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INTRODUCTION

Aquatic organisms are exposed to multiple stressors,
including contaminants, disease and temperature
extremes, throughout their lives. Extensive research
has been conducted on the impact of various kinds of
contaminants and other stressors on the growth, re-
production, physiology and behaviour of these organ-
isms, primarily fish. However, rarely have studies
examined the impact of multiple kinds of stressors on
animals.

In particular, while it is important to know the
effects of anthropogenic stressors on organisms for

proper management of aquatic resources and control
of the production and release of toxic chemicals,
environmental scientists must realize that animals in
nature are also subject to continual or repeated expo-
sure to an important natural stressor, that is, para-
sitism. Given that the detrimental effects of parasites
are exacerbated when their hosts are stressed, it thus
becomes paramount to determine the combined
effects of anthropogenic stressors such as contami-
nants and natural stressors such as parasites. In com-
bination, pollution and parasitism may act additively
or synergistically on the health of an organism, thus
rendering it in poorer condition than would be pre-
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dicted by toxicological tests on healthy, unparasitized
animals. Given the ubiquity of parasitism, and the
fact that virtually all organisms are parasitized, this
question has serious implications for environmental
management.

For example, in a recent study Jacobson et al. (2003)
effectively demonstrated that a combination of anthro-
pogenic stressor, the PCB micture Aroclor 1254, and a
natural stressor, the digenean parasite Nanophyetes
salmonicola, has a greater negative effect than either
of these alone, on B cell function and immunosuppres-
sion in juvenile Chinook salmon Oncorhynchus tsha-
wustscha.

Our study was conducted in the St. Lawrence River,
where pollution levels are considered low to moderate
depending on the location. Thus, most toxicological
effects in the river are typically of a sublethal and
chronic nature. We measured oxidative stress as an
indicator of tissue damage and stress, using lipid per-
oxidation (Di Giulio et al. 1989, Kelly et al. 1998) and
thiols in tissue homogenates (Dickinson & Forman
2002).

Increased reactive oxygen species in tissues during
inflammatory or toxic conditions leads to the oxidation
damage to polyunsaturated lipids (lipid peroxidation),
proteins (e.g. formation of imino-propene bridges) and
the genome (DNA damage) (Storey 1996). Parasites
have been shown to induce oxidative stress in
host–parasite systems. An increased enzyme anti-
oxidant response was observed in carp Cyprinus car-
pio parasitized by the cestode Ptychobothrium sp.
compared to healthy fish, indicating that some compo-
nents of the fish antioxidant system can be modulated
(Dautremepuits et al. 2002, 2003). Belló et al. (2000)
demonstrated an increased tert-butyl hydroperoxide-
initiated chemiluminescence, a measure of lipid perox-
idation, in the muscle of fish infected with metacer-
cariae of the trematode Clinostomum detruncatum.
Gastrointestinal nematodes of mammals rely on pro-
teinases and oxidative damage for tissue penetration
and nutrients (Koski & Scott 2003).

We focused on 2 parasites common in our study
areas as representative of potential natural stressors.
The nematode Raphidascaris acus is known to cause
liver pathology, poorer condition and parasite-induced
host mortality in yellow perch Perca flavescens, its
intermediate host, and other fishes (Bauer & Zmerzlaja
1973, Dergaleva & Markevich 1976, Szalai & Dick
1991, Szalai et al. 1992). Metacercariae of the dige-
nean Apophallus brevis cause a reduction in growth
and reproduction in yellow perch, in addition to host
mortality (Johnson & Dick 2001). Biomarkers of oxida-
tive stress were measured in yellow perch with both
low and high parasite levels from relatively contami-
nated and pristine sites in the river.

