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Abstract. This paper addresses the message complexity of secure computation in the 
(passive adversary) privacy setting. We show that O(nC) encrypted bits of communi- 
cation suffice for n parties to evaluate any boolean circuit of size C privately, under a 
specific cryptographic assumption. This work establishes a connection between secure 
distributed computation and group-oriented cryptography, i.e., cryptographic methods 
in which subsets of individuals can act jointly as single agents. Our secure computation 
protocol relies on a new group-oriented probablistic public-key encryption scheme with 
useful algebraic properties. 
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1. Introduction 

This paper connects two areas of recent cryptographic research: secure distributed com- 
putation and group-oriented cryptography. Several solutions have been found to the 
problem of securely evaluating an arbitrary boolean circuit under cryptographic as- 
sumptions, beginning with the work of Yao [14] and Goldreich et  al. [7]. The notion of 
group-oriented cryptography, in which the power of a secret key holder is distributed 
over a number of participants, was introduced by Desmedt [2]. 

We focus on the message complexity (i.e., number of encrypted bits of communica- 
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tion) of secure computation protocols in the privacy setting. Informally, a protocol is 
private if no subset of "gossiping" (but otherwise honest) participants can extract useful 
information about the nongossipers' inputs. All previous methods for private computa- 
tion required a message complexity that was quadratic in the number of participants. In 
this paper we show an improvement to a message complexity that is linear in the number 
of participants, under a specific cryptographic assumption. 

1.1. Previous Results in Message-Efficient Secure Computation 

Previously, the lowest message complexity known for n parties to evaluate a circuit of 
size C privately under reasonable cryptographic assumptions was O(n2C) encrypted 
bits of communication. This same complexity was achieved using either of the main 
techniques for secure circuit evaluation in the cryptographic setting: the "gate-by-gate" 
approach or the "circuit-scrambling" approach. 

In the gate-by-gate approach, each gate of the circuit is computed by having each pair 
of the n parties perform a private two-party protocol. In the protocol of Galil et al. [6], 
with efficiency improvements by Goldreich and Vainish [8], each two-party protocol 
is a single instance of "One out of Two Oblivious Transfer" (l-2-OT). It is possible to 
implement two-party l-2-OT privately using a constant number of encrypted bits under 
a cryptographic assumption (e.g., three encrypted bits suffice under the assumption that 
composite quadratic character is hard to compute). This gives a total message complexity 
of O (n2C) encrypted bits. 

In the circuit-scrambling approach, each party takes a turn in modifying the truth 
tables of the gates of the circuit. In the protocol of Chaum et al. [1], each party can 
randomly permute the rows, and can randomly complement certain rows and columns 
of each truth table. Records of each party's modifications are preserved in the form of 
bit commitments, which accompany the scrambled circuit as it passes from party to 
party (to enable circuit evaluation after the nth party has finished scrambling). Each 
party contributes a constant number of bit commitments for each gate (e.g., one bit 
commitment for each truth table row), and so the scrambled circuit as it passes from 
party i to party i + 1 includes O(iC) bit commitments. When each bit commitment is a 
single encryption, this gives a total message complexity of O (n 2 C) encrypted bits. These 
results rely on a bit commitment scheme with special properties, and can be based, e.g., 
on the intractability of computing discrete logarithms or composite quadratic character. 

1.2. Contributions of this Paper 

Our methods make novel use of ideas from group-oriented cryptography. In a group- 
oriented cryptosystem, any subset of the group can "participate" in an encryption. The 
public keys of the participants are used to encrypt a message, and the cooperation of all 
participants is needed to decrypt it. Practical implementations of group-oriented public- 
key encryption were given by Desmedt and Frankel [3]. (See also the related notion of 
fair public-key encryption [ 1 l].) We extend their implementations to achieve a "joint" 
encryption scheme with additional desirable properties: 

�9 (Compact) The size of a jointly encrypted bit is independent of the number of 
participants. 
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�9 (Xor-Homomorphic)  It is easy for anyone to compute a joint encryption of the XOR 
of two jointly ehcrypted bits. 

