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ABSTRACT

This paper employs facial features to recognize emotions dur-
ing a coding activity with 50 children. Extracting group-level
emotional states via facial features, allows us to understand
how emotions of a group a�ect collaboration. To do so, we
captured joint emotional state using videos and collaborative
experience using questionnaires, from collaborative coding
sessions. We de�ne groups’ emotional state using a method
inspired from dynamic systems, utilizing a measure called
cross-recurrence. We also de�ne a collaborative emotional
pro�le using the di�erent measurements from facial features
of children. The results show that the emotional cross recur-
rence (coming from the videos) is positively related with the
collaborative experience (coming from the surveys). We also
show that the groups with better experience than the others
showcase more positive and a consistent set of emotions
during the coding activity. The results inform the design of
an emotion-aware collaborative support system.

CCS CONCEPTS

•Human-centered computing→ Empirical studies in

HCI.
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1 INTRODUCTION

Emotions are essential on how we envision goals and chal-
lenges, they are also central to the processes tackling problem-
solving. Emotions guide our behaviour, shape the group-
dynamics and interactions, and inform the design of social
systems [46]. Also, emotions have been found to play a cen-
tral role in teaching, motivation and particularly in the con-
text of self-regulated learning [53]. Contemporary research
with children in the context of collaborative problem-solving,
attempts to unveil the collaborative experience and ways of
enriching it [40, 59]. Understanding the role of emotions dur-
ing learning, holds the potential to enhance state-of-the-art
practices [53].

During collaborative activities, people not only share their
knowledge and ideas, but also share their emotions [20, 21].
In collaborative settings, the main sources of emotions are
the episodes where the interaction occurs [27], or argumen-
tation and con�icts happen [23, 29]. When collaboration
among peers starts, they get to know each other and de-
velop trust and belongingness that can raise a certain set
of emotions [27]. During the collaboration, there are situa-
tions where peers need to negotiate a certain path to solve
a problem, this leads to argumentation and in turn leads
to showcasing of emotions [23]. For example, task-related
con�icts among the peers can cause negative emotions [29].
Capturing emotions of children and then emulating them on
a robot or using the emotional information to present a cue
or hint in cognitive tutors is a common practice in the cases
of Human Robot Interaction (HRI) [56] and Intelligent Tutor-
ing Systems (ITS) [62, 69, 71]. This happens to keep children
engaged and sustain the interaction over long periods of
time. Understanding emotions would not only contribute to
explain the collaboration from a socio-emotional point of
view, but it can also enable the design of sca�olding systems
based on the emotional states of the groups [21].
In coding activities, children tend to have an emotional

repertoire [25]; for example in the beginning of a coding
session, children display negative emotions (anxiety) and as
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they progress further, they follow a problem-solving loop,
which results in a wide set of emotions [26]. However, there
is a lack of quantitative measures for investigating emotions
of groups in learning contexts [37]. Most assessments of emo-
tional evaluations with children, focus on the individual child
and do not consider the joint emotional state. In addition,
related work uses self-reports and inferring from observa-
tions that provide limited insights into how emotional state
changes over time during learning or interaction [63].
In this paper, we propose a quantitative method to cap-

ture the joint emotional pro�le of the group using emotions
extracted from the facial features of the children. Inspired
from Klaus Scherer [50], who provided a component process
model of emotions that seeks to deal with both the “dynamic,
continuously �uctuating nature of emotion processes and the
existence of discrete language labels referring to steady states”
(p. 75); we de�ne the notion of joint emotional pro�le of chil-
dren while they work collaboratively, in order to understand
the evolution (dynamic) of emotions. Therefore, we tackle
the following research objectives:

(1) De�ne the emotional pro�le of a collaborating group
of children.

(2) Investigate the relationship between the emotional pro-
�le of a group and the quality of collaboration during
coding.

(3) Identify the components of the emotional pro�le that
a�ect the quality of collaboration during learning.

