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Figure 1: We jointly embed shapes and images of three categories (chair, aeroplane and car) into a shared space. Distances between entities
in the high-dimensional embedding space reflect object similarities between shapes and images (visualized by t-SNE here).

Abstract

Both 3D models and 2D images contain a wealth of information
about everyday objects in our environment. However, it is difficult
to semantically link together these two media forms, even when
they feature identical or very similar objects. We propose a joint
embedding space populated by both 3D shapes and 2D images of
objects, where the distances between embedded entities reflect sim-
ilarity between the underlying objects. This joint embedding space
facilitates comparison between entities of either form, and allows
for cross-modality retrieval. We construct the embedding space us-
ing 3D shape similarity measure, as 3D shapes are more pure and
complete than their appearance in images, leading to more robust
distance metrics. We then employ a Convolutional Neural Network
(CNN) to “purify” images by muting distracting factors. The CNN
is trained to map an image to a point in the embedding space, so
that it is close to a point attributed to a 3D model of a similar object
to the one depicted in the image. This purifying capability of the
CNN is accomplished with the help of a large amount of training
data consisting of images synthesized from 3D shapes. Our joint
embedding allows cross-view image retrieval, image-based shape
retrieval, as well as shape-based image retrieval. We evaluate our
method on these retrieval tasks and show that it consistently out-
performs state-of-the-art methods, and demonstrate the usability of
a joint embedding in a number of additional applications.

CR Categories: I.3.5 [Graphics]: Computational Geometry &
Object Modeling—Object Representations I.4.7 [Image Processing
& Vision]: Feature Measurement—Feature Representation;

Keywords: 3D Shapes, Embedding, Deep Learning

Figure 2: Image appearance vs. depicted object. Images I1 and
I2 are similar in general appearance while featuring different types
of chairs. In contrast, images I2 and I3 have a different overall
appearance, but both depict instances of the same type of chair.

1 Introduction

Similar objects often appear in dissimilar images, but the neces-
sity to recognize the object-based latent connection between these
images exists in many Computer Vision and Computer Graphics
applications. There are many factors that can hinder an attempt at
object-based similarity estimation for images. Among these, de-
pendencies on viewpoint, lighting, background differences, as well
as partial occlusions, are most prevalent. In Figure 2, image I1 fea-
tures one object, while I2 and I3 feature a different one. As can
be seen, although I1 and I2 do not portray the same object, they
appear quite similar in their overall image ambiance. At the same
time, I2 and I3 feature highly similar objects, but they greatly differ
in overall image appearance. In contrast, 3D object representations
are free from such impediments because they encode the entire ob-
ject in a more pure form. Thus, object similarity measures for 3D
shapes are inherently more robust than those for generic images.

To alleviate the problem, we present a method that embeds im-
ages and 3D shapes into a common space. In that space, both 3D
model and image object similarities can be measured as if their 3D
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form was directly available. We utilize a set of 3D shapes to learn
a collection-based similarity measure between objects in a given
class. For each shape, this measure essentially defines a point in
an embedding space with a metric that captures object similarity, as
the coordinates of each point consist of a dimension-reduced form
of the distances between the underlying shape and the entire set.
Thus, two neighboring points in this embedding space are likely to
represent similar shapes, as they agree, to a certain extent, on their
similarities with all the other shapes.

We then consider the problem of mapping images to this shape em-
bedding space. To overcome the limitations posed by the use of
images outlined above, we leverage recent progress in the field of
Deep Learning. A CNN can learn to map an image into the shape
embedding space so that it lies near those of other images contain-
ing similar objects, as well as those of actual 3D models that are
akin to the depicted object (see Figure 1). The process of deep em-
bedding naturally enables cross-view image retrieval, image-based
shape retrieval and shape-based image retrieval, in the unified em-
bedding space. The unified space also supports various other appli-
cations that require 3D representations of objects observed in im-
ages [Xu et al. 2011; Zheng et al. 2012; Su et al. 2014; Kholgade
et al. 2014; Lee et al. 2015; Huang et al. 2015].

An appealing quality of the trained CNN is its robustness to various
kinds of nuisance factors or distractions that are common in real-
world images [LeCun et al. 2015]. In our setting, this characteristic
is advantageous as we aim to map images into the embedding space
obliviously to these inconsistencies. However, to train such a CNN,
a large amount of images along with their ground truth coordinates
in the embedding space is required. These coordinates are neces-
sarily high dimensional real values, therefore humans will find this
annotation task to be quite difficult. Another alternative for ob-
taining the necessary links between images and their embedding,
is to manually link images to similar 3D models. However, this
task is highly time-consuming and error-prone. To overcome this
difficulty we synthesize the image training set based on rendering
a rather modest set of annotated shapes from ShapeNet [Su et al.
2015b]. We show that a large amount of effective and diverse anno-
tated training images can be generated from a controlled synthesis
procedure [Su et al. 2015a], requiring a minimal amount of manual
labor, already performed while setting up ShapeNet.

3D shapes and 2D images are both important visual forms rep-
resenting, among others, the objects around us. To date, how-
ever, these two forms have not been effectively linked together,
due mostly to the great variation and inconsistency that is char-
acteristic of real-world images. Our deep embedding is capable
of “purifying” these images by peeling off their distracting layers.
It then maps them into the 3D shape embedding space, where the
two domains are inter-linked by their shared object content. Such a
linking is key in making 3D shapes and 2D images comparable to
each other and thereby also cross-retrievable, regardless of differ-
ences in overall image appearance. We show that our deep embed-
ding universally supports cross-view image retrieval (section 6.1),
image-based shape retrieval (section 6.2) and shape-based image
retrieval (section 6.3). We evaluate the performance of our deep
retrieval, and show that it out-performs state-of-the-art methods,
most notably when dealing with real-world images with cluttered
backgrounds. We also show that our method can be an important
building block in several Computer Graphics applications, such as
3D-aware image manipulation and image-based 3D modeling.

