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ABSTRACT

We propose a new transform speech codec that jointly encodes a
wideband waveform and its corresponding wideband and narrow-
band speech recognition features. For distributed speech recogni-
tion, wideband features are compressed and transmitted as side in-
formation. The waveform is then encoded in a manner that exploits
the information already captured by the speech features. Narrow-
band speech acoustic features can be synthesized at the server by
applying a transformation to the decoded wideband features. An
evaluation conducted on an in-car speech recognition task show that
at 16 kbps our new system typically shows essentially no impact in
word error rate compared to uncompressed audio, whereas the stan-
dard transform codec produces up to a 20% increase in word error
rate. In addition, good quality speech is obtained for playback and
transcription, with PESQ scores ranging from 3.2 to 3.4.

Index Terms— transform coding, speech coding, distributed
speech recognition, Siren codec

1. INTRODUCTION

In client-server speech recognition applications, a key issue is how
speech information is sent to the server. One approach, called net-
work speech recognition (NSR), uses a traditional voice codec on the
client device. At the server, the decoded speech is is passed to the
recognizer for feature extraction and recognition. Alternatively, fea-
tures can be extracted directly from the codec parameters, if access
to the bitstream is available [1]. In distributed speech recognition
(DSR) [2], features are computed directly on the client device, en-
coded and then transmitted to the server [3, 4].

Both approaches have advantages and disadvantages. One one
hand, NSR enables reconstruction of the speech waveform for tran-
scription and diagnostic tests. However, voice codecs are typically
optimized for perceptual quality, so recognition accuracy degrades
compared to that with uncompressed audio, especially in noisy envi-
ronments. On the other hand, DSR typically has minimal accuracy
loss compared to uncompressed audio, and can operate at a lower bit
rates than voice codecs, as only a small number of coefficients are
transmitted per frame. However, with DSR it’s very difficult to re-
cover the speech signal. While approaches to speech reconstruction
from ASR features have been proposed [5, 6], the quality is severely
degraded compared to that of voice codecs. This makes it difficult
to generate both transcription of the spoken words and other signal
metadata, e.g. related to the speaker and environment.

We present here a new voice codec that jointly encodes both the
speech waveform and the speech recognition features, with the goal
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of designing a system that achieves both high ASR performance and
high reconstructed audio quality. Our new codec operates by en-
coding the acoustic features as in a DSR system, and then encoding
the waveform in a manner that exploits the spectral information al-
ready captured by the ASR features, keeping the total bit rate the
same. The proposed codec is called SirenSR, and is based on Siren,
a transform codec for wideband audio that operates at 16 kbps and
has been standardized as ITU-T recommendation G.722.1 [7].

The feature encoding scheme in SirenSR has several benefits
over previously proposed DSR approaches. First, we encode the full
cepstral vector, rather than a truncated version. This allows perfect
reconstruction of the log mel spectrum, which enables spectral-
domain speech enhancement algorithms to be applied at the server.
Second, we quantize the ASR features without codebooks; this
minimizes the risk that codec performance degrades when speech
is observed in deployments with speech statistics different from
those seen in development. Finally, our codec jointly and efficiently
encodes both wideband and narrowband speech features provid-
ing compatibility with existing server-side recognizers trained from
narrowband data, while enabling wideband features to be collected
for building future recognizers. Our experimental results indicate
that SirenSR produces recognition accuracy essentially equivalent
to uncompressed speech (compared to a 20% relative increase in
word error rate with the original Siren codec), with only minimal
degradation in perceptual quality.

In Section 2 we present our new method for feature encoding. In
Section 3 we describe our new waveform encoding using transmit-
ted ASR features. In Section 4 we present experimental results that
confirm the advantages of SirenSR.

2. DSR SYSTEM

The primary goal of SirenSR is to support distributed speech recog-
nition (DSR) applications. As a result, we mimic conventional DSR
techniques by directly encoding mel-frequency cepstral coefficients
(MFCC). One disadvantage of conventional DSR techniques is that
they implicitly assume that the front-end processing of the speech
recognition system will not change over time. Systems built from
data collected under such a codec will may not be able to take ad-
vantage of advances in codec design.