2 RELATEDWORK

Children and A�ect

Researchers in the �elds of Child-Robot Interaction (CRI)
and Child-Computer Interaction (CCI), have measured emo-
tions via various modes of data collection, for example, self
reports [17, 56], Electromyography (EMG) [66], facial fea-
tures [24, 31, 69], Electrodermal Activity (EDA) [32, 63], ges-
tures [6, 7, 31, 64], text [47] and audio data [10]. Children’s
emotional state is an important topic in CCI, with several
studies focusing in the relationship between children’s emo-
tional display and various interaction constructs, such as
usability [17, 69], learning processes [63], engagement [32]
and enjoyment [31].
Self reported emotional states were used to study the re-

lation between the age, gender and experiences in HRI [56].
In video-mediated communication the usability of the com-
munication channel was evaluated with the self-reported
emotions that were then evaluated from human coders who
watched children’s videos [17]. Furthermore, the experiences
with a shared gaze channel were studied using self-reported
emotions [55]. Based on the facial landmark data and a
teacher/parent’s manual emotion tags (happy), researchers
performed a computational analysis to compare the happy

emotion labels generated by the automated algorithm and the
human rater [67]. Using self-reported emotions in an emo-
tional awareness tool, and sharing the emotions between
partners, engaged the peers into mutual modeling of emo-
tions and increased the perceived intensity of positive emo-
tions [39].
In the context of learning and problem-solving experi-

ences, emotions were captured using EDA data [63] to study
the relation between individual learning processes and emo-
tional states of children. Emotions were also captured from a
video of awearable camera to support in-situ socio-emotional
learning and communication [14]. Also, a deep neural net-
work framework was used to obtain audio-based emotions
to explain interactions to kids [4]. Postural shifts and facial
expressions were used in the collaborative problem solving
sessions to recognize emotions from children [24].
Emotions have also been used as a way to inform the be-

haviour of robots in a multitude of CRI/CCI scenario. For
example, with children su�ering from Down syndrome [68]
or Autism Spectrum Disorder (ASD) [19, 66]. The researchers
captured the emotions of children and used them to transfer
the emotions to their peers [66, 68], to display them on a ro-
bot [6, 31, 41] or to inform the decision making processes in
the intelligent tutors [62, 69, 71]. These e�orts have shown
to support social interaction [19, 47, 64], increase the en-
gagement [6, 7, 32], enjoyment [30, 41], motivation [69] and
provided the ability to sustain interaction over long periods
of time [30, 31, 49, 69].
Previous research suggests that in CCI/CRI situations,

emotions have been captured using a multitude of modalities,
such as facial features, EDA, gesture, posture, self-reports.
However, there are only a few studies [39] , which do so in a
collaborative context. In this contribution, we will use facial
features to quantitatively capture joint emotions of peers and
investigate the relation between the joint emotional pro�le
and collaborative coding experiences.

Emotions in Education

According to control value theory [45], happiness is related
to high prospective success , anger is related to retrospective
failure and sadness is related to high negative activity. Emo-
tions were also found to be related to the competence belief,
and the value students attribute to a particular domain [16].
Emotion is an essential part of studying motivation in class-
room interactions since the instructional and interpersonal
responses of teachers to students are often governed by the
emotions [38].
There is little support for a direct relation between emo-

tions and learning performance [34, 35]; however, frustration
is a common feeling among students involved in online col-
laborative learning experiences [5]. There has been studies
reporting on the relationship between gender, performance
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and emotional showcase. For example, high performing girls
show less positive emotions than high performing boys [54].
Another facet of studies about emotions in educational

contexts show how emotions in�uence the way in which
information is processed. Happiness/joy results in novel and
creative actions [15], positive emotions also promote the
engagement in meta cognitive processing [34] which is bene-
�cial for long term learning. On the other hand, negative emo-
tions result in focusing on environmental speci�c details [3]
also negative emotions lead to lack of elaboration [44]. More-
over, negative a�ect was associated with lower learning
goals [38]; while positive a�ect was associated with the in-
terest in a given topic [1].

When students collaborate they have to maintain durable
relationships and acceptable levels of participation. Interac-
tions that are associated with these aspects of the group
performance can be typi�ed as social-emotional interac-
tions [70]. These interactions are primarily directed towards
the relationship between group members [12]. In terms of
collaborative learning, positive emotions were found to be
correlated with e�ort and persistence, while negative emo-
tions were correlated with less risk tolerance, lower learning
gains and con�icts [12, 36]. Furthermore, negative socio-
emotional interactions such as lack of respect and excessive
criticism, have signi�cant consequences in general quality
of group learning opportunities [33] since such groups were
reported to undermine commitment [36] and criticism [28] .
In learning, emotions have been mainly used as a depen-

dent or independent variable. This restricts the ability of
emotional aspects to explain the processes responsible for
experiences in collaborative scenarios. In this paper, we use
emotions as variables that explain processes.

