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Abstract

Word embeddings are effective intermedi-

ate representations for capturing semantic

regularities between words, when learn-

ing the representations of text sequences.

We propose to view text classification as

a label-word joint embedding problem:

each label is embedded in the same space

with the word vectors. We introduce

an attention framework that measures the

compatibility of embeddings between text

sequences and labels. The attention is

learned on a training set of labeled samples

to ensure that, given a text sequence, the

relevant words are weighted higher than

the irrelevant ones. Our method maintains

the interpretability of word embeddings,

and enjoys a built-in ability to leverage

alternative sources of information, in ad-

dition to input text sequences. Extensive

results on the several large text datasets

show that the proposed framework out-

performs the state-of-the-art methods by

a large margin, in terms of both accuracy

and speed.

1 Introduction

Text classification is a fundamental problem in

natural language processing (NLP). The task is

to annotate a given text sequence with one (or

multiple) class label(s) describing its textual con-

tent. A key intermediate step is the text rep-

resentation. Traditional methods represent text

with hand-crafted features, such as sparse lexi-

cal features (e.g., n-grams) (Wang and Manning,

2012). Recently, neural models have been em-

ployed to learn text representations, including con-

volutional neural networks (CNNs) (Kalchbrenner
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et al., 2014; Zhang et al., 2017b; Shen et al., 2017)

and recurrent neural networks (RNNs) based on

long short-term memory (LSTM) (Hochreiter and

Schmidhuber, 1997; Wang et al., 2018).

To further increase the representation flexibil-

ity of such models, attention mechanisms (Bah-

danau et al., 2015) have been introduced as an in-

tegral part of models employed for text classifi-

cation (Yang et al., 2016). The attention module

is trained to capture the dependencies that make

significant contributions to the task, regardless of

the distance between the elements in the sequence.

It can thus provide complementary information

to the distance-aware dependencies modeled by

RNN/CNN. The increasing representation power

of the attention mechanism comes with increased

model complexity.

Alternatively, several recent studies show that

the success of deep learning on text classification

largely depends on the effectiveness of the word

embeddings (Joulin et al., 2016; Wieting et al.,

2016; Arora et al., 2017; Shen et al., 2018a). Par-

ticularly, Shen et al. (2018a) quantitatively show

that the word-embeddings-based text classifica-

tion tasks can have the similar level of difficulty

regardless of the employed models, using the con-

cept of intrinsic dimension (Li et al., 2018). Thus,

simple models are preferred. As the basic build-

ing blocks in neural-based NLP, word embed-

dings capture the similarities/regularities between

words (Mikolov et al., 2013; Pennington et al.,

2014). This idea has been extended to compute

embeddings that capture the semantics of word se-

quences (e.g., phrases, sentences, paragraphs and

documents) (Le and Mikolov, 2014; Kiros et al.,

2015). These representations are built upon vari-

ous types of compositions of word vectors, rang-

ing from simple averaging to sophisticated archi-

tectures. Further, they suggest that simple models

are efficient and interpretable, and have the poten-
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tial to outperform sophisticated deep neural mod-

els.

It is therefore desirable to leverage the best of

both lines of works: learning text representations

to capture the dependencies that make significant

contributions to the task, while maintaining low

computational cost. For the task of text classifica-

tion, labels play a central role of the final perfor-

mance. A natural question to ask is how we can

directly use label information in constructing the

text-sequence representations.

1.1 Our Contribution

Our primary contribution is therefore to pro-

pose such a solution by making use of the la-

bel embedding framework, and propose the Label-

Embedding Attentive Model (LEAM) to improve

text classification. While there is an abundant lit-

erature in the NLP community on word embed-

dings (how to describe a word) for text representa-

tions, much less work has been devoted in compar-

ison to label embeddings (how to describe a class).

The proposed LEAM is implemented by jointly

embedding the word and label in the same latent

space, and the text representations are constructed

directly using the text-label compatibility.

