . , S is given by

JsĀt = J1Āt�
s−1, (21)

where

� = diag
{[

ejφ11 · · · ejφ1L1 · · · ejφK1 · · · ejφKLK
]}

,(22)

which is simply the phase difference between array
elements. With (21), the matrix Xt,s can be written in a
compact form as

Xt,s = J1Āt
[
Bt �Bt · · · �S−1Bt

]
+ Et,s, (23)

with selection matrix expressed as

J1 = It ⊗ [IMs 0], (24)

where It Î ℝt×t and IMs ∈ RMs×Ms are the identity
matrices, ⊗ is the Kroneker product as defined in [22].
It is interesting to note that the noise term Et,s is no

longer white due to the spatio-temporal smoothing pro-
cedure, as correlation between the different rows of (23)
is obtained. A pre-whitening step can be implemented
in (23) to mitigate this. We note, however, that accord-
ing to results reported in [22], pre-whitening step is
only interesting for signals with low SNR where minor
estimation improvement can be achieved. In this article,
the main interest is to propose a multi-channel joint
DOA and multi-pitch estimator, for which reason the
whitening process is left without further description, but
we refer the interested reader to [22]. We also note that
aside from spatial smoothing, forward-backward aver-
aging could also be implemented to reduce the influence
of the correlated sources [22,31,19].

3. The proposed method
3.1. Coarse estimates
From the final spatio-temporally smoothed data matrix,
a basis for the signal and noise subspaces can be
obtained as follows. The singular value decomposition
(SVD) of the data matrix (23) is given by

Xt,s = U�VH, (25)

where the columns of U are the singular vectors, i.e.,

U =
[
u1 · · · utMS

]
. (26)

A basis of the orthogonal complement of the signal
subspace, also called the noise subspace, is formed from
singular vector associated with the mMS - Q least signif-
icant singular values, i.e.,

G =
[
uQ+1 · · · umMS

]
, (27)

with Q =
∑K

k=1
Lk being the total number of complex

exponentials in the signal. Similarly, the signal subspace
is spanned by the Q largest singular values, i.e.,

S =
[
u1 · · · uQ

]
. (28)

The defined signal subspace and noise subspace have
similar property as traditional subspaces where estima-
tors such as joint DOA and frequency, or fundamental
frequency estimators can be constructed using the
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principle used in MUSIC [19,32,27,26,4]. According to
the signal noise subspace orthogonality principle, the
following relationship holds:

J1ĀtG = 0, (29)

where we, for notational simplicity, have introduced
J1Āt = Ats. The matrix Ats is comprised Vandermonde
matrices for sources k = 1, . . . , K. The matrix for each
individual source is given by

Ats,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 1
ejφk ejφkLk

...
...

ejφkS · · · ejφkLkS

...
...

ejωk(t−1) · · · ejωkLk(t−1)

ejφkejωk(t−1) ejφkLk ejωkLk(t−1)

...
...

ejφkSejωk(t−1) · · · ejφkLkSejωkLk(t−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (30)

The cost function of the proposed joint DOA and
multi-pitch estimator is then

J(ωk, θk) =
∥∥AH

ts,kG
∥∥2

F , (31)

where ||·||F is the Frobenius Norm. Note that this
measure is closely related to the angles between the sub-
spaces as explained in [33] and can hence be used as a
measure of the extent to which (29) holds for a candi-
date fundamental frequency and DOA. The pair of fun-
damental frequency and DOA can, therefore, be found
as the combination that is the closest to being orthogo-
nal to G, i.e.,

{ωk, θk}K
k=1 = arg min

{θk}K
1 ,{ωk}K

1

∥∥AH
ts,kG

∥∥2
F . (32)

The multi-channel estimators will have a cost function
which is more well-behaved compared to those of single
channel multi-pitch estimators (see, e.g., [26,32,28] for
some examples of such).