2.1. The full cepstral vector

Compared to previous DSR approaches, we extend the DSR bit-
stream in three ways: we retain and encode the full cepstral vector,
we use simple time-series quantization and compression techniques,
and jointly encode narrowband and wideband cepstral sequences.

A typical MFCC front end will calculate on the order of 24 log
mel-spectral energies, rotate the vector with a DCT, and then keep
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only the first 13 resulting MFCCs. By encoding all 24 MFCCs, we
maintain a more precise and dimension-independent spectral esti-
mate. This enables the development of server feature enhancements
that operate in the log mel-spectrum domain. It also enables alterna-
tive transforms for dimensionality reduction other than the conven-
tional truncated DCT to be applied prior to recognition.

2.2. Compression of speech features

In SirenSR we use a scalar quantization technique, without code-
books. Although scalar quantization can be less efficient than vector
quantization on matched data, it is desirable for two reasons. First,
codebooks take up significant memory, which can be an issue on
mobile devices. Second, the codebooks will only be effective at
quantizing the residual error if the speech seen in deployment has
statistics similar to those seen when training the codebooks.

To encode the MFCC feature vectors, we assume that the time-
series sequences for each cepstral coefficient are statistically inde-
pendent. Thus, we apply adaptive differential pulse code modulation
(ADPCM) quantization [8] to each sequence independently.

The quantization works best when the sequences to quantize
have zero mean and are temporally decorrelated. To achieve zero
mean, we apply dynamic mean normalization in the encoder and
decoder. Empirically, we found that this is only necessary for the
first two MFCC, C0 and C1. Bits can also be assigned according to
the order of MFCCs. For example, lower order of MFCCs will use
more bits than higher order of MFCCs. We allocate bits uniformly
for all sequences; we don’t expect significant gains to come from
nonuniform allocation, as the ADPCM encoders are operating at rel-
atively low bit rates. To decorrelate the coefficients over time, we
use a simple first-order predictor, subtracting a scaled version of the
previously quantized value from the current sample:

e(n) = x(n) − αx̂(n − 1) (1)

The prediction error e(n) is then fed to a uniform scalar quantizer.
As in conventional ADPCM, we dynamically adjust the quanti-

zation step size based on the most recent decoded value of e(n). We
implemented this adaptation strategy via a two-stage lookup table.
The current quantized value is used as an index to look up a step
size adjustment factor. This value is added to the current adjustment
factor and the resulting new value is used as an index to look up a
step size in the step-size table.

2.3. Joint encoding of narrowband and wideband MFCCs

Historically, telephony channels have been bandlimited to no more
than than 4 kHz. As a result, the vast majority of in-domain acoustic
training data is narrowband (8 kHz sampling). Deploying a narrow-
band DSR solution would allow for the most accurate system to-
day, but would preclude collecting data for more accurate wideband
(16 kHz sampling) systems in the future.

SirenSR incorporates acoustic features for both wideband and
narrowband speech. Thus, if wideband speech acoustic models are
not available, the ASR server can apply the acoustic features of nar-
rowband speech to existing HMMs, while accumulating data for
later training of wideband speech HMMs.

The differences between the MFCC of narrowband and wide-
band speech are mainly due to differing mel frequency filter loca-
tions, and a different number of filters. For example, in this study,
the number of filters for the wideband speech is 24, ranging from
0-8 kHz, while narrowband speech is parameterized using 22 filters
ranging from 0-4 kHz.

The narrowband and wideband MFCCs are highly correlated.
Instead of encoding the acoustic features of each set independently,
SirenSR predicts the MFCC of narrowband speech from the wide-
band MFCC through an affine transform. The transform parameters
are estimated by minimizing the mean square error (MMSE) com-
puted between a parallel set of narrowband and wideband MFCCs.
Although the MMSE estimation matrix is obtained through a train-
ing set, it is essentially an interpolator and should be robust to acous-
tic mismatch in held-out data.