Our label embedding framework has the fol-

lowing salutary properties: (i) Label-attentive text

representation is informative for the downstream

classification task, as it directly learns from a

shared joint space, whereas traditional methods

proceed in multiple steps by solving intermediate

problems. (ii) The LEAM learning procedure only

involves a series of basic algebraic operations, and

hence it retains the interpretability of simple mod-

els, especially when the label description is avail-

able. (iii) Our attention mechanism (derived from

the text-label compatibility) has fewer parameters

and less computation than related methods, and

thus is much cheaper in both training and test-

ing, compared with sophisticated deep attention

models. (iv) We perform extensive experiments

on several text-classification tasks, demonstrating

the effectiveness of our label-embedding attentive

model, providing state-of-the-art results on bench-

mark datasets. (v) We further apply LEAM to

predict the medical codes from clinical text. As

an interesting by-product, our attentive model can

highlight the informative key words for prediction,

which in practice can reduce a doctor’s burden on

reading clinical notes.

2 Related Work

Label embedding has been shown to be effective

in various domains and tasks. In computer vi-

sion, there has been a vast amount of research

on leveraging label embeddings for image clas-

sification (Akata et al., 2016), multimodal learn-

ing between images and text (Frome et al., 2013;

Kiros et al., 2014), and text recognition in im-

ages (Rodriguez-Serrano et al., 2013). It is par-

ticularly successful on the task of zero-shot learn-

ing (Palatucci et al., 2009; Yogatama et al., 2015;

Ma et al., 2016), where the label correlation cap-

tured in the embedding space can improve the

prediction when some classes are unseen. In

NLP, labels embedding for text classification has

been studied in the context of heterogeneous net-

works in (Tang et al., 2015) and multitask learning

in (Zhang et al., 2017a), respectively. To the au-

thors’ knowledge, there is little research on inves-

tigating the effectiveness of label embeddings to

design efficient attention models, and how to joint

embedding of words and labels to make full use

of label information for text classification has not

been studied previously, representing a contribu-

tion of this paper.

For text representation, the currently best-

performing models usually consist of an encoder

and a decoder connected through an attention

mechanism (Vaswani et al., 2017; Bahdanau et al.,

2015), with successful applications to sentiment

classification (Zhou et al., 2016), sentence pair

modeling (Yin et al., 2016) and sentence sum-

marization (Rush et al., 2015). Based on this

success, more advanced attention models have

been developed, including hierarchical attention

networks (Yang et al., 2016), attention over at-

tention (Cui et al., 2016), and multi-step atten-

tion (Gehring et al., 2017). The idea of attention is

motivated by the observation that different words

in the same context are differentially informative,

and the same word may be differentially important

in a different context. The realization of “context”

varies in different applications and model architec-

tures. Typically, the context is chosen as the target

task, and the attention is computed over the hidden

layers of a CNN/RNN. Our attention model is di-

rectly built in the joint embedding space of words

and labels, and the context is specified by the label

embedding.

Several recent works (Vaswani et al., 2017;

Shen et al., 2018b,c) have demonstrated that sim-
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ple attention architectures can alone achieve state-

of-the-art performance with less computational

time, dispensing with recurrence and convolutions

entirely. Our work is in the same direction, shar-

ing the similar spirit of retaining model simplicity

and interpretability. The major difference is that

the aforementioned work focused on self attention,

which applies attention to each pair of word tokens

from the text sequences. In this paper, we investi-

gate the attention between words and labels, which

is more directly related to the target task. Further-

more, the proposed LEAM has much less model

parameters.

3 Preliminaries

Throughout this paper, we denote vectors as bold,

lower-case letters, and matrices as bold, upper-

case letters. We use ⊘ for element-wise division

when applied to vectors or matrices. We use ◦ for

function composition, and ∆p for the set of one

hot vectors in dimension p.