3 METHODS

The coding activity

We designed and implemented a coding activity in conjunc-
tion with an initiative organized at the Norwegian University
of Science and Technology (NTNU), Trondheim, Norway.
The activity is based on the constructionist approach, follow-
ing the main principles of "Making" [42]. The workshop was
conducted in a largely informal setting, as an out-of-school
activity, and lasted for four hours in total. Student groups
ranging from 13–16 years old, were invited in NTNU’s spe-
cially designed rooms for creative purposes to interact with
digital robots and create games using Scratch and the Ar-
duino hardware platform. Speci�cally, Arduino was attached
to the digital robots to connect them with the computer. At
that point, an extension of Scratch called Scratch for Arduino
(S4A) provided the extra blocks needed to control the robots.
Children who attended the workshop worked collaboratively
in dyads or triads (depending on the number of children).

The activity was designed for children without (or with min-
imum) previous experience in coding. During the activity,
student assistants were supporting each team as needed.
Approximately one assistant observed and helped one or
two teams. Three researchers were also present throughout
the intervention focusing on observing, writing notes and
taking care of the overall execution of the workshop. The
workshop was divided into two sections. In the �rst section,
the children interacted with digital robots. The duration of
the session was di�erent for each team, it lasted between 45
minutes and one-and-a-half hours, and ended with a break
before the next session. The second section focused on the
creative implementation of simple game development con-
cepts using Scratch. Children created their games step by
step by iterative coding and testing them. After completing
the games, all teams re�ected and played each others games.
The second section lasted approximately three hours.

Sampling

The study was conducted in Autumn 2017, children from 8
th

to 10
th grade (age 13-16 years old) participated in the activ-

ity, after their school–teacher applied to attend our coding
activity. The sample consisted of 105 participants in total, 69
boys and 36 girls (mean age: 14.55, SD: 0.650). During the
workshops, several teams were video recorded. In particular,
we collected videos from 50 children (29 females), 10 triads
and 10 dyads, having the necessary consent from both the
child and the legal guardian for the data collection.

From Children’s Faces to Emotions

To extract the joint emotions from the videos, we followed
a 6-steps process. Figure 1 provides the order of steps used
to compute joint emotions from the video recordings during
the collaborative coding sessions.

Figure 1: Summary of steps from the face videos of each

group to their emotional cross recurrence.
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Figure 2: Three cases to show why face recognition is important for this contribution.

Multiple face detection: First, we used the OpenFace [2]
library, in the videos, in order to detect the faces for every
frame. Thus, each face is given a label starting from left to
right (1 to N, where N is the number of faces in each frame).
There are three cases where the left-to-right labelling of faces
fails as shown in Figure 2. First, when students in the team
swap places. Second, when someone switches teams for a
small amount of time. Third, when a new student joins the
team, again for a small amount of time. We need to keep the
faces which composed the initial team. To achieve this, we
used a pre-trained deep neural network, INCEPTION-v4 [65],
to extract features from the individual face images and used a
k-nearest neighbour prediction algorithm to recognize origi-
nal individuals in every team. Figure 2 shows the example
for all the three cases. The �rst 10 minutes are used to create
the feature vectors for the original members in each team.

Facial Action Units System and emotions: Then, we used the
face images to extract the facial Action Units (AUs) [18] using
the OpenFace framework [2]. Facial Action Coding System
(FACS) is taxonomy for human facial movements as they
appear on the face. Movements of individual facial muscles
are encoded by FACS from slight di�erent instant changes
in facial appearance. Using FACS it is possible to code nearly
any anatomically possible emotion, deconstructing it into the
speci�c Action Unit (AU) that produced the facial expression.
It is a common standard to objectively describe emotions
from facial expressions using such techniques [69]. Figure
3 shows the AUs detected for this paper and Table 1 shows
how to de�ne emotions from the Action units.

Measurements

To capture the quality of the collaboration we used two
standardized set of questions from the literature. Perceived
e�ectiveness of the collaboration and satisfaction from the
collaboration [61].

To capture information about the emotions extracted from
the videos, we used �ve di�erent measurements. In particu-
lar:

Figure 3: Action units captured for this paper.

Table 1: Emotions as de�ned by combination of AUs.