2 Related Work

This work revolves around bridging the gap between 3D shapes
and 2D images, by linking them together in a common space. As

such, it touches on central aspects in both domains, including shape
similarity, image similarity, and retrieval of both shapes and im-
ages. The proposed method makes use of the CNN known as
AlexNet [Krizhevsky et al. 2012] for the task of image embedding
and we report our performance based on it. More recent CNNs,
such as GoogLeNet [Szegedy et al. 2014], can also be used, with
potential performance improvements. Chatfield et al. [2014] pro-
vide a profound review of deep learning and CNNs. We therefore
focus this Section on discussing the most relevant approaches for
shape signatures, image retrieval, shape retrieval, and multi-modal
embeddings — the key tools of our construction.

Shape Signatures A shape signature is a concise description of
the shape, aimed at facilitating central tasks such as shape match-
ing, organization, and retrieval. Designing a robust signature that
can discriminate certain important shape characteristics while be-
ing oblivious to others has been extensively studied in Computer
Graphics and Computer Vision. One type of shape signature fo-
cuses on geometric properties of the shape such as volume, dis-
tance and curvature [Osada et al. 2002; Ohbuchi et al. 2005; Gal
et al. 2007], spherical harmonics [Kazhdan et al. 2003] and 2D pro-
jections [Chen et al. 2003]. Another type of method uses graph
representations in order to obtain a topological description of the
shape [Hilaga et al. 2001; Chen and Ouhyoung 2002; Sundar et al.
2003]. We design our shape distance metric based on shape signa-
tures, specifically using the LightField Descriptor principles [Chen
et al. 2003]. In this approach, shapes are indexed via a set of 2D
projections or views — a representation that is directly related to
the manner of appearance of an object in an image. A view-based
distance metric can be derived from these descriptors, which can
be leveraged in the construction of an embedding space that cap-
tures object similarities. Our signature for each shape essentially
becomes its embedding point. As we will show later, there is no
need to generalize the shape signature computation approach for
real-world images, as there is a more effective way of inferring a
compatible signature for an image, and its embedding into the ro-
bust space designed primarily for shapes.

Image Retrieval The task of content-based image retrieval
(CBIR) involves searching for an image that is similar to the query,
either in low-level aspects such as color and texture, or in high-level
semantics such as objects that appear in the image. The difference
between these two levels is referred to as the semantic gap [Smeul-
ders et al. 2000], and is the main focus of CBIR methods, as sur-
veyed in [Liu et al. 2007].

A recent work by [Bell and Bala 2015] bears important similar-
ity to our method. In their work, visual search in interior design
is addressed by learning a joint embedding for two types of images
depicting home decor objects — iconic and in-situ. Similarly to our
method, this approach also makes use of a CNN to learn the joint
embedding. The input to the system is a collection of similar as
well as dissimilar pairs of images collected through crowd sourc-
ing. A Siamese network [Hadsell et al. 2006] is then adopted to
learn the joint embedding. Our method differs in several respects,
the most central of which is that our scheme is aimed at embed-
ding both images and shapes into the same space where they can be
easily compared. Secondly, the Siamese network approach solves
for both the discovery of the embedding space, as well as the map-
ping of images into that space. We construct the joint embedding
space by leveraging the above robust distance metric for 3D shapes,
and then train a CNN for purifying and mapping real-world im-
ages into this pre-built embedding space. This separation between
the construction of the embedding space and the image embedding
process makes the overall task more tractable. We show that our
embedding space induced by 3D shape similarities provides high
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Figure 3: Our method is composed of four major components: embedding space construction, training image synthesis, training phase, and
testing phase. In embedding space construction, 3D shapes are embedded into a space where the distance between the shapes reflects the
similarity between them (green links). In training image synthesis, a large amount of training data is synthesized from the shape collection
(green arrows). In the training phase, the CNN is trained to map the synthesized images to the embedding points of their source shapes
(red arrows). In the testing phase, the network is shown to be capable of mapping real-world images into the same embedding space (red
double-ended arrows).

quality guidance for training the purifying CNN, out-performing
the Siamese-network-based approach. Finally, we collect training
data by synthesizing a large amount of annotated images using a
collection of 3D shapes, thereby eliminating the need for manual
work while gaining annotations of a higher quality and finer detail.

Shape Retrieval Many notable content-based shape retrieval ap-
proaches have been proposed in recent years. These methods
mostly operate on an input query in the 3D domain [Tangelder
and Veltkamp 2008]. Other methods support view-based retrieval,
where a query containing a sketch or an image is used to retrieve 3D
models that have similar views to the query [Loffler 2000; Cyr and
Kimia 2001; Funkhouser et al. 2003; Chen et al. 2003]. However,
requiring projections or sketches with a clean background, these
methods do not extend well to real-world image queries. With the
ever growing real-world images readily available to everyone, it is
quite clear that facilitating a real-world-image-based shape retrieval
will help render this task more accessible. Our approach achieves
this goal by embedding both images and shapes into the same space,
thereby enabling a comparison between them.

Recently, Aubry et al. [2014] proposed an exemplar part-based
method focusing on detecting image regions that match parts in 3D
models of chairs in a large shape database. A star model is designed
to combine discriminative patches for measuring the similarity. In
our case, the similarity measurements are performed through a ro-
bust 3D shape distance metric, while image feature extraction is left
as a task for the CNN. Our system features an end-to-end solution
for similarity learning, thereby minimizing the effort involved in
tuning the right parameters for similarity measurement.

Multi-modal Embeddings Multi-modal embeddings have been
used in Computer Vision [Weston et al. 2010; Weston et al. 2011] to
establish image-word relationships, but they have not been a com-
mon practice in the Computer Graphics domain. A recent graphics
contribution is [Herzog et al. 2015] which starts by a creating a
common embedding space for 3D models and keywords, and adds
images and sketches to the mix. In that work the embedding is ob-
tained by using feature vectors from all modalities simultaneously,

mixing both informative and noisy data. Instead, our embedding
space is computed from clean 3D models alone and therefore better
reflects ideal object similarities. Furthermore, our 2D shape view
HoG-based similarity metric is better suited to matching shapes to
images, as compared to their local histograms of principal curva-
ture directions. Most importantly, the key to robust comparison of
real-world images to 3D models is image invariance learning — a
difficult task when using linear classifiers as in LeSSS, but one that
is handled exceptionally well by the CNN component of our work
for removing image nuisance factors. The superior image to shape
matching results achieved by this approach justify the choices we
have made.