Given a training set S = {(Xn,yn)}
N
n=1 of

pair-wise data, where X ∈ X is the text sequence,

and y ∈ Y is its corresponding label. Specifically,

y is a one hot vector in single-label problem and

a binary vector in multi-label problem, as defined

later in Section 4.1. Our goal for text classification

is to learn a function f : X 7→ Y by minimizing

an empirical risk of the form:

min
f∈F

1

N

N∑

n=1

δ(yn, f(Xn)) (1)

where δ : Y × Y 7→ R measures the loss incurred

from predicting f(X) when the true label is y,

where f belongs to the functional space F . In the

evaluation stage, we shall use the 0/1 loss as a tar-

get loss: δ(y, z) = 0 if y = z, and 1 otherwise.

In the training stage, we consider surrogate losses

commonly used for structured prediction in differ-

ent problem setups (see Section 4.1 for details on

the surrogate losses used in this paper).

More specifically, an input sequence X of

length L is composed of word tokens: X =
{x1, · · · ,xL}. Each token xl is a one hot vec-

tor in the space ∆D, where D is the dictionary

size. Performing learning in ∆D is computation-

ally expensive and difficult. An elegant frame-

work in NLP, initially proposed in (Mikolov et al.,

2013; Le and Mikolov, 2014; Pennington et al.,

2014; Kiros et al., 2015), allows to concisely per-

form learning by mapping the words into an em-

bedding space. The framework relies on so called

word embedding: ∆D 7→ R
P , where P is the

dimensionality of the embedding space. There-

fore, the text sequence X is represented via the

respective word embedding for each token: V =
{v1, · · · ,vL}, where vl ∈ R

P . A typical text

classification method proceeds in three steps, end-

to-end, by considering a function decomposition

f = f0 ◦ f1 ◦ f2 as shown in Figure 1(a):

• f0 : X 7→ V, the text sequence is represented

as its word-embedding form V, which is a

matrix of P × L.

• f1 : V 7→ z, a compositional function f1 ag-

gregates word embeddings into a fixed-length

vector representation z.

• f2 : z 7→ y, a classifier f2 annotates the text

representation z with a label.

A vast amount of work has been devoted to de-

vising the proper functions f0 and f1, i.e., how

to represent a word or a word sequence, respec-

tively. The success of NLP largely depends on the

effectiveness of word embeddings in f0 (Bengio

et al., 2003; Collobert and Weston, 2008; Mikolov

et al., 2013; Pennington et al., 2014). They are

often pre-trained offline on large corpus, then re-

fined jointly via f1 and f2 for task-specific rep-

resentations. Furthermore, the design of f1 can

be broadly cast into two categories. The popu-

lar deep learning models consider the mapping as

a “black box,” and have employed sophisticated

CNN/RNN architectures to achieve state-of-the-

art performance (Zhang et al., 2015; Yang et al.,

2016). On the contrary, recent studies show that

simple manipulation of the word embeddings, e.g.,

mean or max-pooling, can also provide surpris-

ingly excellent performance (Joulin et al., 2016;

Wieting et al., 2016; Arora et al., 2017; Shen et al.,

2018a). Nevertheless, these methods only lever-

age the information from the input text sequence.

4 Label-Embedding Attentive Model

4.1 Model

By examining the three steps in the traditional

pipeline of text classification, we note that the use

of label information only occurs in the last step,

when learning f2, and its impact on learning the

representations of words in f0 or word sequences

in f1 is ignored or indirect. Hence, we propose a

new pipeline by incorporating label information in

every step, as shown in Figure 1(b):
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(b) Proposed joint embedding method

Figure 1: Illustration of different schemes for doc-

ument representations z. (a) Much work in NLP

has been devoted to directly aggregating word em-

bedding V for z. (b) We focus on learning label

embedding C (how to embed class labels in a Eu-

clidean space), and leveraging the “compatibility”

G between embedded words and labels to derive

the attention score β for improved z. Note that ⊗
denotes the cosine similarity between C and V. In

this figure, there are K=2 classes.

• f0: Besides embedding words, we also em-

bed all the labels in the same space, which

act as the “anchor points” of the classes to in-

fluence the refinement of word embeddings.

• f1: The compositional function aggregates

word embeddings into z, weighted by the

compatibility between labels and words.

• f2: The learning of f2 remains the same, as it

directly interacts with labels.