�9 (Blindable) It is easy for anyone to "disguise" a joint encryption by replacing it 
with a random ciphertext that decrypts to the same message. 

� 9  (Witnessable) It is easy for any participant to "withdraw" from a joint encryption 
noninteractively (i.e., by sending a single value to the other participants). 

Using this new scheme, we can reduce by a factor of  n the number of  bits broadcast 
by n parties to compute a circuit of size C securely. Specifically, in the privacy setting 
(against a passive adversary), only O (n C) encrypted bits of  communication are needed. 

We give our model and background notions in Section 2, our new joint encryption 
scheme in Section 3, our new protocol for message-efficient secure computation in 
Section 4, and some concluding remarks in Section 5. 

2. Model and Background Notions 

In this section we give some definitions and facts about distinguishability of  distributions 
[13], [9], and then present our model for secure computation. 

2.1. Distinguishability of Distributions 

Two families of  distributions {A 1 }, {Ak 2 } are said to be "computationally indistinguish- 
able" if no probablistic polynomial-time (p.p.t.) Turing machine "distinguisher" can 
decide which distribution it is sampling from with a probability of  success nonnegligibly 
better than random guessing. More formally, for every p.p.t. Turing machine M and 
every c , m  > 0, there is K > 0 such that, for all k > K, Ip I - p21 < k -r where 
p~ = prob(M[di  . . . . .  dm] = 1: dl . . . . .  dm +--A~). 

Two families of  distributions { A~ }, {A 2} are said to be "statistically indistinguishable" 
if the distance between distributions is negligible. More formally, for all c > 0 there is 
a K > 0 such that, for all k > K, k -c > IA~ - Ak21 = ~ IA~[x] - A2[x]l, where the 
sum is over the domain of the distributions. 

When the parameter k for a family of  distributions is obvious, we often omit it, with 
a corresponding extension of terminology. For example, we may call two distributions 
indistinguishable when the implied families are indistinguishable. Throughout this pa- 
per the parameter k for a family of  distributions is always assumed to be the security 
parameter (also denoted k) for our joint encryption scheme. 

Here are a few facts about families of  distributions that will be useful. The first is that 
indistinguishability is transitive. 

Fac t  1. / f  A l , A 2 are computationally (statistically) indistinguishable and A2, A3 are 
computationally (statistically) indistinguishable, then A 1, A3 are computationally (sta- 
tistically) indistinguishable. 

Proof.  When A l, A2 and A2, A3 a re  statistically indistinguishable, the proof follows 
from the triangle inequality: IAl - A31 = ~ z  IAl[Z] -- a3[z][ _< ~ z  IAl[z] - a2[z]J + 
I A2 [Z] -- A3 [Z]I = I Al - A21 +l  A2 - A31. When At,  A2 and A2, A 3 are computationally 
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indistinguishable, then a distinguisher M for A l, A3 must also be a distinguisher either 
for Al,  A 2  o r  for A2, A3, again by the triangle inequality: Ip I - p31 < Ip 2 - p][ + 
ip2 _ p3], where p~ = prob(M[dl . . . . .  d,,] = 1: dl . . . . .  d,, ~ A~); thus at least one 
of  the terms on the right-hand side of  the inequality is nonnegligible whenever the 
left-hand side is nonnegligible. [] 

The second useful fact is that indistinguishability is preserved under products. The 
product distribution AI x A2 x . . .  x Am is defined to be a distribution on m-tuples 
where the ith component is sampled according to the distribution Ai. 

Fact  2. If  A l, A2 are statistically (computationally) indistinguishable, then A l x A 
and A2 x A are statistically (computationally) indistinguishable, for any independent 
A (that is samplable in probabilistic polynomial time). 