3 Overview

The input to our method is a set of 3D shapes from one or mul-
tiple classes (Figure 1), and a set of images, each featuring a
prominently-displayed object from a known class. The images can
be of varying characteristics, and there are no restrictions on view-
point, lighting or background properties.

The approach consists of four major components: embedding space
construction, training image synthesis, CNN training phase, and the
final testing phase (see Figure 3 for a full illustration). In the em-
bedding space construction, a collection of 3D shapes is embedded
into a common space (green links) that serves as a platform for
comparison between shapes and images. In the training image syn-
thesis step, 3D shapes are used in a rendering process to obtain a
large amount of annotated training data (green arrows). In the net-
work training phase, a CNN is trained to learn the mapping between
images and the 3D shape induced embedding space (red arrows).
Finally, in the testing phase, the trained network is applied on new
images to obtain an embedding into the space, where comparisons
can be carried out (red double-ended arrows). The first component
describing the construction of the embedding space is discussed in
Section 4. The final three components are discussed in Section 5.

New images can be embedded into the space at any time, simply
by feeding them as input to the trained purification CNN, and re-
trieving the output (Section 5.3). Introducing a new shape, how-

Joint Embeddings of Shapes and Images via CNN Image Purification        •        234:3

ACM Transactions on Graphics, Vol. 34, No. 6, Article 234, Publication Date: November 2015



ever, is not as straight-forward, since the embedding space is con-
structed based on information obtained from the initial collection
of 3D shapes. However, incremental addition of new shapes can be
supported by solving an optimization problem designed to preserve
the pairwise distances between the added shape and the existing
shapes within the embedding space (Section 4.3).

4 Embedding Space Construction

It is a challenging task to design an embedding space where both
real-world images and shapes co-exist. The difficulty lies in the
requirement that the space captures similarities between heteroge-
neous media forms based on the underlying object they represent.
To alleviate this, we focus our efforts on obtaining a robust em-
bedding space solely based on the set of 3D shapes, for two rea-
sons. First, unlike images, 3D models are generally less afflicted by
distracting or nuisance factors, rendering pairwise comparison be-
tween them more reliable. In addition, 3D models are a more pure
and complete representation of objects, and as such are easier to
map to each other globally and locally. A pairwise comparison be-
tween them is therefore also more informative and precise. We then
rely on the competence of a CNN for facilitating the embedding of
real-world images into the space that we obtain (see Section 5). We
shall first describe our shape similarity estimation, followed by the
construction of the embedding space and the manner in which it
utilizes shape similarities.

4.1 Shape Similarity

Our shape distance metric is based on the principles of the Light-
Field Descriptor [Chen et al. 2003], where the similarity between
two shapes is measured by the aggregate of similarities among cor-
responding views. Denote by S = {Si}

n
i=1 our input set of 3D

shapes. The instances in the set are jointly aligned by a global rigid
transformation [Huang et al. 2013], and then projected from k view-
points to generate projection images: Ii = {Ii,v}

k
v=1 for each Si.

We set k = 20 in all of our experiments and viewpoints are evenly
sampled around the common up-orientation on the viewsphere. For
each Ii,v we compute a feature vector Hi,v based on Histogram of
Gradients (HoG) [Dalal and Triggs 2005]. Hi,v is composed of a
3-level pyramid of HoG computed from images scaled to resolution
120 × 120, 60 × 60 and 30 × 30, and has 10, 188 dimensions. A
comparison between two HoG descriptors is an effective and dis-
criminative approach to estimate the similarity between two projec-
tions in our setting, since these projections are all well aligned. We
therefore opted to use HoG rather than the combination of a region
shape descriptor (Zernike moments) and a contour shape descriptor
(Fourier) as suggested by Chen et al. [2003], which is more robust
than HoG when applied on 3D models in-the-wild, when no global
alignment is provided.

The feature vector Fi of shape Si is obtained by concatenating
its viewpoint feature vectors ,i.e., Fi = (Hi,1;Hi,2; ...;Hi,k) ∈
R

203,760. The distance between Si and Sj is then the L2 distance
between their feature vectors: di,j = ‖Fi − Fj‖2.

4.2 Embedding Space

The construction of the embedding space requires attention to two
aspects. First, recalling that we aim to use the constructed space
as a platform for estimating similarity between multi-modal enti-
ties, the most basic requirement is that the distances between the
embedded shapes within the space reflect the similarity between
them. Additionally, it is advantageous to restrict the dimension of
the space for computational reasons. The CNN parameter space
can then be bounded to avoid overfitting, and fast distance compu-
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Figure 4: Recall curve of F− (from PCA, LLE, and NPE) and D
−

(from Sammon mapping). Note that D− preserves local neighbor-
hoods better than F

−.

tations can be performed within the space. A lower dimension also
guides the embedding to better respect shared structure among the
shapes. The space spanned by Fi, F = span({Fi}) ∈ R

203,760,
satisfies the first criterion, but not the second one. Principal Com-
ponent Analysis (PCA) can be applied to obtain a compact version
of F, denoted by F

−, of a significantly lower dimension while still
preserving pairwise distances well.

A central observation on similarity between objects is that distances
between dissimilar instances are not as meaningful and reliable as
distances between similar ones. In our case, as can be expected, a
set of shapes contains many more dissimilar than similar pairs of
shapes. However, the most straight forward embedding space con-
struction F

− does not respect this distinction between the greater
importance of the small distances and the lesser one of the larger
ones, as it is obtained by PCA that optimizes only for a minimiza-
tion of the reconstruction error.