MATERIALS AND METHODS

Yellow perch were collected from 2 sites, 1 contami-
nated and 1 reference, in the southern part of Lake St.
Louis, a fluvial lake southwest of Montreal in the St.
Lawrence River in June 2002 (Fig. 1). The conta-
minated site was located east of Beauharnois where
the Saint-Louis River enters Lake St. Louis
(45° 19.051’ N, 73° 53.020’ W). At this site, levels of cad-
mium, copper, lead, zinc and PCBs exceed the Thresh-
old of Significant Contamination (TSC), and mercury
exceeds the Toxic Effect Threshold (TET), as defined
for the St. Lawrence River (Loiselle et al. 1997). The
reference site was Dorval Island (45° 25.915’ N,
73° 44.288’ W), where no substances have been mea-
sured above the TSC (Loiselle et al. 1997). Fish from
the 2 sites are considered distinct populations, as they
are separated by a maritime navigation channel that
acts as a barrier to perch movement (Dumont 1996).
They are abundant at both sites. Moreover, there were
no signs of stunting (reduced mean size in each age
class) at either site, which would be indicative of com-
petitive stress. Yellow perch were subsampled from
fish collected with a beach seine (22.6 m × 1.15 m;
3 mm mesh) from Beauharnois on 28 May and 6 June
2002, and from Dorval Island on 3 June 2002, thus con-
trolling for the confounding effects of season on
expression of the biomarkers. Collections were per-
formed until a sufficient number (≥30) of small fish
were obtained from each site for analysis. Fish were
transported alive in aerated polystyrene containers to
the laboratory. Temperature, conductivity and pH
were measured with a TSI conductivity meter. Sedi-
ment samples were collected from each site and sent to
the national laboratory at the Canadian Centre for
Inland Waters in Burlington, Ontario, for analysis.

In the laboratory, fish were maintained in aerated
aquaria at 15°C for up to 72 h. Each individual was
killed by cervical dislocation, weighed and measured
for fork length. Liver and muscle tissue samples (3 g)
were removed from each individual. In the case of
infected individuals, parasites were removed and
counted, and tissue was removed from the vicinity of
an encysted parasite, without including any parasite or
cyst tissue. Opercular bones and scales were removed
from each fish for age determination (Jearld 1983). The
right and left opercula were detached, boiled in
distilled water, and the flesh removed. Approximately
10 to 15 scales were removed from the left flank under
the pectoral fin. Scales were mounted on slides and
covered with coverslips for readings. Age is deter-
mined by the number of annuli or year marks on the
scales/opercula. In the case of yellow perch, age is pri-
marily determined using the opercula; scales are used
for verification.
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Liver samples were weighed and kept on crushed ice
in plastic microtubules (1.5 ml). Each liver sample was
homogenized using a ‘Potter-Eveljhem’ tissue grinder
(Teflon Homogenizer, Fisher Scientific) immediately
after the tissue extraction. The tissue was mixed with a
sufficient quantity of ice-cold homogenation buffer
(120 mM NaCl, 25 mM Tris-acetate, 1 mM EDTA, pH
7.5) to obtain a 20% (w/v) homogenate. The homo-
genate was distributed in aliquots in pre-identified
plastic microtubes and frozen at –80°C until required
for analysis. Muscle tissue was weighed and frozen
immediately at –80°C until required for analyses. In
preparation for analysis, the muscle tissue was thawed
and mixed with a sufficient quantity of homogenation
buffer (120 mM NaCl, 25 mM Tris-acetate, 1 mM
EDTA, pH 7.5) so that a 20% (w/v) homogenate was
obtained using a PolytronTM (Fisher Scientific). The
homogenate was distributed in preidentified plastic
microtubes (aliquots) and conserved on crushed ice for
analysis.

The thiobarbituric acid (TBA) test for malonalde-
hyde (MDA) was used to measure and quantify lipid

peroxidation. This assay is the most widely employed
method to measure lipid peroxidation (Di Giulio et
al. 1989). MDA is the major aldehyde formed during
the lipid peroxidation reaction (Lefèvre et al. 1998). In
a black opaque 96 well microplate, 100 µl of a tri-
chloroacetic acid solution (TCA 20%, FeSO4 1 mM)
and 50 µl of a thiobarbituric acid solution (TBA
0.67%) were added to 25 µl of each tissue homo-
genate (diluted 1⁄10 in distilled water for liver and non-
diluted for muscle) and to 25 µl of the homogenization
buffer, diluted or not (blank). The microplate was
heated for 10 minutes at 80°C in a temperature-
controlled water bath. After 10 min, the microplate
was read at 516 nm (excitation) and 600 nm (emission)
using a fluorimeter (Fluorolite 1000). For calibration,
standard solutions of tetramethoxypropane (TMP
0.001% diluted in HCl 0.1 M) were used in the pres-
ence of the homogenization buffer. The results
obtained are expressed in µg of thiobarbituric acid
reactants (TBARS) g–1 of protein. All measurements
were performed in duplicate for each sample and in
triplicate for the standards.
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Fig. 1. Sample sites in Lake St. Louis, a fluvial lake in the St. Lawrence River. The contaminated site is located at Beauharnois, at
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Reduced thiol (-SH) was measured using the dithion-
itrobenzoate (DTNB) reagent method (Sedlak & Lind-
say 1968). This simple method permits the quantifica-
tion of molecules having a sulfhydryl group (-SH)
using a spectrophotometric method. To determine the
total sulfhydryl groups (T-SH) of each sample, 100 µl of
0.5 mM DTNB reagent (5,5’-dithiobis-2-nitrobenzoate
in 100 mM glycine buffer, pH 8.5) was added to 100 µl
of each tissue homogenate (previously diluted 1⁄10 to 1⁄40