Under the proposed label embedding framework,

we specifically describe a label-embedding atten-

tive model.

Joint Embeddings of Words and Labels We

propose to embed both the words and the labels

into a joint space i.e., ∆D 7→ R
P and Y 7→ R

P .

The label embeddings are C = [c1, · · · , cK ],
where K is the number of classes.

A simple way to measure the compatibility of

label-word pairs is via the cosine similarity

G = (C⊤V)⊘ Ĝ, (2)

where Ĝ is the normalization matrix of size K×L,

with each element obtained as the multiplication

of ℓ2 norms of the c-th label embedding and l-th
word embedding: ĝkl = ‖ck‖‖vl‖.

To further capture the relative spatial informa-

tion among consecutive words (i.e., phrases1) and

introduce non-linearity in the compatibility mea-

sure, we consider a generalization of (2). Specif-

ically, for a text phase of length 2r + 1 cen-

tered at l, the local matrix block Gl−r:l+r in G

measures the label-to-token compatibility for the

“label-phrase” pairs. To learn a higher-level com-

patibility stigmatization ul between the l-th phrase

and all labels, we have:

ul = ReLU(Gl−r:l+rW1 + b1), (3)

where W1 ∈ R
2r+1 and b1 ∈ R

K are parameters

to be learned, and ul ∈ R
K . The largest com-

patibility value of the l-th phrase wrt the labels is

collected:

ml = max-pooling(ul). (4)

Together, m is a vector of length L. The compat-

ibility/attention score for the entire text sequence

is:

β = SoftMax(m), (5)

where the l-th element of SoftMax is βl =
exp(ml)∑

L

l′=1
exp(m

l′
)
.

The text sequence representation can be sim-

ply obtained via averaging the word embeddings,

weighted by label-based attention score:

z =
∑

l

βlvl. (6)

Relation to Predictive Text Embeddings Pre-

dictive Text Embeddings (PTE) (Tang et al., 2015)

is the first method to leverage label embeddings

to improve the learned word embeddings. We

discuss three major differences between PTE and

our LEAM: (i) The general settings are different.

PTE casts the text representation through hetero-

geneous networks, while we consider text repre-

sentation through an attention model. (ii) In PTE,

the text representation z is the averaging of word

embeddings. In LEAM, z is weighted averaging

of word embeddings through the proposed label-

attentive score in (6). (iii) PTE only considers the

linear interaction between individual words and la-

bels. LEAM greatly improves the performance by

considering nonlinear interaction between phrase

1We call it “phrase” for convenience; it could be any
longer word sequence such as a sentence and paragraph etc.
when a larger window size r is considered.
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and labels. Specifically, we note that the text em-

bedding in PTE is similar with a very special case

of LEAM, when our window size r = 1 and at-

tention score β is uniform. As shown later in Fig-

ure 2(c) of the experimental results, LEAM can be

significantly better than the PTE variant.

Training Objective The proposed joint embed-

ding framework is applicable to various text clas-

sification tasks. We consider two setups in this

paper. For a learned text sequence representation

z = f1◦f0(X), we jointly optimize f = f0◦f1◦f2
over F , where f2 is defined according to the spe-

cific tasks:

• Single-label problem: categorizes each text

instance to precisely one of K classes, y ∈
∆K

min
f∈F

1

N

N∑

n=1

CE(yn, f2(zn)), (7)

where CE(·, ·) is the cross entropy between

two probability vectors, and f2(zn) =
SoftMax (z′

n), with z′
n = W2zn + b2 and

W2 ∈ R
K×P , b2 ∈ R

K are trainable param-

eters.

• Multi-label problem: categorizes each text

instance to a set of K target labels {yk ∈
∆2|k = 1, · · · ,K}; there is no constraint on

how many of the classes the instance can be

assigned to, and

min
f∈F

1

NK

N∑

n=1

K∑

k=1

CE(ynk, f2(znk), (8)

where f2(znk) = 1
1+exp(z′

nk
)
, and z′

nk is the

kth column of z′
n.