Emotion AU Combination

Happiness AU6, AU10
Sadness AU1, AU4, AU15
Surprise AU1, AU2, AU5, AU26
Fear AU1, AU2, AU4, AU5, AU7, AU20, AU26
Anger AU4, AU5, AU7, AU23
Disgust AU9, AU15
Contempt AU12, AU14

Proportion of emotions: Table 1 shows the combina-
tion of AUs used to de�ne each emotion. We calculated the
proportion of each emotion in a one-minute long window
with an overlap of 30 seconds between two consecutive time
windows. – Change of emotions (i.e., emotional entropy):
From the proportions of the emotions in a given one-minute
time window, we compute the Shannon entropy of propor-
tionality vector using the following formula:

Entropy = −
∑

i ∈set_of _emotions

Proportioni ∗loд(Proportioni )

(1)
A zero value of emotional entropy indicates that in a given

time window students showed exactly one kind of emotion.
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On the other hand, a high value will depict that students
showcased a variety of emotions (in our case the highest pos-
sible value is−loд(1/7)= 0.85, since there are seven emotions
being captured).
Emotional consistency: From the proportions of the

emotions in two consecutive one-minute time windows, we
compute the emotional consistency as the cosine similarity
between the two vectors using the following formula:

cos(A,B) =
AB

∥A∥∥B∥
=

∑n
i=1 AiBi

√

∑n
i=1 (Ai )2

√

∑n
i=1 (Bi )

2
(2)

where,
A = emotion proportionality vector at time t
B = emotion proportionality vector at time t + 1
N= 7, i.e., the number of emotions (happiness, sadness, anger,
fear, surprise, contempt, disgust).

The theoretical limits of emotional consistency are 0 and
1. A zero value will depict that the set of emotions shown
by the students were completely di�erent across two con-
secutive time windows; while a one value will depict the
exact distribution of emotions in the two consecutive time
windows.

Joint Emotional State (i.e., Emotional Togetherness

– Cross Recurrence (CR)): Once we have the emotions for
every frame and each child in the video, we de�ne a one-

minute long temporal window, with a 30 seconds shift

and use the most frequent emotion as the main emotion in
every window for each child. This results in a time series
of emotion labels (happiness, sadness, surprise, fear, anger,
disgust, contempt) for every child in each team. Once we
have the time series for whole group, we compute “emotional
togetherness” as the cross recurrence of emotion labels.
The concept of cross recurrence is widely used in the

theory of dynamical systems to compute the temporal co-
occurrence of states of two dynamical systems [13]. Each
dynamical system can be represented as a temporal sequence
of measurable states. In CSCL this measurement has been
used to explain collaborative processes using collaborative
eye-tracking data [22, 48, 51]. In our case, to characterize
quantitatively the temporal patterns of emotions, we need
an indicator that measures the relationship between the se-
quences of emotions exhibited by the peers. In the context of
our analysis, each student can be considered as a dynamical
system in which the emotion from a given time window
represents the state. Thereby, cross-recurrence analysis can
be used to measure how much and when peers have similar
emotional states.

The principle of cross-recurrence is to build a binary ma-
trix, called a cross-recurrence plot (CR plot), that displays
similarities between two temporal sequences of states of

some dynamical systems. The two-time series are repre-
sented as the two dimensions of the matrix; and every point
in matrix corresponds to a time window in each time series.
The value of every point indicates whether the states of the
two systems for their respective time windows are recurrent
(similar) or not. The construction of such a matrix for sys-
tems having discrete state values is described schematically
in Figure 4. The main diagonal of the �nal matrix represents
the perfect synchrony of states for the systems, which in our
case are the emotional states of peers. The computation of
CR can be extended from a 2D case (dyad) to a 3D case (triad)
in a simple manner.
High Cross-recurrence episodes (number and aver-

age length): Once, we computed the time-series of the emo-
tional CR from the face videos of the students, we computed
the median for the whole coding session and used it to di-
vide each one-minute window into high or low CR episodes.
Next, we compute the episodes with high CR by merging the
consecutive high CR windows. Finally, we count the number
of such episodes and compute the average length of these
episodes per group.