3.2. Refined estimates
For many applications, only a coarse estimate of
involved fundamental frequencies and DOAs are
needed, in which case the cost function in (32) is evalu-
ated on pre-defined search region with some specified
granularity. If, however, very accurate estimates are
desired, a refined estimate can be found as described
next. For a rough estimate of the parameter of interests,
refined estimates are obtained by minimizing the cost
function in (32) using a cyclic minimization approach.

The gradient of the cost function (32) for fundamental
frequency and DOA are given as

∂

∂ωk
J(ωk, θk) = 2Re

(
Tr

{
AH

ts,kGGH ∂

∂ωk
Ats,k

})
, (33)

∂

∂θk
J(ωk, θk) = 2Re

(
Tr

{
AH

ts,kGGH ∂

∂θk
Ats,k

})
, (34)

with Re (·) denoting the real value. The gradient can
be used for finding refined estimate using standard
methods.
Here, we iteratively find a refined estimate using a

cyclic approach. During an iteration, ωk is first estimated
with

ω̂i+1
k = ω̂i

k − δ
∂

∂ωk
J(ω̂i

k, θ̂ i
k), (35)

where i is the iteration index and δ is a small positive
constant that is found using line search. The estimated

ω̂i+1
k is then used to initialize the minimization function

for DOA, which is then found as

θ̂ i+1
k = θ̂ i

k − δ
∂

∂θk
J(ω̂i+1

k , θ̂ i
k). (36)

The method is initialized for i = 0 using the coarse
estimates obtained from (32).

4. Experimental results
4.1. Signal examples
We start the experimental part of this article by illus-
trating the application of the proposed method to ana-
lyzing a mixed signal consisting of speech and clarinet
signals, sampled at fs = 8000 Hz. The single-channel sig-
nals are converted into a multi-channel signal by intro-
ducing different delays according to two pre-determined
DOA to simulate a microphone array with M = 8 chan-
nels. The simulated DOAs of the speech and the clarinet
signals are, respectively, θ1 = -45° and θ2 = 45°. The
spectrogram of the mixed signal of the first channel is
illustrated in Figure 1. To avoid spatial ambiguities, the
distance between two sensor is half the wavelength of
the highest frequency in the observed signal, here d =
0.0425 m. The mixed signal is segmented into 50% over-
lapped signal segments with N = 128. The user para-

meter selected in this experiment is t =
⌊ 2N

3

⌋
and

s =
⌊M

2

⌋
. The cost function is evaluated with a Vander-

monde matrix with L = 5 complex exponentials, and the
noise subspace is formed from an overestimated signal
subspace with assumption of signal subspace containing
N/2 = 64 complex exponentials. The signal subspace
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overestimation technique is usually used when the true
order of the signal subspace is unknown, the signal sub-
space is assumed to be larger than the true one which
can minimize the signal subspace components in the
noise subspace. An added benefit of posing the problem
as a joint estimation problem is that the multi-pitch
estimation problem can be seen as several single-pitch
problems for a distinct set of DOAs, one per source.
Therefore, it is less important to select an exact signal
model order than single-channel multi-pitch estimators
would need [28]. The cost function is evaluated for fre-
quencies from 100 to 500 with granularity of 0.52 Hz.
The evaluated results are illustrated in Figure 2 where
the upper panel contains the fundamental frequency
estimates and lower panel the DOA estimates. It can be
seen that the proposed algorithm can track the funda-
mental frequency and the DOA of the speech signal
well, with only a few observed errors on regions with
low signal energy. The clarinet signal’s DOA and funda-
mental frequencies have also been estimated well for all
segments.
For the purpose of further comparison, the same

signal will be analyzed using a standard time delay-
and-sum beamformer [34] for DOA estimates and a
single-channel maximum-likelihood based pitch esti-
mator applied on the beamformed output signals [2].
The results are shown in Figure 3. The figure clearly
shows that the delay-sum beamformer cannot satisfac-
tory resolve the DOAs with M = 8 array elements
which will further affect the performance of the sin-
gle-channel pitch estimator, as shown in the upper
panel. In this example, the proposed algorithm shown
in Figure 2 is superior compared to reference method
shown in Figure 3. The low resolution performance of
the reference method will make the statistical

evaluation of this method uninteresting, and we,
therefore, will not be using it any further in the
experiments to follow.