With that in mind, we propose an alternative option for space con-
struction as follows. Consider Dn×n, a pairwise distance matrix
such that D(i, j) = di,j . The space spanned by the rows of D,

D ∈ R
‖S‖, also satisfies the first criterion of similarity preserva-

tion, as a similarity between the distances of Si to all other shapes
in S, and the distances of Sj to all other shapes in S, implies a
direct similarity between Si and Sj . Despite the lower dimension
of D, it is still too high to be practical when dealing with large sets
of shapes. Differently than F, D is a distance matrix, for which we
can apply dimensionality reduction methods that respect the dis-
tinction between the greater importance of the small distances and
the lesser one of the larger ones. We opted to obtain D

− from D by
performing non-linear Multi-Dimensional Scaling (MDS) [Kruskal
1964] with Sammon mapping [Sammon 1969], as it encourages the
preservation of the structure of local neighborhoods while embed-
ding the original space into a Euclidean space of a lower dimension.
More specifically, we estimate the coordinate of each shape in D

−

by minimizing the following Sammon error during MDS:

E =
1∑

i<j
D(i, j)

∑

i<j

(D(i, j)−D−(i, j))2

D(i, j)
, (1)

where D−(i, j) denotes the Euclidean distance between Si and Sj

in D
−. The Sammon type error is a weighted sum of differences

between the original pairwise distances and the embedding pairwise
distances. Intuitively, dissimilar shape pairs are weighted down.

We use the same dimensionality m for both F
− and D

−, such that
F
−,D− ∈ R

m. In all our experiments, we set m = 128. This
value is chosen heuristically to cater to both criteria — faithful dis-
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Figure 5: Adaptation to shape database growth. The set of chairs
(6778 instances in total) is divided into two parts — a training set
containing 5000 shapes and a validation set containing the remain-
ing 1677 shapes. An embedding space is constructed solely based
on the training set shapes. The validation set shapes are then added
post-construction (Section 4.3). The red solid line denotes the recall
and the diagonal line represents the optimum.

tance preservation and space-size compactness. In particular, for
F
− obtained through PCA-based dimensionality reduction, we ex-

perimentally observe that 98% of shape descriptor energy is pre-
served for the “chair” category. Note that such high energy preser-
vation is made possible by the clean and nuisance-free traits of the
3D-shape-based rendered images. We applied a similar dimension-
ality reduction procedure on n “chair” images from ImageNet, and
found that only 76% energy is preserved following a reduction to
the same dimension. Experimental results also show that D− is su-
perior to F

−, allowing for a better performance by discriminating
smaller distances attributed to similar pairs of objects. Henceforth,
we proceed with the D

− as a reference to our embedding space.

We evaluated the quality of different embedding space construc-
tions by the recall rate obtained for each construction (see Figure 4).
Aside from the aforementioned PCA and MDS with Sammon map-
ping methods, we also evaluated the embedding space obtained by
applying Local Linear Embedding (LLE) [Roweis and Saul 2000]
and Neighborhood Preserving Embedding (NPE) [He et al. 2005]
on F. It is clear from the recall curve that MDS with Sammon map-
ping is a better fit for our task than the alternatives.

4.3 Mapping New Shapes

The embedding space is constructed based on a set of 3D shapes.
The instances within this set are therefore jointly embedded into
the space as part of the process. Introducing a new shape S∗ into
the system therefore requires special attention, and calls for the re-
trieval of an embedding point PS∗

∈ D
−. This retrieval process

can be derived from the manner in which the embedding space was
originally constructed. First, a LightField HoG feature vector F∗

is computed. Next, pairwise distances between S∗ and all Si ∈ S
are computed and set to be dS∗,Si

= ‖F∗ − Fi‖2. We denote
the distance between S∗ and any Si in the embedding space as
d−S∗,Si

= ‖PS∗
− PSi

‖2. PS∗
can be solved by L-BFGS [Liu

and Nocedal 1989] while minimizing the Sammon type error in a
similar manner to that which is featured in Equation 1:

PS∗
= argmin

PS∗

n∑

i

(dS∗,Si
− d−S∗,Si

)2

dS∗,Si

. (2)

Figure 5 presents an experiment to evaluate the quality of our ap-
proach for introducing new shapes. After constructing an embed-
ding space D

− based on a shape collection S1, a disjoint set S2 is

embedded into D
−. We compute the k-nearest neighbors (for vary-

ing k) of each shape in S2, from within the set S1, in two different
ways. First, under distances between the original HoG feature vec-
tors, and second, under distances within the embedding space D

−.
The two sets of nearest neighbors are compared to reflect the extent
of preservation of the original distances.

5 CNN for Image Embedding

The embedding space D− associates each 3D shape Si with a point
PSi

∈ D
−. Aiming for a joint space shared not only by shapes but

also by images, we are looking to embed the latter group into D
−.

Due to its convolutional structure, a CNN is able to separate an
image into various layers of abstraction, capturing different features
and elements. It is this characteristic of the network that allows it
to be utilized for many different learning tasks, each requiring a
different focus. Leveraging this adaptive ability, we train a CNN
to map an image I depicting an object similar to Si, to a point
PI ∈ D

− such that PI is close to PSi
. Our CNN is essentially

required to learn the latent connection that exists between an image
and the object it features.

An important characteristic of the CNN is its ability to generalize.
A CNN trained to perform a certain task can, in many cases, be
adapted to perform various other tasks. This property is highly
advantageous as it is more efficient to re-purpose a well-trained
network. In our setting, we require the network to learn a high-
dimensional space. This is not a very common endeavor in the field,
as most learning tasks revolve around different forms of classifica-
tion. Therefore, re-purposing an existing network, AlexNet in our
case, necessitates a few adaptations which will be discussed below.
First, we describe our training data generation technique.

5.1 Training Image Synthesis

Training a CNN requires a large amount of diverse annotated data
to form a general system that can perform well on unseen data.
In our setting, we seek to learn a mapping between images and
their corresponding points in the embedding space. Therefore, the
point coordinates are the annotations, in the form of a long vector
of real values. As such, obtaining manual annotations for the data
is impractical.