Analysis

First, to check for the bias (on the collaborative experiences:
e�ectiveness and satisfaction) occurring because of the dif-
ferent group sizes (dyads vs triads), we will use ANOVAwith
the collaborative experiences as the dependent and the group
size as the independent variables, respectively. To explore
the relationship between the components of joint emotional
pro�le and the collaborative experiences we will use Pearson
correlation tests. Finally, to investigate which components of
the joint emotional pro�le best explain the collaborative ex-
periences, we will use Linear Models and percent of variance
explained to compare di�erent models.

4 RESULTS

Group size bias

First of all we tested a potential di�erence between the dyads
and triads. The results didn’t show any signi�cant di�erence
in the perceived collaboration quality for the two di�erent
group sizes. In particular, an Analysis of Variances (ANOVA)
shows no signi�cant di�erence between the satisfaction from
the collaboration (F[1,18] = 0.24, p = .62)and the perceived
e�ectiveness of the collaboration (F[1,18] = 0.35, p = .55)
between the dyads and triads.

Performance of the face detection algorithm

To display the performance of the face detection and track-
ing algorithm, we computed the following proportions. The
proportions are calculated based on the number of frames
in the video, since all the values were computed per frame
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Figure 4: Summary of steps from the individual time series of emotions to group’s emotional cross recurrence. Each colour

represents a di�erent emotion.

Figure 5: Example of computing the high/low CR episodes.

The green line in the top panel shows the theoretical base

line which is the probability of two people having the same

emotion (out of 7 emotions) at the exact same moment

which is 1/27, i.e., 0.008. The red line in the top panel shows

the median for this particular team.

before the pipeline was executed. For the dyads, we observe
that most of the times there were at least two faces detected
(mean = 87.5%, sd = 4.57%); there were three or more faces
detected in 84.9% times (sd = 7.92%). For the triads, we ob-
serve that there were at least three faces detected for an

Table 2: All the constituent measurements of joint emo-

tional pro�le and their correlations with the perceived ef-

fectiveness of the collaboration, and satisfaction from the

collaboration. (p-value: * < .05; ** <.01).

Variable

Correlation

E�ectiveness

Collaboration

Correlation

Satisfaction

Collaboration

Happiness 0.54* 0.51*
Sadness -0.62** -0.52*
Anger -0.56** -0.53*

Contempt 0.60** 0.41
Surprise 0.41 0.40
Disgust 0.27 0.29
Fear -0.03 -0.14

Emotional entropy -0.63** -0.62**
Emotional stability 0.51* 0.54*

CR 0.66** 0.55**
Number of

high CR episodes
0.52* 0.61**

Average length

high CR episodes
0.62** 0.52*

average of 84.7% times (sd = 6.28 %); there were four or more
faces detected in 82.35% of times (sd = 7.37%). The main
reason for the frames having less than 2 (for dyads) and 3
(for triads) faces detected was that the children were free
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to move among di�erent groups during the coding activity.
This resulted in some of the frames having partially visible
faces or completely occluded faces. For further analysis we
normalized all the measures with the number of frames with
required number of children being visible (2 for dyads and 3
for triads).

Performance of the emotion computation

For each face detected in the frame, OpenFace library pro-
vides a con�dence value for each of the AUs detected (the
values are between 0 for no detection and 1 for complete
detection). To have high levels of robustness in the emotion
computation process, we kept only those frames where the
average con�dence value of all the detected AUs was more
than 0.85 and the standard deviation was below 0.05. This
resulted into removal of a fewmore frames from further anal-
ysis (mean = 2.4% SD = 1.4%, including dyads and triads).
Again, we normalized all the measures with the number of
frames available with high quality action unit detection.

Proportions of emotions

We observe the following signi�cant and positive correla-
tions among the measures:
–a positive and signi�cant correlation between the perceived
e�ectiveness of collaborative sessions and the average pro-
portion of happiness shown by the peers (r(15) = 0.54, p < .05).
The groups having high levels of perceived e�ectiveness of
collaboration also showcased high levels of happiness during
the collaboration;
–a positive and signi�cant correlation between the perceived
e�ectiveness of collaborative sessions and the average pro-
portion of contempt shown by the peers (r(15) = 0.60, p < .01).
The groups having high levels of perceived e�ectiveness of
collaboration also showcased high levels of contempt during
the collaboration;
–a positive and signi�cant correlation between the satisfac-
tion from collaborative sessions and the average proportion
of happiness shown by the peers (r(15) = 0.51, p < .05). The
groups having high levels of satisfaction from collaboration
also showcased high levels of happiness during the collabo-
ration.
Next, we observe the following signi�cant and negative

correlations among the measures:
– a negative and signi�cant correlation between the perceived
e�ectiveness of collaborative sessions and the average pro-
portion of anger shown by the peers (r(15) = -0.56, p < .01).
The groups having low levels of perceived e�ectiveness of
collaboration showcased high levels of anger during the col-
laboration;
– a negative and signi�cant correlation between the perceived
e�ectiveness of collaborative sessions and the average pro-
portion of sadness shown by the peers (r(15) = -0.62, p < .01).