{A,b} = argmin
{A,b}

∑
i

|AxWB(i) + b − xNB(i)|2 (2)

The estimated narrowband feature for any frame i can be obtained
through Eq.3 given the corresponding decoded wideband feature
xWB(i):

x′
NB(i) = AxWB(i) + b (3)

To obtain a more accurate estimation of the narrowband feature,
an enhancement layer can be added, where the error between the
estimated narrowband features and the original narrowband features
is also encoded using ADPCM. This requires the calculation of the
original narrowband features at the client side, and costs additional
bits for encoding the error during transmitting. Such a layer is op-
tional, depending on performance requirements.

3. SPEECH WAVEFORM ENCODING

Most voice codecs utilize a source-filter model to encode the speech
signal. The signal is modeled as the convolution of excitation signal
generated by the vocal chords with a time-varying all-pole filter that
represents the shape of the vocal tract. The parameters of the all-
pole model are the well-known LPC coefficients that are central to
most codecs. In contrast, so-called transform codecs do not assume
a signal model at all. Instead, the waveform is converted into the fre-
quency domain using a signal transform such as the DCT or lapped
transform. The transform-domain signal is then directly quantized
and encoded in some manner. Because speech recognition features
are derived from the Fourier transform of the input signal, it is more
efficient to compute them from transform-domain frequency repre-
sentations than from LPC coefficients.

3.1. The Siren Codec

Siren is based on Siren, which is a codec originally proposed by Pic-
tureTel and standardized by the ITU-T as G.722.11. We briefly re-
view the Siren encoding algorithm here; more details can be found in
the ITU-T standard [7]. Siren is a wideband codec, that is, it encodes
audio sampled at 16 kHz, with a reconstruction bandwidth of 50 Hz–
7 kHz. It operates on 40 ms frames (640 samples) with a 50% frame
overlap. Each frame is processed by a modulated lapped transform
(MLT), which results in 320 real-valued MLT coefficients per frame.
Frames are independently processed. At the encoder a smooth spec-
tral estimate is computed as follows. The MLT coefficients for each
frame are first divided into 14 uniform regions between 50 Hz and
7 kHz, corresponding to a width of 500 Hz. The root-mean-square
(RMS) energy in each region is computed from the MLT coefficients
to provide a coarse representation of the spectral envelope.

Based on the RMS energy values, the MLT coefficients in each
of the 14 regions are quantized using a process called categorization,
during which a deterministic search is performed to find the set of

1Siren operates at 16, 24, or 32 kbps, while G.722.1 is only standardized
for 24 and 32 kbps.
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quantization and coding parameters that most accurately represents
the MLT coefficients in each region, not exceeding the bit budget
corresponding to the operating bit rate.

3.2. Waveform encoding using ASR features

As described in the previous section, the encoding performed by
Siren is based on two stages 1) the computation of the smooth spec-
tral estimate consisting of the RMS energy in 14 spectral bands and
2) the categorization procedure that encodes all of the MLT coeffi-
cients using the RMS energy values. In our proposed SirenSR codec,
the 14 RMS energy values are derived from the encoded MFCC co-
efficients, rather than computed directly from the MLT coefficients.
For that we need to address three main challenges. First, we need
to compute the energy in 14 uniformly spaced frequency bands from
the energy values of 24 mel-spaced frequency bands. Second, the
ASR front-end and the Siren codec work with different frame sizes
and frame rates. MFCCs are computed from 25 ms frames at a rate
of 100 frames/sec, while Siren uses 40 ms frames at 50 frames/sec.
Third, the ASR front end uses an spectral representation based on the
FFT, while the Siren codec uses a spectrum derived from the MLT.