To summarize, the model parameters θ =
{V,C,W1, b1,W2, b2}. They are trained end-

to-end during learning. {W1, b1} and {W2, b2}
are weights in f1 and f2, respectively, which are

treated as standard neural networks. For the joint

embeddings {V,C} in f0, the pre-trained word

embeddings are used as initialization if available.

4.2 Learning & Testing with LEAM

Learning and Regularization The quality of

the jointly learned embeddings are key to the

model performance and interpretability. Ide-

ally, we hope that each label embedding acts as

the “anchor” points for each classes: closer to

the word/sequence representations that are in the

same classes, while farther from those in different

classes. To best achieve this property, we consider

to regularize the learned label embeddings ck to be

on its corresponding manifold. This is imposed by

the fact ck should be easily classified as the correct

label yk:

min
f∈F

1

K

K∑

n=1

CE(yk, f2(ck)), (9)

where f2 is specficied according to the problem

in either (7) or (8). This regularization is used as

a penalty in the main training objective in (7) or

(8), and the default weighting hyperparameter is

set as 1. It will lead to meaningful interpretabil-

ity of learned label embeddings as shown in the

experiments.

Interestingly in text classification, the class

itself is often described as a set of E words

{ei, i = 1, · · · , E}. These words are consid-

ered as the most representative description of each

class, and highly distinguishing between different

classes. For example, the Yahoo! Answers Topic
dataset (Zhang et al., 2015) contains ten classes,

most of which have two words to precisely de-

scribe its class-specific features, such as “Comput-

ers & Internet”, “Business & Finance” as well as

“Politics & Government” etc. We consider to use

each label’s corresponding pre-trained word em-

beddings as the initialization of the label embed-

dings. For the datasets without representative class

descriptions, one may initialize the label embed-

dings as random samples drawn from a standard

Gaussian distribution.

Testing Both the learned word and label embed-

dings are available in the testing stage. We clar-

ify that the label embeddings C of all class candi-

dates Y are considered as the input in the testing

stage; one should distinguish this from the use of

groundtruth label y in prediction. For a text se-

quence X, one may feed it through the proposed

pipeline for prediction: (i) f1: harvesting the word

embeddings V, (ii) f2: V interacts with C to ob-

tain G, pooled as β, which further attends V to

derive z, and (iii) f3: assigning labels based on

the tasks. To speed up testing, one may store G

offline, and avoid its online computational cost.
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Model Parameters Complexity Seq. Operation

CNN m · h · P O(m · h · L · P ) O(1)
LSTM 4 · h · (h+ P ) O(L · h2 + h · L · P ) O(L)
SWEM 0 O(L · P ) O(1)
Bi-BloSAN 7·P 2+5·P O(P 2

·L2/R+P 2
·L+P 2

·R2) O(1)
Our model K · P O(K · L · P ) O(1)

Table 1: Comparisons of CNN, LSTM, SWEM

and our model architecture. Columns correspond

to the number of compositional parameters, com-

putational complexity and sequential operations

4.3 Model Complexity

We compare CNN, LSTM, Simple Word

Embeddings-based Models (SWEM) (Shen et al.,

2018a) and our LEAM wrt the parameters and

computational speed. For the CNN, we assume

the same size m for all filters. Specifically, h
represents the dimension of the hidden units in

the LSTM or the number of filters in the CNN; R
denotes the number of blocks in the Bi-BloSAN;

P denotes the final sequence representation

dimension. Similar to (Vaswani et al., 2017;

Shen et al., 2018a), we examine the number of

compositional parameters, computational com-

plexity and sequential steps of the four methods.

As shown in Table 1, both the CNN and LSTM

have a large number of compositional parameters.

Since K ≪ m,h, the number of parameters in

our models is much smaller than for the CNN and

LSTM models. For the computational complexity,

our model is almost same order as the most simple

SWEM model, and is smaller than the CNN or

LSTM by a factor of mh/K or h/K.