An advantage of our scheme for placing both images and shapes in
the same space is that it allows us to leverage the abundant infor-
mation contained in the set of 3D shapes for training data genera-
tion. The instances in the set are represented as clean and complete
meshes, allowing control and flexibility. As such, a shape Si ∈ S
can be used in a rendering process to generate a plethora of images
Ri, each Ri,r ∈ Ri featuring Si in an image setting. As we have
described previously, our set of 3D shapes facilitates the construc-
tion of an embedding space D−. In this space, a shape Si is mapped
to a corresponding point PSi

∈ D
−. Hence, for each Ri,r , its anno-

tation is automatically known to be PSi
. The collection of all pairs

(Ri,r, PSi
) is the training data for our CNN.

CNN models are capable of approximating high dimensional and
non-linear functions, as they infer millions of parameters. The rep-
resentation power of the CNN can be unleashed only under training
by a large amount of rich and diverse data. If the network is trained
improperly, it tends to settle too closely to the training data in a pro-
cess known as overfitting, rather than attempting to learn the general
latent patterns that exist within the data. We follow [Su et al. 2015a]
for generating training images that are resistant to overfitting. The
images are rendered from the 3D shapes with rich variation in light-
ing and viewpoint, and then superimposed on random backgrounds.
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Figure 6: Network architecture. We adapt AlexNet (left) for our im-
age purification CNN (right)1. The last fully-connected layer (fc8)
of AlexNet is set to output m (the dimensionality of the embedding
space) real values, and the softmax loss layer is replaced by a Eu-
clidean loss layer.

In practice, we synthesize ∼ 1 million training images per category.
Please refer to [Su et al. 2015a] for more details.

5.2 Network Architecture and Training

The training data consists of a collection of image-embedding pairs
(Ri,r, PSi

), where i indexes a shape and r indexes a synthesis con-
figuration. The CNN is trained to map Ri,r to its corresponding
PSi

. Disregarding any differences in viewpoint, lighting or back-
ground, all images Ri,r generated from shape Si are necessarily
assigned the same embedding point, namely, PSi

. For that reason
we can think of our CNN as a “purifying” agent. It acts as a proxy
between the original image and the object it contains by stripping
the image of its distracting factors, such as lighting, viewpoint and
background characteristics, and mapping it to a point in the em-
bedding space corresponding to the object. It is this action which
facilitates the comparison between images and shapes, as well as
between images of varying appearances. Transferring an image to
the shape embedding space and conducting any comparisons there,
essentially simulates a comparison between pure 3D shapes.

Formally, our CNN is a function f that receives as input an image
Ri,r and is expected to output PSi

. The actual output of f depends
on the parameters of the network θ that are tuned during training.
Hence, f(Ri,r; θ) → PSi

. We measure the mapping error with a
Euclidean loss function:

L(θ) =
∑

i,r

‖f(Ri,r; θ)− PSi
‖22. (3)

A discussion about the optimal CNN architecture for minimizing
the given loss function is out of the scope of this paper. We adopt
AlexNet [Krizhevsky et al. 2012] for our task and report our per-
formance based on it. The input to AlexNet are 227×227 images,
thus we render the 3D shapes such that their bounding boxes in the
rendered images contain approximately 227×227 pixels. We mod-
ify the last fully-connected layer (fc8) to output an m-dimensional
vector, which is the dimension of our embedding space D

−, and
switch the Softmax loss layer to an Euclidean loss layer (Eq. 3).
More advanced CNNs, such as GoogLeNet [Szegedy et al. 2014],
can also be adapted and used here, with potential performance im-
provements.

CNNs trained on ImageNet [Russakovsky et al. 2014] for classifi-
cation tasks have been shown to generalize well by solving several

1For simplicity, the pooling, local response normalization (LRN), rec-

tified linear unit (ReLU) and dropout layers are not shown. Please refer

to [Krizhevsky et al. 2012] for a full network definition.

other tasks when fine-tuned accordingly. In our setting, the train-
ing data is synthesized but the trained system is expected to han-
dle and perform well on real-world images. Given the visual dif-
ferences in appearance between real and synthesized images, it is
unlikely that a CNN trained solely on synthesized data can success-
fully process real-world data [Yosinski et al. 2014]. Thus, rather
than train a brand new network with all of its layers, we opt to fix
the five pre-trained convolutional layers of AlexNet. These layers
are responsible for detecting various features within the image. By
reusing layers that were trained on a large and diverse set of real-
world images such as ImageNet, we make sure that our system is
able to process non-synthesized data correctly. We fine-tune the top
three fully-connected layers of AlexNet, which are the more task-
specific layers, and adapt them to fit our task.2 The optimization
usually converges after around 5, 000 iterations. We use a model
trained for 10, 000 iterations for testing, and report its performance
through various experiments in Section 6.

5.3 Mapping New Images

A trained purification CNN model maps images to the embedding
space. To obtain the embedding for any image I , one must simply
pass it through the network and retrieve the output vector as the
embedded point PI = f(I; θ) ∈ D

−. This process is fast, and can
typically complete in under a second on a CPU, and even less on a
GPU (tens of milliseconds). The same process cannot be applied on
a new 3D shape that we seek to map to the space, since our CNN
model is designed for images. However, our embedding space is
robust enough to support our scheme of embedding new shapes into
it as described in Section 4.3.

6 Experimental Results

To evaluate the efficacy and performance of our method, we con-
ducted a few experiments and comparisons. These experiments are
divided into three types, as dictated by the three central applica-
tions of our approach – cross-view image retrieval (Section 6.1),
image-based shape retrieval (Section 6.2) and shape-based image
retrieval (Section 6.3). The 3D shapes used in the experiments are
from chair, airplane, and car category of ShapeNet 2015 summer
release (v1.0), with 6778, 4045, and 7497 shapes, respectively.