Figure 6: Perceived e�ectiveness and proportion of happi-

ness, with the linear model (blue line) and the error (gray

area).

Figure 7: Satisfaction and proportion of happiness, with the

linear model (blue line) and the error (gray area).

The groups having low levels of perceived e�ectiveness of
collaboration showcased high levels of sadness during the
collaboration;
– a negative and signi�cant correlation between the satisfac-
tion from collaborative sessions and the average proportion
of anger shown by the peers (r(15) = 0.53, p < .05). The
groups having low levels of satisfaction from collaboration
showcased high levels of anger during the collaboration. –
a negative and signi�cant correlation between the satisfac-
tion from collaborative sessions and the average proportion
of sadness shown by the peers (r(15) = -0.49, p < .05). The
groups having low levels of satisfaction from collaboration
showcased high levels of sadness during the collaboration.
Emotions, such as surprise, disgust and fear were not

found to be correlated with either perceived e�ectiveness or
the satisfaction (Table 2).
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Figure 8: Perceived e�ectiveness and proportion of sadness,

with the linear model (blue line) and the error (gray area).

Figure 9: Satisfaction and proportion of sadness, with the

linear model (blue line) and the error (gray area).

Emotional entropy

We observed a negative and signi�cant correlation between
the emotional entropy and the perceived e�ectiveness of the
collaborative coding sessions (r(15) = -0.63, p < .01, Table
2). The groups who indicated low levels of e�ectiveness of
the collaborative coding sessions had high levels of entropy
indicating that on an average such groups showcased wide
variety of emotions during the coding sessions. On the other
hand, the groups considering these coding sessions highly
e�ective, showcased fewer emotions during the coding ses-
sions.
We also observed a negative and signi�cant correlation

between the emotional entropy and the satisfaction from the
collaborative coding sessions (r(15) = -0.62, p < .01, Table
2). The groups who indicated low levels of satisfaction from
the collaborative coding sessions had high levels of entropy
indicating that on an average such groups showcased wide
variety of emotions during the coding sessions. On the other
hand, the groups considering these coding sessions to be

highly satisfactory, showcased fewer emotions during the
coding sessions.

Emotional consistency

We observed a positive and signi�cant correlation between
the emotional consistency and the perceived e�ectiveness of
the collaborative coding sessions (r(15) = 0.51, p < .05, Table
2). The groups who indicated low levels of e�ectiveness of
the collaborative coding sessions had low levels of consis-
tency indicating that on an average such groups showcased
emotions that were short lived during the coding sessions.
On the other hand, the groups considering these coding ses-
sions highly e�ective, showcased a set of emotions for longer
periods of time during the coding sessions.

We observed a positive and signi�cant correlation between
the emotional consistency and the satisfaction from the col-
laborative coding sessions (r(15) = 0.54, p < .05, Table 2).
The groups who indicated low levels of satisfaction from the
collaborative coding sessions had low levels of consistency
indicating that on an average such groups showcased emo-
tions that were short lived during the coding sessions. On
the other hand, the groups considering these coding sessions
highly satisfactory, showcased a set of emotions for longer
periods of time during the coding sessions.

Emotional cross recurrence (CR)

We observe the following positive and signi�cant correla-
tions concerning the emotional CR:
– between the perceived e�ectiveness and CR (r(15) = 0.66, p
< .01); – between satisfaction and CR (r(15) = 0.55, p < .01);
– between the perceived e�ectiveness and number of episodes
with high CR (r(15) = 0.52, p < .05);
– between satisfaction and number of episodes with high CR
(r(15) = 0.61, p < .01);
– between the perceived e�ectiveness and the average length
of episodes with high CR (r(15) = 0.62, p < .01);
– between satisfaction and the average length of episodes
with high CR (r(15) = 0.52, p < .05).