5 Experimental Results

Setup We use 300-dimensional GloVe word em-

beddings Pennington et al. (2014) as initializa-

tion for word embeddings and label embeddings

in our model. Out-Of-Vocabulary (OOV) words

are initialized from a uniform distribution with

range [−0.01, 0.01]. The final classifier is imple-

mented as an MLP layer followed by a sigmoid

or softmax function depending on specific task.

We train our model’s parameters with the Adam

Optimizer (Kingma and Ba, 2014), with an ini-

tial learning rate of 0.001, and a minibatch size

of 100. Dropout regularization (Srivastava et al.,

2014) is employed on the final MLP layer, with

dropout rate 0.5. The model is implemented using

Tensorflow and is trained on GPU Titan X.

The code to reproduce the experimental results

is at https://github.com/guoyinwang/LEAM

Dataset # Classes # Training # Testing

AGNews 4 120k 7.6k

Yelp Binary 2 560 k 38k

Yelp Full 5 650k 38k

DBPedia 14 560k 70k

Yahoo 10 1400k 60k

Table 2: Summary statistics of five datasets, in-

cluding the number of classes, number of training

samples and number of testing samples.

5.1 Classification on Benchmark Datasets

We test our model on the same five standard

benchmark datasets as in (Zhang et al., 2015). The

summary statistics of the data are shown in Table

2, with content specified below:

• AGNews: Topic classification over four cat-

egories of Internet news articles (Del Corso

et al., 2005) composed of titles plus descrip-

tion classified into: World, Entertainment,

Sports and Business.

• Yelp Review Full: The dataset is obtained

from the Yelp Dataset Challenge in 2015, the

task is sentiment classification of polarity star

labels ranging from 1 to 5.

• Yelp Review Polarity: The same set of

text reviews from Yelp Dataset Challenge in

2015, except that a coarser sentiment defini-

tion is considered: 1 and 2 are negative, and

4 and 5 as positive.

• DBPedia: Ontology classification over four-

teen non-overlapping classes picked from

DBpedia 2014 (Wikipedia).

• Yahoo! Answers Topic: Topic classifica-

tion over ten largest main categories from Ya-

hoo! Answers Comprehensive Questions and

Answers version 1.0, including question title,

question content and best answer.

We compare with a variety of methods, in-

cluding (i) the bag-of-words in (Zhang et al.,

2015); (ii) sophisticated deep CNN/RNN models:

large/small word CNN, LSTM reported in (Zhang

et al., 2015; Dai and Le, 2015) and deep CNN (29

layer) (Conneau et al., 2017); (iii) simple compo-

sitional methods: fastText (Joulin et al., 2016) and

simple word embedding models (SWEM) (Shen

et al., 2018a); (iv) deep attention models: hier-

archical attention network (HAN) (Yang et al.,

https://github.com/guoyinwang/LEAM
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Model Yahoo DBPedia AGNews Yelp P. Yelp F.

Bag-of-words (Zhang et al., 2015) 68.90 96.60 88.80 92.20 58.00

Small word CNN (Zhang et al., 2015) 69.98 98.15 89.13 94.46 58.59

Large word CNN (Zhang et al., 2015) 70.94 98.28 91.45 95.11 59.48

LSTM (Zhang et al., 2015) 70.84 98.55 86.06 94.74 58.17

SA-LSTM (word-level) (Dai and Le, 2015) - 98.60 - - -

Deep CNN (29 layer) (Conneau et al., 2017) 73.43 98.71 91.27 95.72 64.26

SWEM (Shen et al., 2018a) 73.53 98.42 92.24 93.76 61.11

fastText (Joulin et al., 2016) 72.30 98.60 92.50 95.70 63.90

HAN (Yang et al., 2016) 75.80 - - - -

Bi-BloSAN⋄ (Shen et al., 2018c) 76.28 98.77 93.32 94.56 62.13

LEAM 77.42 99.02 92.45 95.31 64.09

LEAM (linear) 75.22 98.32 91.75 93.43 61.03

Table 3: Test Accuracy on document classification tasks, in percentage. ⋄ We ran Bi-BloSAN using the

authors’ implementation; all other results are directly cited from the respective papers.