in distilled water) in a clear 96 well microplate. Ab-
sorbance (optical density) was read at 412 nm after
mixing for 10 min (PowerWaveX, Bio-Tek Instru-
ments). Calibration was achieved with reduced glu-
tathione (100 µg ml–1 stabilized in HCl 0.1 M) and
results obtained are expressed in µg GSH equivalents
per g of protein. All measurements were performed in
duplicate for each sample and in triplicate for the stan-
dards. Tissue levels of reduced thiols and thiobarbi-
turic acid reactant substances (TBARS) were normal-
ized by total protein levels as determined by the
protein-dye principle (Bradford, 1976). The optical
density was read at 595 nm and serum bovine albumin
was used for calibration.

Results were analyzed using the JMPin® software
(SAS Institute). First, a correlation matrix was carried
out to draw up the possible links between the different
continuous variables. Data were normalized using
rank transformation. One-way analysis of variance
(ANOVA) was used to establish the relationship
between the different stress biomarkers (continuous
variables) and class values (i.e. discreet variables)
‘site’, ‘sex’ and ‘infected/uninfected’ for each parasite.
Two-way ANOVAs were used to determine if there
was an effect of the site, of parasitism, or any interac-
tion between the two on the oxidative stress measure-
ments. Significance was defined as p ≤ 0.05.

Yellow perch normally spawn at age 3 and 4 for
males and females, respectively (Scott & Crossman
1973), after which they disperse in Lake St. Louis
(Dumont 1996). Analyses were restricted to 1+ and 2+
fish to avoid potential confounding effects of age and
maturity on biomarkers. Older fish that were collected
were not considered. In addition, by restricting analy-
ses to young fish, we increased the likelihood that we
were dealing with local populations that were exposed
to local environmental conditions.

RESULTS

At Beauharnois, the temperature, conductivity and
pH were 15.0°C, 321 µS, and 8.3 respectively, and at
Dorval Island, 15.7°C, 209.2 µS, and 8.5, respectively.
Measurements of metals in the sediments at both sites
are shown in Table 1. The principal difference

between sites was found for mercury, this being much
higher at Beauharnois.

There were no differences between levels of lipid
peroxidation or reduced thiols in 1+ and 2+ fish in both
the liver and the muscle (data not shown) (1-way
ANOVA, p > 0.05). Nor was there any difference in
lipid peroxidation or reduced thiol levels in liver or
muscle between males and females (data not shown)
(1-way ANOVA, p > 0.05). Thus, fish of the 2 age
groups and sexes could be combined for further analy-
ses of lipid peroxidation and reduced thiols.

Yellow perch from the contaminated site displayed
significantly higher lipid peroxidation induction (531 ±
31 µg TBARS g–1 protein) in the liver than those from
the reference site (307 ± 38 µg TBARS g–1 protein) (1-
way ANOVA, p < 0.001). For muscle tissue, there was
no significant difference in lipid peroxidation levels in
fish from the contaminated site (6.50 ± 1.06 µg TBARS
g–1 protein) and those from the reference site (4.83 ±
1.06 µg TBARS g–1 protein) (1-way ANOVA, p > 0.05).

Mean numbers of Raphidascaris acus per fish did not
differ between the reference site (0.53 ± 1.02) and the
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Metal Beauharnois Dorval Island

Aluminum 59 700 56 600
Antimony 1.0 0.3
Arsenic 2 <1
Barium 1410 604
Beryllium 1.62 1.23
Bismuth 0.2 0.1
Calcium 41 200 85 300
Cadmium 0.8 1.0
Chromium 93 49
Cobalt 19.7 9.3
Copper 56 11
Iron 36 500 27 900
Gallium 19.7 13.0
Lanthanum 34.4 32.1
Lead 58.9 23.8
Lithium 35.7 17.0
Magnesium 16 900 15 300
Manganese 918 565
Mercury 6.76 0.100
Molybdenum 1.5 0.7
Nickel 54.4 20.4
Phosphorus 845 1300
Potassium 19 600 20 100
Rubidium 88.4 61.1
Sodium 11 000 15 700
Strontium 269 450
Thallium 0.518 0.353
Uranium 1.79 1.32
Vanadium 85 67
Zinc 201 159