6.1 Cross-view Image Retrieval

Given a query image of an object, our system can be used to retrieve
images depicting similar objects. Since the similarity is computed
in the 3D domain, it is inherently view invariant. The retrieved
images can be quite diverse in terms of image appearance. They
can be from a different viewpoint, on a variety of backgrounds, and
in different colors and textures. However, all of them should feature
objects that are similar, or even identical to that in the query image.
Such a capability can cater to the intentions of a user in searching
for images while focusing on object content.

More specifically, all the images Ii already mapped to the embed-
ding space are associated with an embedding point PIi . Given
a query image Iq , we first map it to a point PIq in the embed-
ding space by feeding it into the network, as described in Sec-
tion 5.3. Image retrieval can then be simply acquired by computing
the neighborhood of PIq in {PIi}. Since PIq , PIi ∈ R

m, where m
is small, the nearest neighbor search can be efficiently computed.

2Fine-tuning the entire network registers an improvement of ∼1% in

accuracy, at the cost of a substantial decrease in speed (x40). We opted to

forgo this minor accuracy improvement to facilitate our experiments.
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Figure 7: Example results for cross-view image retrieval. The retrieved images share a similar type and style to that of the query image.
However, they are often from very different viewpoints.

HoG BoW LLC FisherVector
AlexNet fc7 AlexNet fc7 Siamese Siamese

Ours
(ImageNet) (fine tune) (64 neighbors) (0 neighbor)

Chair-clutter 0.698 0.681 0.690 0.665 0.706 0.724 0.691 0.701 0.765

Chair-clean 0.710 0.678 0.717 0.675 0.744 0.757 0.724 0.723 0.801

Car 0.278 0.280 0.283 0.270 0.287 0.293 0.285 0.259 0.312

Table 1: Performance comparison on the cross-view image retrieval task. We compare the performance of our method on the cross-view
image retrieval task against several other methods: HoG, BoW, LLC, FisherVector, AlexNet fc7 trained on ImageNet, AlexNet fc7 fine-tuned
on the classification task with synthetic images from shapes belonging to the same class, Siamese network with positive image pairs sampled
from 64 neighboring shapes and from only within same-shape renders (0-neighbor). We report the AUC value in this table.

To evaluate the performance of our joint embedding on the cross-
view image retrieval task, we compare our results to several
other alternative methods, namely HoG [Dalal and Triggs 2005],
BoW [Csurka et al. 2004], LLC [Wang et al. 2010], FisherVec-
tor [Sánchez et al. 2013], and AlexNet [Krizhevsky et al. 2012] (fa-
cilitated by the feature vector given by the layer fc7, trained on Im-
ageNet for the 1000-class image classification task and fine-tuned
on the same task with synthetic images rendered from shapes be-
longing to the same class). We also compare our result to that of
a Siamese network trained on our synthesized data. The training
data of a Siamese network consists of positive (similar) and nega-
tive (dissimilar) image pairs. The positive image pairs are sampled
with a Gaussian distribution from synthesized images of neighbor-
ing shapes, i.e., more pairs are sampled from more synthesized im-
ages of more similar shapes. The k-closest shapes are considered
to be neighboring shapes. The negative image pairs are randomly
sampled from synthesized images of distant shapes. We compare
the performance for both k = 0 (only images from the same shape
are considered as positive pairs), as well as k = 64. We sampled
400, 000 positive pairs and 8, 000, 000 negative pairs for the train-
ing of the Siamese network.

The comparison is conducted on a benchmark collected from Im-
ageNet under the “chair” and “car” categories. It contains 1, 309
chair images with few distractions (“Chair-clean”), 5, 874 chair im-
ages with a large amount of clutter (“Chair-clutter”), and 5, 758 car
images. All of the images are assigned category-level annotations.
The pairwise distances between testing images can be computed by
the aforementioned methods, for each of which we can compute a
ranking list per image. We evaluate the precision and recall based
on those ranking lists, by counting the images with a matching cat-
egory to that of the query image that are in the top-k neighbors. By

averaging through all the images for varying values of k, we obtain
a precision-recall curve and compute the area under the curve as a
performance indicator. We report the performances in Table 1.

Note that our joint embedding based approach consistently out-
performs the other methods on all three datasets, clearly demon-
strating the image purification capabilities of our purification CNN,
and the advantage of the view-invariant embedding. The gap in
performance between the Siamese network and our approach is of
special interest. This gap may be potentially attributed to the in-
herent strength of an embedding space, designed and built based
on 3D shape data, providing guidance for the CNN to learn the pu-
rification procedure. Conversely, in the Siamese network, the CNN
must simultaneously learn two dependent functions — an embed-
ding process and an image distraction removal process. This likely
results in a significantly harder task.

We present our cross-view image retrieval results in Figure 7. Note
that the retrieved images differ, to a varying extent, from the query
image in their overall appearance. However, all of them feature a
similar, and at times even identical, object to that which is featured
in the query image.

6.2 Image-based Shape Retrieval

As mentioned, image-based shape retrieval has mostly been re-
stricted to queries containing sketches or projections with a clean
background. Our system extends this by allowing real-world im-
ages as queries, increasing ease-of-use for novice users.

We manually assemble a benchmark dataset for evaluating image-
based shape retrieval. The benchmark dataset contains 105 shapes
and 315 images. Each shape is associated with 3 images, each of
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Figure 9: Example results for image-based shape retrieval. Twelve real-world image queries are featured in the top-most row, followed by
the 5-nearest models per query as retrieved by our method. The retrieved models share a similar type and style to that of the object depicted
in the query.
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Figure 8: Comparison of top-k accuracy on image-based same-
instance shape retrieval.

which features an object that is identical (or nearly identical) to that
which its associated shape represents. The benchmark construction
is time consuming. The user first browses Trimble 3D Warehouse,
and identifies shapes containing a product name. The product name
is then used as a text query in Google image search to retrieve rel-
evant images. Finally, the user selects three images (of differing
general appearance) featuring the shape object, if such exist. It took
20 human hours to assemble this benchmark.