To compute the energy in 14 uniformly spaced bands, we es-
sentially invert the MFCC processing pipeline to obtain an estimate
of the power spectrum. Because of the mel-filtering operation, this
process is not actually invertible and so only a smoothed estimate
of the power spectrum can be obtained. In SirenSR we compute the
estimated smoothed power spectrum by

xPOW = M† exp(C−1x̂MFCC) (4)

where M† is the pseudoinverse of the matrix that contains the mel
filterbank, C−1 is the square IDCT, and the exp() operator applies
to all vector elements. From this smooth power spectrum, we can
estimate the RMS energy in 14 uniformly spaced subbands between
50 Hz and 7 kHz by averaging values in the appropriate FFT bins.

The ASR front end and Siren use frequency representations
based on different transforms. This means that the RMS energy
values estimated from an FFT-based power spectrum may be biased
when compared to those values computed from an MLT. To see
this, we can write down the expression for the RMS energy in one
of the 500 Hz subbands, computed from the average of 20 MLT
coefficients

MLTRMS =

√√√√ 1

20

19∑
m=0

|mlt(m)|2

=

√√√√ 2

20N
{

19∑
m=0

[|fft(m + 0.5)|2 − (−1)mO(m)]}

≈
√

2

N

√√√√ 1

20

19∑
m=0

|fft(m + 0.5)|2 ≈
√

2

N
FFTRMS

(5)

where O(m) = (R2 − I2) sin(2A), A = (m + 0.5)π/N , R and I
are the real and imaginary part of fft(m + 0.5), and N is the size of
the MLT. Thus, the RMS computed from the MLT differs from that
computed from the FFT by a constant scale factor. Thus, the RMS
energy values derived from the MFCCs must be appropriately scaled
prior to use by Siren.

Because the front end uses 25 ms windows compared to the
40 ms windows used by Siren, the RMS estimate computed from

the MFCC features is only accurate for a portion of the correpond-
ing codec frame. As the MFCC frame rate is twice the default Siren
frame rate, we average RMS energy estimates from two consecutive
MFCC feature vectors to get the estimate for the corresponding Siren
frame. While this is an approximation, we have found it to work well
in practice.

Once we have an estimate of the 14 RMS energy values derived
from the MFCC feature vectors, the rest of the encoding process
(categorization and entropy coding of the quantized values) can pro-
ceed unaltered, with the bit budget for waveform encoding reduced
by the bits used in MFCC encoding, keeping the total operating bit
rate unchanged. At the decoder end, the same conversion process to
map from MFCC feature vectors to Siren RMS energy values is per-
formed. These values are then used with the quantized MLT values
to reconstruct the speech waveform. Note that under poor network
conditions, with SirenSR we can drop the operating bit rate by send-
ing just the MFCC representation, falling back to an DSR mode,
which is not possible with the original Siren codec.

4. EXPERIMENTS

We evaluated SirenSR using an automotive command-and-control
task with a vocabulary of 5,000 words, with utterances including
media control, commands, and phone dialing. The acoustic data was
collected from a far-field microphone; it covered three driving condi-
tions (parked with engine on, city driving, and highway driving) and
three dashboard conditions (fan off, moderate fan noise and maxi-
mum defrost). The training, development, and test sets contained
33.6, 3.8, and 4.1 hours of speech, respectively.

The feature parameters used in this study are 39-dimensional
MFCCs that consist of 13 cepstral features, plus delta and delta-delta
features. The frame length is 25 ms, with a 10 ms frame shift, for
both wideband and narrowband speech. The acoustic models in all
experiments are context-dependent HMMs with 5,500 tied states and
16 Gaussians per state.

4.1. ASR performance for wideband and narrowband speech

In SirenSR, for wideband feature compression, we quantize each di-
mension of the MFCC to 2 bits, corresponding to a total of 4.8 kbps.
Table 1 demonstrates development-set accuracy across three differ-
ent testing scenarios, where the acoustic models were trained on un-
compressed PCM-derived features. The upper bound is illustrated
by the PCM result, where the test features are also derived from un-
compressed PCM speech. When the test signal is compressed with
Siren at 16 kbps, decoded to a PCM waveform, and then converted
to MFCC, there is a significant drop in accuracy, especially for the
Park and City conditions. When the test MFCC are decoded from
SirenSR, the performance is nearly identical to that with PCM data.