Table 1. Measurements of metals (ppm) in sediments from the
contaminated site (Beauharnois) and the reference site (Dor-
val Island) in Lake St. Louis, a fluvial lake in the St. Lawrence 

River, Quebec, Canada
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contaminated site (1.06 ± 1.57) (t-test for unequal vari-
ances, p > 0.05). Livers of 1+ and 2+ individuals infected
with R. acus displayed significantly higher levels of
lipid peroxidation than those of uninfected individuals
(1-way ANOVA, p < 0.05) at the contaminated site, but
not at the reference site (Fig. 2). Results of the 2-way
ANOVA indicate that site (p < 0.0001) and parasite in-
fection with R. acus (p = 0.05) are significant, but the in-
teraction between the two is not (p > 0.05) (Table 2).
Mean numbers of Apophallus brevis per fish did not
differ in individuals from the reference site (12.38 ±
11.52) and the contaminated site (10.25 ± 7.02) (t-test for
unequal variances, p > 0.05). Livers of 1+ and 2+ yellow
perch infected with >10 metacercariae of A. brevis ex-
hibited significantly greater levels of lipid peroxidation
than those with <10 metacercariae independent of site
(2-way ANOVA, p < 0.05) (Fig. 3). Furthermore, there
was a significant difference between
sites, independent of the level of infec-
tion (2-way ANOVA, p < 0.05; Table 2).
The interaction between A. brevis and
site was not significant (2-way
ANOVA, p > 0.05; Table 2).

For reduced thiols, no significant dif-
ference in levels in liver or muscle was
observed in relation to site or to either
parasite species (data not shown) (1-
way ANOVA, p > 0.05).

DISCUSSION

Our initial results strongly suggest
that the effects of stress from residing

in polluted waters can be enhanced in fish by para-
sitic infection, as measured by lipid peroxidation pro-
duction. While we cannot conclusively state that the
greater induction of lipid peroxidation is due to cont-
aminants, certainly the high levels of mercury there
strongly suggest that this is indeed the case. Levels
above 1 ppm are considered elevated (Eisler 2000).
However, other unknown ecological site differences
that were not measured herein may have contributed
to the difference. Uncontrolled variables that may
affect biomarker response include age, sex, diet and
gonadal status, as well as season, temperature, and
toxicant concentration (Di Giulio et al. 1989). Most of
these variables were controlled for in this study, with
the exception of diet, which, given the differences in
mercury contamination, we do not consider an over-
riding factor.
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Fig. 2. Measurements of lipid peroxidation (µg TBARS g–1

protein) in the livers of yellow perch Perca flavescens from
the contaminated site (Beauharnois) and the reference site
(Dorval Island). The black histograms refer to those fish not
infected with Raphidascaris acus, and the open histograms
refer to infected fish. Error bars: SE. Numbers above histo-

grams refer to the sample size

Fig. 3. Measurements of lipid peroxidation (µg TBARS g–1

protein) in the livers of yellow perch Perca flavescens from
the contaminated site (Beauharnois) and the reference site
(Dorval Island). The black histograms refer to those fish each
infected with ≤10 Apophallus brevis, and the open histograms
refer to fish infected with >10 metacercariae. Error bars: SE. 

Numbers above histograms refer to the sample size

Source of variation df SS MS F p

Raphidascaris acus
Site 1 11 756.00 11 756.00 28.39 <0.0001
Infection 1 1 589.43 1 589.43 3.84 0.0537
Site × Infection 1 295.53 295.53 0.71 0.4008

Apophallus brevis
Site 1 11 104.57 11 104.57 29.98 <0.0001
Infection 1 3 931.51 3 931.51 10.37 0.0019
Site × Infection 1 39.93 39.93 0.11 0.7465