2016); (v) simple attention models: bi-directional

block self-attention network (Bi-BloSAN) (Shen

et al., 2018c). The results are shown in Table 3.

Testing accuracy Simple compositional meth-

ods indeed achieve comparable performance as the

sophisticated deep CNN/RNN models. On the

other hand, deep hierarchical attention model can

improve the pure CNN/RNN models. The recently

proposed self-attention network generally yield

higher accuracy than previous methods. All ap-

proaches are better than traditional bag-of-words

method. Our proposed LEAM outperforms the

state-of-the-art methods on two largest datasets,

i.e., Yahoo and DBPedia. On other datasets,

LEAM ranks the 2nd or 3rd best, which are simi-

lar to top 1 method in term of the accuracy. This

is probably due to two reasons: (i) the number

of classes on these datasets is smaller, and (ii)
there is no explicit corresponding word embed-

ding available for the label embedding initializa-

tion during learning. The potential of label embed-

ding may not be fully exploited. As the ablation

study, we replace the nonlinear compatibility (3)

to the linear one in (2) . The degraded performance

demonstrates the necessity of spatial dependency

and nonlinearity in constructing the attentions.

Nevertheless, we argue LEAM is favorable for

text classification, by comparing the model size

and time cost Table 4, as well as convergence

speed in Figure 2(a). The time cost is reported

as the wall-clock time for 1000 iterations. LEAM

maintains the simplicity and low cost of SWEM,

compared with other models. LEAM uses much

less model parameters, and converges significantly

Model # Parameters Time cost (s)

CNN 541k 171

LSTM 1.8M 598

SWEM 61K 63

Bi-BloSAN 3.6M 292

LEAM 65K 65

Table 4: Comparison of model size and speed.

faster than Bi-BloSAN. We also compare the per-

formance when only a partial dataset is labeled,

the results are shown in Figure 2(b). LEAM con-

sistently outperforms other methods with different

proportion of labeled data.

Hyper-parameter Our method has an addi-

tional hyperparameter, the window size r to define

the length of “phase” to construct the attention.

Larger r captures long term dependency, while

smaller r enforces the local dependency. We study

its impact in Figure 2(c). The topic classification

tasks generally requires a larger r, while senti-

ment classification tasks allows relatively smaller

r. One may safely choose r around 50 if not fine-

tuning. We report the optimal results in Table 3.

5.2 Representational Ability

Label embeddings are highly meaningful To

provide insight into the meaningfulness of the

learned representations, in Figure 3 we visual-

ize the correlation between label embeddings and

document embeddings based on the Yahoo date-

set. First, we compute the averaged document em-

beddings per class: z̄k = 1
|Sk|

∑
i∈Sk

zi, where Sk

is the set of sample indices belonging to class k.

Intuitively, z̄k represents the center of embedded
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Figure 2: Comprehensive study of LEAM, including convergence speed, performance vs proportion of

labeled data, and impact of hyper-parameter
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Figure 3: Correlation between the learned text sequence representation z and label embedding V. (a)

Cosine similarity matrix between averaged z̄ per class and label embedding V, and (b) t-SNE plot of

joint embedding of text z and labels V.

text manifold for class k. Ideally, the perfect label

embedding ck should be the representative anchor

point for class k. We compute the cosine similar-

ity between z̄k and ck across all the classes, shown

in Figure 3(a). The rows are averaged per-class

document embeddings, while columns are label

embeddings. Therefore, the on-diagonal elements

measure how representative the learned label em-

beddings are to describe its own classes, while

off-diagonal elements reflect how distinctive the

label embeddings are to be separated from other

classes. The high on-diagonal elements and low

off-diagonal elements in Figure 3(a) indicate the

superb ability of the label representations learned

from LEAM.

Further, since both the document and label em-

beddings live in the same high-dimensional space,

we use t-SNE (Maaten and Hinton, 2008) to vi-

sualize them on a 2D map in Figure 3(b). Each

color represents a different class, the point clouds

are document embeddings, and the label embed-

dings are the large dots with black circles. As can

be seen, each label embedding falls into the inter-

nal region of the respective manifold, which again

demonstrate the strong representative power of la-

bel embeddings.