Proof. IAl • A - -  A 2 X A I = Z ~ , z  I(Al • A) [y , z ]  -- (A2 x A)[y ,z] I  = 
Y~z A[z] Y~y IAl[y] -- A2[Y]l _< Y~y IAl[Yl -- A2[Y]I, which is negligible when AI, A2 
are statistically indistinguishable, implying the statistical indistinguishability of  A I x 
A, Az x A. For the other case, we argue the contrapositive, i.e., that the computational 
distinguishability of  A l x A, A2 x A implies the computational distinguishability of  
Ai, A 2. If  Ai x A, A2 x A have a p.p.t, distinguisher M, then consider the following 
machine M':  Given m = poly(k) samples from Ai as input, M'  constructs m samples 
from A to form m samples from Ai x A, and then calls M. M' is a p.p.t, distinguisher 
for ,'X l, A2. [] 

2.2. Model of Secure Computation 

We assume that there are n parties, each of  which is a p.p.t. Turing machine (read-only 
input tape, read-only auxiliary tape, write-only output tape, random tape, one or more 
work tapes). The parties communicate by means of  a broadcast channel; this can be 
modeled as an additional tape (communication tape) for each machine that is write-only 
for its owner and read-only for everyone else. When a party writes a message to this tape, 
we may say that the message has been "broadcast" or "posted." A protocol begins with 
all n parties intheir  start states, alternates local computation with synchronous rounds 
of  broadcast, and ends when all parties have reached their final states. The output of  the 
protocol is the (common) value written on the output tapes of  the processors. 

We are concerned with the message complexity of  a protocol. This is measured as 
the total number of  bits written on the communication tapes during the execution of 
the protocol. Since our protocols are cryptographic, we state the message complexity 
in terms of  the number of  enc~pted bits written on the communication tapes. For the 
protocols we consider, this is all or most of  the communication that occurs, and it is 
also a convenient measure independent of  advances in either encryption methods or 
cryptanalytic techniques. Alternatively, measures could be expressed using a security 
parameter: Given a security parameter k, O(e) encrypted bits of  communication is 
equivalent to O(ek) bits of  communication for the protocols discussed in this paper. 

When the parties [1 . . .  n] begin with xl . . . . .  xn on their input tapes, al . . . . .  an on 
their auxiliary tapes, rl . . . . .  rn on their random tapes, and execute protocol P,  then we 
let VIEW p [(x t, a l) . . . . .  (x,, an) I rt . . . . .  r,,] denote the concatenation of the contents 
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of all input, auxiliary, and communication tapes at the start of  the protocol, and after 
every round of broadcast. The view of a subset of  parties S, denoted 

VIEWP[(xl ,  a l)  . . . . .  (an, Xn) I rl . . . . .  rn] 

is the restriction to those tapes readable by S. We let VIEWe[(Xl,  al)  . . . . .  (xn, a,z)] 

denote the distribution of views with respect to a uniformly random choice of random 
tapes rl . . . . .  r,z; VIEWse[(xl, a l)  . . . . .  (xn, an)] is defined similarly. 

For notational convenience, we typically omit the reference to auxiliary tapes in the 
notation for views. For example, we write VIEWs e [Xl . . . . .  xn] to denote the distribution 
of views of S of executions of  the protocol. In this paper the auxiliary tape of a party 
always holds cryptographic keys (i.e., the public key and its own private key). 

We say that a protocol is "private" if its execution reveals no useful information to any 
proper subset of  (polynomial bounded) gossiping processors. More precisely, suppose 
that protocol P computes a function f ;  i.e., when each party i begins with ui on its 
input tape, all parties end with f ( u l  . . . . .  un) on their output tapes. Let S be a proper 
subset of  parties; without loss of generality S = [1 . - .  t], t < n. Then P is private if, 
for all ul . . . . .  ut, for all vt+l, wt4-1 . . . . .  On ,  Wn such that f ( u t  . . . . .  ut, Vt+l . . . . .  vn) = 
f (ul . . . . .  u t, Wt+l . . . . .  Wn), the distributions of  views 

VIEW~'[Ul . . . . .  ut, vt+l . . . . .  vn] and VIEW~[ul  . . . . .  ut, wt+L . . . . .  wn] 

are computationally indistinguishable. By this definition, the messages seen by any subset 
of  gossipers during the protocol cannot help them guess the other's inputs (beyond what 
they already know from their inputs together with the final output). 