We trained two sets of HMMs using features from SirenSR and
Siren, to conduct matched/mismatched recognition experiments.
The results for the test set are shown in Table 2. SirenSR shows a

Test Quiet Park City Highway

PCM 91.61 84.82 89.34 76.63
Siren 90.74 75.04 80.28 73.34

SirenSR 91.67 85.02 89.69 75.31

Table 1. Accuracy of wideband speech recognition using features
extracted from PCM, Siren, and SirenSR, based on PCM trained
HMMs on Dev set.

5150



Training/Test Test data

Training data PCM Siren SirenSR
PCM 79.67 78.75 78.92
Siren 74.75 75.54 74.77

SirenSR 80.53 72.72 80.54

Table 2. Average Accuracy of wideband speech recogni-
tion using features extracted from PCM, Siren, SirenSR under
matched/mismatched testing condition on Test set.

consistent significant improvement over Siren under both matched
and mismatched training/test conditions.

For narrowband speech, the MMSE estimation matrix is trained
using the training set using Eq. 2. An optional enhancement layer
using ADPCM is added to encode the difference between the origi-
nal narrowband features and the estimated narrowband features with
2.2 kbps. Thus a total of 7 kbps is spent on DSR features in this
configuration.

Table 3 shows ASR accuracy for PCM, GSM, Siren, SirenSR,
and SirenSR with enhanced layer (SirenSR-e). The accuracy of
GSM and Siren degrades significantly with decreases in SNR,
whereas both SirenSR and SirenSR-e maintain good performance,
compared to the PCM matched training/test scenario.

Test Quiet Park City Highway

PCM 77.29 81.67 84.26 73.76
GSM 75.71 75.71 72.03 62.67
Siren 74.51 62.07 74.27 67.88

SirenSR 78.43 81.58 83.72 72.41
SirenSR-e 79.58 82.32 83.83 72.56

Table 3. Accuracy of narrowband speech recognition using features
extracted from PCM, GSM, Siren, SirenSR based on PCM trained
HMMs.

4.2. Speech Reconstruction

We reconstruct the encoded speech as described in Section 3. Fig-
ure 1 illustrates how the PESQ score (which measures speech recon-
struction quality) varies with acoustic condition and the number of
bits dedicated to reconstruction. SirenSR suffers from a 0.2 absolute
drop in PESQ for the quiet condition, and matches Siren to within
0.05 for the other three conditions.

Siren at 16 kbps uses about 14 kbps to encode the speech re-
construction. At this bit rate on our data, the average PESQ score is
3.51. SirenSR uses 4.8 kbps for DSR features, leaving 11.2 kbps for
speech reconstruction. At that bit rate, the average PESQ of recon-
structed speech is 3.35. SirenSR-e uses an additional 2.2 kbps for
the DSR features, which reduces the bits available for speech recon-
struction. As a result, the average PESQ drops to 3.23. Annecdotally
we’ve found the SirenSR reconstructed speech quality is higher than
other DSR-based reconstruction algorithms (e.g. [5, 6]), which is in
fact expected, as such systems typically use a lower overall bit rate.
Better speech quality will decrease listener fatigue for transcription.

5. CONCLUSION

We proposed the new SirenSR voice codec for jointly encoding ASR
features and speech waveforms. At 16 kbps, SirenSR results in ASR
accuracy comparable to that of uncompressed speech and signifi-
cantly better than the original Siren codec. In addition, PESQ eval-

Fig. 1. PESQ comparison under different noise conditions

uations show that the reconstructed waveforms have minimal loss in
quality compared to Siren. The experimental results confirm that the
proposed codec successfully combines the advantages of DSR and
NSR to obtain both high performance speech recognition and good
quality audio. The proposed methodology can be extended to many
other voice codecs.
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