These results suggest that the groups having high per-
ceived e�ectiveness and satisfaction also had high emotional
CR, moreover such groups also had higher number of high
CR episodes with longer duration than the groups with low
perceived e�ectiveness and satisfaction.

Linear Modelling

To explain the perceived e�ectiveness of the collaborative
coding sessions, the most important measurements, con-
tributing positively, are emotional consistency, and emo-
tional CR; while emotional entropy and proportion of anger
contribute negatively. Table 3 shows the details of the model
explaining 61.6% of the variance in the perceived e�ective-
ness of collaboration.
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Figure 10: Perceived e�ectiveness and proportion of emo-

tional cross recurrence, with the linearmodel (blue line) and

the error (gray area).

Figure 11: Satisfaction and emotional cross recurrence, with

the linear model (blue line) and the error (gray area).

Table 3: Finalmodel for perceived e�ectiveness of the collab-

orative coding sessions. Percentage of variance explained =

61.6; all p-values are less than .05

Variable Estimate Error t-value

intercept 4.82 1.48 2.79
stability 1.42 0.65 2.49
entropy -2.20 0.23 -2.36

cross-recurrence 2.32 1.02 2.65
anger -2.76 0.47 -2.57

To explain the satisfaction from the collaborative coding
sessions, the most important measurements, contributing
positively, are number of episodes with high emotional CR
and proportions of happiness and contempt shown; while
emotional entropy and proportion of anger contribute neg-
atively. Table 4 shows the details of the model explaining
65.3% of the variance in the satisfaction from collaboration.

Table 4: Final model for satisfaction from the collaborative

coding sessions. Percentage of variance explained = 65.3; all

p-values are less than .05

Variable Estimate Error t-value

intercept 3.31 1.81 2.91
happiness 1.51 0.68 2.38

anger -1.99 0.52 -2.20
contempt 3.83 0.50 2.65
entropy -4.87 0.22 -2.51

#episodeHighCR 0.02 0.01 -2.19

5 DISCUSSION AND CONCLUSIONS

In our study, we show the relation between groups’ joint
emotional pro�le (proportions of emotions, emotional en-
tropy and consistency, and emotional togetherness) and their
collaborative experience during after-school group coding
sessions. Emotions, such as happiness and contempt co-occur
with high perceived e�ectiveness and high satisfaction from
the collaborative coding. There are few possible explanations
for this e�ect. First, the children who showcase more happi-
ness might have an inherent interest in coding and since they
get into an environment where they can learn more about
it, they become happy. Second, satisfaction with the �nal
product and with the di�erent phases of game making and
fruitful negotiations with the peers and hence they showcase
higher proportions of happiness than others. There might be
a correlation between such emotions and the performance
as well, but more experimentation is required to con�rm this
hypothesis.

Negative emotions co-occur with low perceived e�ective-
ness and low satisfaction from the collaborative coding. One
of the plausible reasons could be that the groups with neg-
ative experiences had troubles with the activity and they
were disappointed (anger, sadness). Further, they might have
negative attitude towards coding or might be facing minor
issues with the hypotheses veri�cation in the coding (sad-
ness upon failure) or could have involved in arguments or
misunderstandings among peers.
The contingency between the proportions of emotions

and the collaborative experiences (satisfaction and perceived
e�ectiveness) is similar to some of the studies with the emo-
tions in education [3, 5, 15, 34, 44]. These results suggest
that the emotions are not only valuable to study the relation
between two variables but also to understand the process.
The added value in this paper is the real-time analyses and
using emotions to de�ne measurements which can explain
the collaborative processes.
Next, high perceived e�ectiveness and high satisfaction

are positively correlated with the emotional consistency and
negatively correlated with the emotional entropy. A post-hoc
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analysis shows negative and signi�cant correlation between
the average emotional entropy of the groups and their aver-
age emotional consistency (r(20) = -0.49, p < .05). This result
is not completely intuitive. Mathematically, it is more prob-
able to have high consistency across two consecutive time
frames when the entropy values are the highest. For two time
frames that have uniform unit distribution will be identical.
We propose to interpret entropy and consistency together.
Correlations among collaborative experiences, emotional
entropy and emotional consistency show that the positive
experiences are accompanied by low range and consistent set
of emotions. Similar results were reported with performance
in pair programming [58] and eye-tracking, concerning the
entropy-consistency of the exploration patterns. This paper
has an advantage in terms of ease of implementation, per-
vasiveness, and ubiquitous nature of measuring device, i.e.,
web-cam.