4.2. Statistical evaluation
Next, we use Monte Carlo simulations evaluated on syn-
thetic signals embedded in noise in assessing the statisti-
cal properties of the proposed method and compare it
with the exact CRLB. As a reference method for pitch
and DOA estimation, we use the JAFE algorithm pro-
posed in [22] for jointly estimating unconstrained fre-
quencies and DOAs. Next, the unconstrained
frequencies are grouped according to their correspond-
ing DOAs where closely related directions are grouped
together. A fundamental frequency is formed from these
grouped frequencies in a weighted way as proposed in
[35]. We refer this as the WLS estimator. In order to

Figure 1 The mixed spectrogram of the real recorded speech
and clarinet signal.
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Figure 2 The estimation results using the proposed methods:
(a) fundamental frequency, (b) the DOA with the horizontal
axis denoting time axis.
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remove the errors due to the erroneous estimate of
amplitudes, we assume WLS having the exact signal
amplitude given. The WLS estimator is a computation-
ally efficient pitch estimation method with good statisti-
cal properties. The reference DOA estimate is easily
obtained in a similar way from the mean value of these
grouped DOAs according to [22].
Here, we consider a M = 8 element ULA with sensor

distance d = 0.0425 with a sampling frequency of fs =
8000. The estimators are evaluated for two signal setups,
first with two sources having ω1 = 252.123 and ω2 =
300.321 with L1,2 = 3, and second with one harmonic
source of ω1 = 252.123 and L1 = 3. All amplitudes on
individual harmonics are set to unity Ak,l = 1 for tract-
ability. Both sources are assumed to be far-field sources
impinging on the array with DOAs at θ1 = -43.23° and
θ2 = 70°, respectively, and for one source having a DOA

of θ1 = -43.23°. All simulation results are based on 100
Monte Carlo runs. The performance is measured using
the root mean squared estimation error (RMSE) as
defined in [28,32,26,27]. The user parameter for JAFE
data model is selected to the optimal values as proposed
in [22] with temporal and spatial smoothness para-

meters, t =
⌊ 2N

3

⌋
and s =

⌊M
2

⌋
, respectively. We note

that in practical applications, the computational com-
plexity has to also be considered in selecting the appro-
priate parameters t and s. An example of the 2-
dimensional (2D) cost function of our proposed method
evaluated on two mixed signal is illustrated in Figure 4,
where a coarser estimate of the DOA and fundamental
estimates can be identified from the two peaks in the
2D cost function.
In the first simulation, we evaluate the proposed

method’s statistical properties in a single source scenario
for varying sample lengths and SNRs. The RMSEs on
signal with varying N are shown in Figure 5, and with
varying SNR in Figure 6. It can be seen from these fig-
ures that both estimators perform well for all SNR
above 0 dB with WLS being slightly better for funda-
mental frequency estimation while the proposed estima-
tor is better in DOA estimation. Both methods are also
able to follow CRLB closely for around sample length N
>60. The better DOA estimation capabilities of the pro-
posed method can be explained by the joint estimation
of the fundamental frequency and DOA, which leads to
increased robustness under adverse conditions. Both
estimators can be considered as consistent in the single-
pitch scenario.
Next, we evaluate our method for the multi-pitch

scenario. The so-obtained RMSEs for varying N and
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Figure 3 The estimates of (a) the fundamental frequency using
maximum-likelihood estimator at the output of the
beamformer, (b) the DOA using a delay-sum beamformer.