We evaluate the image-based shape retrieval performance by the
top-k instance retrieval accuracy on the benchmark. Note that the
105 exact matching shapes are excluded from the training data,
to avoid them being simply “remembered” by the CNN models.
We compare our joint embedding approach against HoG, AlexNet
(pool5 and fc7 features), and Siamese. Since these models do not
naturally support image-to-shape comparison, we create an inter-
mediate layer in order to make them comparable to our method.
We render the 3D shapes from 100 distinct viewpoints, and com-

pute the HoG, AlexNet and Siamese features on these rendered im-
ages. The retrieval of these models is thus still computed in the
image domain. The shape is considered to be retrieved if one of its
100 view images is retrieved. The comparison results are presented
in Figure 8.

Our method is computationally more efficient compared to other
approaches, since the comparison takes place in a rather low-
dimensional space and typically takes tens of milliseconds to com-
plete. Conversely, when using features such as the HoG descriptor,
multiple views must be compared, summing up to a running time
of several seconds.

Visual examples of our image-based shape retrieval results are pre-
sented in Figure 9. Note that the images are highly cluttered. Our
CNN purifies them so that they are directly comparable to shapes.

6.3 Shape-based Image Retrieval

A joint embedding of shapes and images also facilitates the task
of shape-based image retrieval. Given a 3D model, we can locate
images featuring an object that is similar to the model, by searching
the embedding space for images that are close to the model.

We utilize the same benchmark dataset mentioned in Section 6.2 for
the evaluation of the shape-based image retrieval task. However, re-
call that in this dataset there is a many-to-one relationship between
images and 3D shapes, therefore, there are multiple correct answers
per query. Thus, instead of using top-k accuracy, which is not well
defined in this case, we use median ranking of correct image re-
trieval as our evaluation metric. Specifically, for each of the 105
models, we sort the 315 test images according to their distances to
the model in embedding space (in ascending order). We then lo-
cate the first and last correct image (of this model) in the sorted
list and mark their ranking as a quantitative measure of our sys-
tem performance on this query (the lower the better). To obtain the
overall performance measure, we compute the median ranking of
both the first and last matches. A low median ranking of the first
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Figure 10: Example results for shape-based image retrieval. 3D shape queries from three categories are shown in the top row, each followed
by the top-5 retrieved images. These images respect the shape of the query model in terms of the object contained in them, but they differ
in overall appearance, as well as stylistic object characteristics, such as color. This property makes for an interesting application, as a user
may wish to be shown the various real-world possibilities corresponding to a certain 3D model.

Median rank of HoG
AlexNet fc7 AlexNet fc7 Siamese Siamese

Ours
(ImageNet) (fine tune) (64 nbors) (0 nbor)

first matched 1 7 5 3 3 1

last matched 32 84 71 94 49 5

Table 2: Comparison of performance on shape-based same-
instance image retrieval. For each model there are multiple images
with the same instance. We sort the retrieved images of a model and
compute the rankings of the first and last image matches. Median
ranking (the lower the better) is the evaluation metric.

image match (rank = 1 is optimal) reflects a high ”accuracy” score,
and a low median ranking of the last image match implies that the
retrieval system has good “recall” (all the images corresponding to
the query model appear within the top ranked results).

Quantitative results of shape-based image retrieval are shown in Ta-
ble 2. The testing procedure is similar to that in Section 6.2. While
the HoG approach and our embedding approach share a similar me-
dian ranking for the first image match, the embedding approach out-
performs on the last image match median ranking. This is likely
due to the association between images and shapes in our embed-
ding space, which is oblivious to differences in image appearance.
HoG features on the other hand, do not support such an invariance,
and as a result, are unlikely to recognize cluttered images as a good
match, despite the nature of the object contained in them. Visual
results are presented in Figure 10.

7 Applications

The retrieval tasks discussed in Section 6 are in and of themselves
important and powerful applications. In this section, we present
several more applications that further utilize the high-performance

Figure 11: Shape-guided image editing. Our image-based shape
retrieval can boost an image editing process by shape proxies. The
retrieved 3D shape is used here for computing a shadow casting of
the object in the image (chair), while being lit by an additional light
source (floor lamp).

retrieval abilities of our method. The joint embedding of both
shapes and images serves as an essential building block in all of
these. Moreover, some of the following applications are completely
new and only made possible by this joint embedding.

7.1 Shape-Guided Image Editing

Images are the most popular media form for capturing the 3-
dimensional world around us. Manipulating an image in a man-
ner that respects and preserves the real-world characteristics of the
image, is naturally desirable. However, pixel/patch-level image ma-
nipulation operators are often insufficient, as it tediously falls to the
user to follow and simulate the underlying real-world phenomena.
This impediment can be alleviated with the help of our method. The
retrieval of a 3D shape that approximates an object depicted in an
image under edit, can provide assistance in the form of 3D clues
to guide real-world-based editing operations. Figure 11 presents
an example where a retrieved model assists in computing a shadow
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Figure 12: Interactive image-based scene modeling. Starting from
an image with user-marked object bounding boxes (upper left), our
system retrieves similar 3D models. Together with 3D poses esti-
mated by [Su et al. 2015a], a 3D scene (lower left) can be mod-
eled with a layout reasoning module from [Choi et al. 2013]. The
model retrieval and pose estimation are conducted in real-time, and
the user is given instant feedback once a bounding box is drawn.
Equipped with such a system, 2D scene images can be easily lifted
into 3D and rendered from novel views (right).

casting that can then be applied to the original image. This applica-
tion shares the same merit as that in [Zheng et al. 2012]. However,
our 3D shape proxies are automatically retrieved, and are of a finer-
grained level of detail to that which is supplied by human annotated
cuboid proxies.