Interpretability of attention Our attention

score β can be used to highlight the most infor-

mative words wrt the downstream prediction task.

We visualize two examples in Figure 4(a) for the

Yahoo dataset. The darker yellow means more im-

portant words. The 1st text sequence is on the

topic of “Sports”, and the 2nd text sequence is

“Entertainment”. The attention score can correctly

detect the key words with proper scores.

5.3 Applications to Clinical Text

To demonstrate the practical value of label embed-

dings, we apply LEAM for a real health care sce-

nario: medical code prediction on the Electronic

Health Records dataset. A given patient may have

multiple diagnoses, and thus multi-label learning

is required.

Specifically, we consider an open-access

dataset, MIMIC-III (Johnson et al., 2016), which
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AUC F1

Model Macro Micro Macro Micro P@5

Logistic Regression 0.829 0.864 0.477 0.533 0.546

Bi-GRU 0.828 0.868 0.484 0.549 0.591

CNN (Kim, 2014) 0.876 0.907 0.576 0.625 0.620

C-MemNN (Prakash et al., 2017) 0.833 - - - 0.42

Attentive LSTM (Shi et al., 2017) - 0.900 - 0.532 -

CAML (Mullenbach et al., 2018) 0.875 0.909 0.532 0.614 0.609

LEAM 0.881 0.912 0.540 0.619 0.612

Table 5: Quantitative results for doctor-notes multi-label classification task.

contains text and structured records from a

hospital intensive care unit. Each record includes

a variety of narrative notes describing a patients

stay, including diagnoses and procedures. They

are accompanied by a set of metadata codes from

the International Classification of Diseases (ICD),

which present a standardized way of indicating

diagnoses/procedures. To compare with previous

work, we follow (Shi et al., 2017; Mullenbach

et al., 2018), and preprocess a dataset consisting

of the most common 50 labels. It results in 8,067

documents for training, 1,574 for validation, and

1,730 for testing.

Results We compare against the three base-

lines: a logistic regression model with bag-of-

words, a bidirectional gated recurrent unit (Bi-

GRU) and a single-layer 1D convolutional net-

work (Kim, 2014). We also compare with three

recent methods for multi-label classification of

clinical text, including Condensed Memory Net-

works (C-MemNN) (Prakash et al., 2017), Atten-

tive LSTM (Shi et al., 2017) and Convolutional

Attention (CAML) (Mullenbach et al., 2018).

To quantify the prediction performance, we fol-

low (Mullenbach et al., 2018) to consider the

micro-averaged and macro-averaged F1 and area

under the ROC curve (AUC), as well as the preci-

sion at n (P@n). Micro-averaged values are cal-

culated by treating each (text, code) pair as a sep-

arate prediction. Macro-averaged values are cal-

culated by averaging metrics computed per-label.

P@n is the fraction of the n highestscored labels

that are present in the ground truth.

The results are shown in Table 5. LEAM pro-

vides the best AUC score, and better F1 and P@5

values than all methods except CNN. CNN con-

sistently outperforms the basic Bi-GRU architec-

ture, and the logistic regression baseline performs

worse than all deep learning architectures.

(a) Yahoo dataset

(b) Clinical text

Figure 4: Visualization of learned attention β.

We emphasize that the learned attention can be

very useful to reduce a doctor’s reading burden.

As shown in Figure 4(b), the health related words

are highlighted.

6 Conclusions

In this work, we first investigate label embed-

dings for text representations, and propose the

label-embedding attentive models. It embeds the

words and labels in the same joint space, and mea-

sures the compatibility of word-label pairs to at-

tend the document representations. The learn-

ing framework is tested on several large standard

datasets and a real clinical text application. Com-

pared with the previous methods, our LEAM al-

gorithm requires much lower computational cost,

and achieves better if not comparable performance

relative to the state-of-the-art. The learned atten-

tion is highly interpretable: highlighting the most

informative words in the text sequence for the

downstream classification task.
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