Figure 4 Example of cost functions for two synthetic sources
having three harmonic each, N = 64 and M = 8. The true
fundamental frequency of ω1 = 252.123 and ω2 = 300.321 having
DOA θ1 = -43.23° and θ2 = 70°, respectively.
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SNR are depicted in Figures 7 and 8. In Figure 7, it
clearly shows that the proposed method is better than
the WLS estimator for short sample lengths. The WLS
estimator is not following CRLB until N >80 samples
while the proposed estimator is for N >64. The
remaining gap between CRLB and both evaluated esti-
mators for N >80 are due to the mutual interference
between the harmonic sources. The slowly converging
performance of WLS is mainly due to the bad estimate
of the unconstrained frequency estimate using the
JAFE method. With our selected simulation setup, the
JAFE estimator is not giving consistent estimates for
all harmonic components, which, in turn, results in
poor performance in the WLS estimates. In general,
the WLS estimator is sensitive to spurious estimate of
the unconstrained frequencies. Moreover, the proposed

estimator, which is jointly estimating both the DOA
and the fundamental frequency, yields better estimates
for smaller sample length N. The results in terms of
RMSEs for varying SNRs are shown in Figure 8. This
figure shows that the proposed estimator is again more
robust than the WLS estimator for both DOA and fun-
damental frequency estimation.
In next two experiments, we will study the perfor-

mance as a function of the difference in fundamental
frequencies and DOAs for multiple sources. We start
with studying the RMSE as a function of the difference
between the fundamental frequencies of two harmonic
sources, i.e., Δω = |ω1 - ω2|, with θ1 = -43.321° and θ2
= 70°. Here, we use an SNR set to 40 dB, and a sample
length N = 64 with M = 8 array elements. The obtained
RMSEs are shown in Figure 9. The figure clearly shows
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Figure 5 RMSE as a function of N for SNR = 40 dB evaluated
on single-pitch signal with unit amplitude: (a) fundamental
frequency estimates; (b) DOA estimates.
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Figure 6 RMSE as a function of SNR for N = 64 evaluated on
single-pitch signal with unit amplitudes: (a) fundamental
frequency estimates; (b) DOA estimates.
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that both methods can successfully estimate the funda-
mental frequencies and DOAs. Once again the proposed
estimator gives more robust estimates, close to the
CRLB. Additionally, it should be noted that both meth-
ods are correctly estimating the DOA even when the
both fundamental frequencies are identical ω1 = ω2,
something that would not be possible with only a single
channel. MC-HMUSIC has the ability to estimate the
fundamental frequencies when both harmonics are iden-
tical provided that the DOAs are distinct and vice versa.
Estimation of the parameters of signals with overlapping
harmonics is a crucial limitation in multi-pitch estima-
tion using only single-channel recordings. In the final
experiment, the RMSE as a function of the difference
between the DOAs of two harmonic sources Δθ = |θ1 -
θ2| is analyzed for an SNR set to 40 dB and a sample
length of N = 64 with M = 8 array elements. The funda-
mental frequencies are ω1 = 252.123 and ω2 = 300.321,

respectively. The observations and conclusions are basi-
cally the same as before, with the proposed method out-
performing the reference method so far.

5. Conclusion
In this article, we have generalized the single-channel
multi-pitch problem into a multi-channel multi-pitch
estimation problem. To solve this new problem, we pro-
pose an estimator for joint estimation of fundamental
frequencies and DOAs of multiple sources. The pro-
posed estimator is based on subspace analysis using a
time-space data model. The method is shown to have
potential in applications to real signals with simulated
anechoic array recording, and a statistical evaluation
demonstrates its robustness in DOA and fundamental
frequency estimation as compared to a state-of-the-art
reference method. Furthermore, the proposed method is
shown to have good statistical performance under
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Figure 7 RMSE as a function of N for SNR = 40 dB evaluated
on multi-pitch signal with unit amplitudes: (a) joint
fundamental frequency estimates; (b) joint DOA estimates.
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Figure 8 RMSE as a function of SNR for N = 64 evaluated on
multi-pitch signal with unit amplitudes: (a) joint fundamental
frequency estimates; (b) joint DOA estimates.
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adverse conditions, for example for sources with similar
DOA or fundamental frequency.
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