Table 2. Two-way ANOVA in levels of lipid peroxidation (µg TBARS g–1 protein)
in yellow perch Perca flavescens by site (contaminated vs reference) and by
parasitic infection (infected by Raphidascaris acus vs. uninfected; infected with
>10 metacercariae of Apophallus brevis vs. those with ≤10 metacercariae). Data
were rank-transformed prior to analysis. SS = sum of squares; MS = mean of 

squares
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This is not the first study to document interactions
between parasites and contaminants in aquatic organ-
isms, but it is among the first to show enhanced sub-
lethal stress effects in the presence of both contami-
nants and parasites. Parasitism effectively reduces
survival of aquatic organisms in polluted conditions.
Sockeye salmon Oncorhynchus nerka smolts infected
with the cestode Eubothrium salvelini were less toler-
ant to zinc than uninfected fish (Boyce & Yamada
1977). Coho salmon fry Oncorhynchus kisutch infected
with glochidia of Anodonta oregonensis were more
susceptible to crude oil, toluene, and naphthalene than
uninfected fish (Moles 1980). Three-spined stickle-
backs Gasterosteus aculeatus infected with plerocer-
coids of the cestode Schistocephalus solidus experi-
enced decreased survival upon exposure to cadmium
compared with uninfected fish (Pascoe & Cram 1977,
Pascoe & Woodworth 1980). The amphipod Gammarus
pulex infected with the acanthocephalan Pomphor-
hynchus laevis suffered increased mortality compared
to uninfected amphipods when exposed to cadmium
(Brown & Pascoe 1989) or aluminum at low pH (McCa-
hon et al. 1988, McCahon & Poulton 1991). The snail
Lymnaea stagnalis infected with the trematodes Schis-
tosoma douthitti or Trichobilharzia sp. experienced
increased mortality when exposed to high concentra-
tions of zinc when compared with uninfected con-
specifics (Guth et al. 1977). However, the effects of
joint stress on parasitized animals are not limited to
anthropogenic stressors. For example, infection with
the ectoparasitic copepod Salmincola edwardsii re-
duced resistance of brook trout Salvelinus fontinalis to
high temperature (Vaughn & Coble 1975). Three-
spined sticklebacks infected with S. solidus died under
conditions of dietary stress before uninfected fish (Pas-
coe & Mattey 1977). Infection with the isopod Bopy-
roides hippolytes reduced tolerance to salinity change
in the kelp shrimp Eualus suckleyi (Moles & Pella
1984). Gastropods infected with larval digeneans were
less resistant to dessication and hypoxia (Jensen et al.
1996, Wegeberg & Jensen 1999). Lastly, juvenile Chi-
nook salmon Oncorhynchus tshawystscha infected
with metacercariae of the trematode Nanophyetus
salmonicola exposed to PCBs suffered higher mortali-
ties when challenged with the pathogenic bacterium
Listonella anguillarum (Jacobson et al. 2003).

Less information exists on sublethal effects of para-
sites, which are naturally occurring stressors, and
anthropogenic contaminants. Striped bass infected
with larval nematodes Anisakis sp. exposed to zinc and
benzene experienced decreased haematocrit values
compared to uninfected fish (Sakanari et al. 1984).
More recently, Jacobson et al. (2003) elegantly demon-
strated that juvenile Chinook salmon infected with
Nanophyetus salmonicola and exposed to PCBs dis-

played a decreased immune response measured by a
hemolytic plaque-forming cell assay. Thus, these stud-
ies along with the results herein provide ample evi-
dence suggesting that fish exposed to sublethal levels
of contaminants experience greater stress when
infected by parasites, or in other words, parasites and
toxicants may act together to increase stress.

Our results also provide further support for the use of
lipid peroxidation as an indicator of stress resulting
from exposure to contaminants. Peroxidation of cellu-
lar lipids results from oxyradical production, which is
produced upon exposure to xenobiotics (Kelly et al.
1998). Lipid peroxidation is essentially a toxic response
to oxidative damage to cellular and tissue components
(Di Giulio et al. 1989, Storey 1996, Kelly et al. 1998).
Yet, there is a need for studies that link oxidative stress
and disease (Kelly et al. 1998). The use of lipid peroxi-
dation as an indicator of general stress is also sup-
ported in that it can be induced by parasitic infection
with both Raphidascaris acus and Apophallus brevis.
In measuring impacts of joint stressors, general bio-
markers are essential, as specific biomarkers may not
respond to one of the stressors, or indeed, may even be
compromised by another agent of stress. However,
measurements of biomarkers may vary with age,
reproductive status, sex, season, temperature and
other uncontrolled variables (Di Giulio et al. 1989). In
this study, we controlled for age and reproductive sta-
tus by sampling immature fish of specific ages, and for
season and temperature by sampling at the same time.
Nor were any differences found between the 1+ and 2+
age groups or between the sexes.