7.2 Interactive Image-based Modeling

The image to shape connection provided by our joint embedding
brings scene images and 3D scenes closer together. We propose an
interactive image-based modeling approach based on our joint em-
bedding (see Figure 12). In the modeling session, the user is first
asked to mark object bounding boxes. Our system then retrieves a
list of similar 3D models and presents it to the user to select and
add to the scene. Object poses and scene layout can be automati-
cally estimated by recent, relevant work [Su et al. 2015a; Choi et al.
2013]. Together with our joint embedding based retrieval, user ef-
fort is mostly reduced to object bounding box annotation and scene
refinements.

7.3 Text-to-Shape via Image Proxy

Text-to-image retrieval is a commonly used application in our daily
lives. A text query is used to search image databases for instances
containing labels that match the text query. A plethora of im-
ages available on the Internet are retrievable to everyone, thanks
to meaningful and descriptive labels and annotations that are at-
tached to the images. Unfortunately, the amount of 3D shapes that
are accompanied by descriptive labels is limited, making it difficult
to directly infer a mapping between the two modalities. Our system
bridges the gap between images and 3D shapes, thereby enabling
text-to-shape queries by going through images serving as proxies.
To retrieve shapes from a text query, we first retrieve relevant im-
ages from a public image search engine. The top-N retrieved im-
ages then jointly vote in our shape-image embedding space, and
shapes are ranked by their votes. We compare the text-to-shape re-
trieval provided by Trimble 3D Warehouse (possibly with labels as-
sociated to shapes), and the text-to-shape retrieval powered by our
joint embedding via image proxies in Figure 13. Averbuch-Elor et
al. [2015] propose an approach for generating 3D shapes from a text
query, but the final 3D shape is generated from limited views of the

Figure 13: Text-based shape retrieval. Our joint shape-image em-
bedding space maps images to shapes. This mapping can be con-
catenated to the established text-to-image mapping, obtaining a
text-to-shape mapping. We show a text-to-shape retrieval provided
by Trimble 3D Warehouse, and powered by our joint embedding via
image proxies.

query object, and thus lacks detail. In our approach, the quality of
the retrieved shapes is defined by the large shape collection, which
often contains close approximations to real-world objects.

7.4 Limitations and Future Work

Shape Database Purification. The 3D shape collections used in
our experiments originate from Trimble 3D Warehouse, with an-
notations from ShapeNet. The 3D models are created by artists or
students of varying levels of skill, and for diverse purposes. This
results in 3D models that may not accurately capture real-world
objects. This is often a setback for Computer Graphics and Com-
puter Vision tasks that rely on shape proxies of real-world objects.
Despite the ever-growing availability of 3D models, it is still sur-
passed by several orders of magnitude by the availability of im-
age data. Thus, statistic information computed on image data is far
more stable and accurate than similar statistics computed for 3D
shape data. Such statistics, after transferred into the shape space,
via the joint embedding space, can be important for purifying 3D
shape databases by filtering out shapes that are not well associated
with real-world images.

Online Dynamic Embedding Space. Our current scheme dic-
tates that a constructed embedding space is fixed. New shapes and
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images can be projected into this space and compared against any
other embedded entity. However, these new shapes do no contribute
any additional and potentially enriching information to the embed-
ding space. In order to take advantage of new shapes and images,
the embedding space has to be rebuilt, and the CNN has to be fur-
ther fine-tuned to capture the new embedding space. It is interesting
to explore an online dynamic embedding space, where new shapes
and new images can be continuously integrated into the embedding
space, evolving it progressively.

Multi-modal Entities Sharing an Embedding Space. In our ap-
proach, both 3D shapes and 2D images are represented as points in
a joint embedding space. However, 3D shapes belong to the 3D do-
main, while images belong to the 2D domain, and include projec-
tions of 3D shapes. From this perspective, if images are represented
as points in an embedding space, one may consider representing a
3D shape as a collection of points, or a hyperplane, in the embed-
ding space. That way, the status of an image entity as a projection
of a 3D shape can be transferred and preserved in the embedding
space as well.

Multi-faceted Similarity Measurement. Similarity is a multi-
facet concept. The degree of similarity between two entities may
vary under different criteria as specified by different applications.
In our HoG-based similarity measure, the similarity between two
shapes is captured by a real value scalar. Extending the measure to
a vector may achieve a better approximation of the similarity phe-
nomenon, catering to various criteria and reducing the subjectivity
that similarity estimation naturally involves.

What Distance Metrics Can CNNs Learn? The structure of a
CNN strongly utilizes and relies on the spatial formation between
pixels in an image. The HoG descriptors used for similarity esti-
mation are computed in a spatial manner, potentially aligning with
the effectiveness with which the CNN has learned the embedding
space induced by them. Distance metrics such as the persistent bar-
codes [Carlsson et al. 2004] can be purely topology-based, and it
is interesting to explore whether a CNN is capable of successfully
learning a function that is based on a distance metric with properties
that are not necessarily spatial.

8 Conclusion

At the center of our approach is a joint embedding space for both
3D shapes and 2D images. The distances between embedded en-
tities in this space reflect the similarities between their underlying
objects. Therefore, this joint embedding creates a computational
link between the 3D shape domain and the 2D image domain, fa-
cilitating any comparison between multi-modal entities. A robust
distance metric designed for the 3D domain, and applied on a 3D
shape collection, is at the core of the embedding space construc-
tion, contributing to the robustness and reliability of the space. The
mapping of images to the shape-based embedding space is accom-
plished by a purifying CNN trained on a comprehensive collection
of synthesized images, attenuating the distracting properties that are
prevalent in real-world images. Our approach thus bridges the com-
putational gap between the two domains, and serves as an essential
building block for many existing Computer Graphics applications,
as well as supporting and inspiring new ones.

Backed by the strong performance observed in various experiments
using our robust embedding and its surrounding modules, we be-
lieve that this approach is the first step in the important undertaking
involved in establishing a strong link between the 3D shape and 2D
image domains. As such, we trust in the potential of this approach

to lead to new research directions and exploration of relevant and
novel techniques.

For full reproducibility of our method and to encourage further de-
velopment based upon it, we open source all our data and code at
http://shapenet.github.io/JointEmbedding/.
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