Finally, the emotional togetherness (CR) is observed to
be higher for the groups with high perceived e�ectiveness
and high satisfaction than for the groups with low perceived
e�ectiveness and low satisfaction. This can be explained by
the fact that the groups having high e�ectiveness and sat-
isfaction might also manage the collaboration in a better
manner than the groups having low e�ectiveness and satis-
faction. Collaboration management is based on initiating and
sustaining long term shared understanding among the peers;
the main aim of a collaborative problem solving task is to ar-
rive at a common ground earlier in the collaboration [8] and
then maintaining this common ground through sustained
e�orts[11]. High emotional togetherness (CR) indicates to-
wards this e�ect taking place within the coding context as
well.

Another interesting �nding from the togetherness (CR)
is about the number of high CR episodes and their average
length. A post-hoc analysis shows positive and signi�cant
correlations between CR and number of episodes with high
CR (r(20) = 0.44, p < .05), between CR and average length of
the high CR episodes (r(20) = 0.65, p < .001) and the number
of CR episodes and their average length (r(20) = 0.51, p < .05).
This also shows that peers in a group with high perceived
e�ectiveness and high satisfaction during the collaborative
codingmight try to initiate andmaintain the common ground
for the success of their collaboration more frequently and for
longer periods. Regarding cross-recurrence (CR, emotional
togetherness), similar results were reported from the studies
with dual eye-tracking[22, 43, 52] and bio-signals[60]. Again,
the added value from this contribution is the a�ordable and
accessible instrument.
In terms of the most important components of the joint

emotional pro�le to explain the collaborative experiences,

we observe that the proportion of anger and emotional en-
tropy appear in the models for both e�ectiveness and satis-
faction. Moreover, these two measurements have negative
coe�cients showing that high proportions of anger and hav-
ing a wide range of emotions in a given time period have
detrimental e�ect on both the perceived e�ectiveness and
satisfaction. For the satisfaction, showcasing happiness and
contempt and having a large number of episodes with high
levels of emotional togetherness (CR) coincide with high
levels of satisfaction. On the other hand, having consistent
set of emotions and a high emotional togetherness (CR) is
coincidental with the high levels of perceived satisfaction.

Design implications

This study reveals promising perspectives on how to design
collaboration support systems to inform the peers about each
others’ current emotional state. An emotional awareness tool,
can sustain long term engagement from the participants [39].
Such systems might be useful in remote collaborative situ-
ations, where the peers can not see each other. This scaf-
folding also mitigates the need for physical co-presence in
situations where emotional awareness among peers is of
utmost importance. This can also be useful for collaborat-
ing children having di�culties in expressing themselves or
detecting/perceiving their peers’ emotions (for example chil-
dren with Down syndrome or ASD). Moreover, the design
implications from gaze-aware systems [9, 57] can also be
used to inform the design of emotion-aware collaborative
systems.

Limitations and Future work

This study uses a window based measurement which is aver-
aged over the whole interaction of the team. Improvements
of the method used would be to include more temporal mea-
surements and modelling such as hidden Markov models.
Future work also includes, incorporating dialogues, annotat-
ing the di�erent stages of coding activities and comparison
with qualitative and manually labelled data. In addition, com-
bining entropy and consistency might provide more insights
about the evolution of emotion at a higher level. Further,
considering the cross-recurrence for each type of emotion
separately could also inform us about which kind of emo-
tions are jointly shown and for how long. This can help us
in designing more informed sca�olding tools. Finally, future
research should focus on experimenting with other indepen-
dent variables, such as adaptive coding exercises according
to the expertise of the children, di�erent group composition
and visual versus textual coding environments.
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6 SELECTION AND PARTICIPATION OF
CHILDREN

All the participants of the study were students from the
Trondheim (Norway) region whose teachers have applied
to participate in our workshops as an out-of school activ-
ity. Studies took place at the university campus in specially
designed rooms. Data related to the study were collected
after permission from the national Data Protection O�cial
for Research, following all the regulations and recommenda-
tions for research with children. A researcher contacted the
teacher and the legal guardian of each child to get a written
consent that gave permission for the data collection. The
children were informed about the data collection process and
their participation in the study was completely voluntary.
They could withdraw their consent for the data collection at
any time without a�ecting their participation in the coding
activity.
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