In addition, our results also suggest that lipid perox-
idation can be used in a comparative manner to mea-
sure the degree of pathogenicity exerted by different
parasites. While infection with Raphidascaris acus did
not induce greater lipid peroxidation in individuals
compared to infected fish from the reference site, fish
infected with >10 metacercariae of Apophallus brevis
demonstrated enhanced lipid peroxidation compared
to those infected with ≤10 metacercaraie at the same
site. These results imply that A. brevis may be more
pathogenic than R. acus, at least at the infection levels
considered. This conjecture must be accepted with
caution because intensities of R. acus were lower than
those of A. brevis. High infection levels of both R. acus
and A. brevis are known to be pathogenic, but little is
known of effects at low intensities. Dezfuli et al. (2000)
observed an increase in rodlet cells in the liver and
pancreas of minnows Phoxinus phoxinus infected with
R. acus and suggested that these cells were involved in
an inflammatory response to infection. Our results fur-
ther support the existence of an inflammatory reaction
to infection with this nematode, even at low intensities.
Furthermore, results suggest that infection with A.
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brevis can cause pathological effects away from the
site of infection, as metacercariae are found on the skin
and in muscle, but effects were measured in liver. This
parasite is unique in that it induces a host reaction con-
sisting of the formation of a mineralized ossicle or cyst
(Taylor et al. 1993) which conceivably may pose an
oxidative stress to the host as a result of the chronic
inflammation at the infection site (Taylor et al. 1994).
The effects of parasitic infection are all the more inter-
esting because they were evident at relatively low
intensities, especially for R. acus. Measurements of
oxidative stress may be an effective means of indicat-
ing pathological effects of parasites at low intensities,
where often typical pathology is not manifest.

We do not know why no differences were observed
in reduced thiols between the various groups of yellow
perch. Presumably oxidative stress should be de-
tectable through an examination of reduced thiols.
Perhaps results herein reflect a lower sensitivity of this
parameter compared to the measurement of lipid
peroxidation.

Few other studies have demonstrated sub-lethal
effects of parasites through measurements of bio-
markers. Metacercariae of Clinostomum detruncatum
induce lipid peroxidation production in the muscle of
the freshwater fish Rhamdia quelen (Belló et al. 2000),
which the authors attributed to oxidative stress and
membrane damage caused by the parasite. Carp
infected with the intestinal cestode Ptychobothrium sp.
displayed an increased antioxidant response com-
pared to uninfected fish as measured by activities of
the enzymes catalase and glutathione reductase in
liver and glutathione s-transferase in both liver and
kidney (Dautremepuits et al. 2002, 2003). The authors
attributed this response to the increased metabolic
activity of infected fish. Shrimp Palaemonetes argen-
tinus infected with the isopod Probopyrus ringueleti
exhibited lower activity of the antioxidant enzyme
superoxidase dismutase, which presumably lowers the
capacity of the organism to deal with reactive oxygen
species and thus to prevent cellular damage (Neves et
al. 2000). Other examples are reviewed in Sures
(2004), who also recently reviewed the influence of
parasites on biomarkers and discussed their possible
impact on the physiological homeostasis of their hosts.

The typical approach in studying disease in an envi-
ronmental context is to assume that pollution reduces
the immunocompetence of the host, thus leading to in-
creased disease and parasitism (Wedemeyer 1970,
Snieszko 1974, Sindermann 1979, Möller 1985). More
recently, researchers have acknowledged the potential
for compounding and interactive effects of parasitism
and anthropogenic factors (Khan & Thulin 1991, Over-
street 1993). It appears that parasitism in the presence
of pollution may further compromise the health of the

host, even at low intensities. Given that most wild or-
ganisms are parasitized, biomarker measurements
from ecotoxicological testing may underestimate the
impact of pollutants in that results typically pertain to
uninfected hosts in controlled laboratory situations. The
combination of contaminants and parasites may prove
to be more deleterious, and parasitism should not be
neglected in environmental impact studies in order to
obtain a more precise determination of the impacts of
contaminants on natural ecosystems and the organisms
found therein. In the unlikely scenario that some aspect
of habitat quality other than contaminants caused a dif-
ference between sites in this study, clearly parasitism
has an impact on lipid peroxidase production. It is evi-
dent that effects of these and other parasites on the
physiological responses and biomarker measurements
in their hosts should be explored further.
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