3. Joint Encryption 

A joint encryption scheme for n parties [ 1 . . .  n] is given by a public key Kpub, n private 
keys KI . . . . .  Kn, a collection of encryption functions {Es: S c_ [1 . . .  n]} and a collec- 
tion of decryption functions { D i : i ~ [ 1 �9 .. n ]}. The encryption functions are defined 
on bitstrings (i.e., have domain {0, 1 }*), and are possibly probabilistic. The connection 
among these functions is given by 

D i ( E s ( m ) )  = Es - l i l (m)  

for all m E {0, 1 }* and for all i E S. It should be easy to compute any Es given only the 
public key Kpub, but hard to compute any Di without the private key K i (where hardness 
is with respect to a security parameter k that governed the choice of  public and private 
keys). Lastly, it should always be easy to compute rn from Eo(m).  

In this section we describe a joint encryption scheme with special algebraic properties 
that is the main tool used for our message-efficient secure computation protocol. This 
encryption scheme is related to E1Gamal encryption [5], E1Gamal encryption with a 
composite modulus [10], and encryption based on quadratic residuosity [9]. A group 
encryption scheme of Desmedt and Frankel [3] is based on EIGamal encryption, but 
lacks the additional properties that we need for our secure computation protocol (i.e., 
Claims 2 and 3 of  Section 3.3). 
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3. I. Our Joint Encryption Scheme 

Let k be a security parameter. Let N = pq, p _~ q mod 4, where p and q are primes 
of  length k such that gcd(p - 1, q - 1) = O(1). Let g e Z~v have Jacobi symbol +1 
modulo N, and let g have order Z = |  in Z~v, i.e., (g) = {gr mod N: r e ZN} has 
size ~. = lcm(p - 1, q - 1)/c for some constant c > 1. 

The public key is [N, gX, mod N . . . . .  g~" mod N]. The trapdoor information for O i 

is xi, which is known to party i. No party knows the factorization of  N. Encryption of  a 
zero is given by 

I / /r / /r' ] 
Es(O) = gr mod N, gr' mod N, s 2 I-I gXj mod N , s  H gXj mod N 

~jES ] "  \jES I 

for r, r '  ~R ZN, s ~R Z~v. Encryption of  a one is given by 

( ) r  ( ) r '  1 E s ( 1 ) =  grmodN, g r ' m o d N , - s 2  H g  xj m o d N ,  s H g  xl m o d N  
\jeS I \jES 

for r, r '  ~R ZN, S ~n Z~v. Decryption is given by 

Di ([or,/~, V, 6]) = [u, r ,  y u  -x' mod N, 6fl-x' mod N]. 

The third and fourth components of E~(b) enable the value of  b to be computed easily. 
It is important that N be hard to factor, and that the Jacobi symbol modulo N of  

- 1  be + 1; otherwise, our scheme is provably insecure. The requirement that N = pq, 
p = q mod4,  was intended to provide these properties while minimizing the length 
of  N. 

It is important that the factorization of  N be unknown to all parties, because b is easy 
to determine from Es(b) given p and q (see Section 3.4). The keys for this scheme 
could be computed and distributed by a central server that knows n and a security 
parameter k. The center could choose the factors of  N of  length k, choose g, Xl . . . . .  xn 
appropriately, compute and publish the public key, and securely distribute the private 
keys. After distributing the keys, the center could destroy all of  its information, i.e., the 
factorization of  N does not need to be stored anywhere for any future purpose. 

3.2. Distributions of Jointly Encrypted Bits 

In this section we establish a few facts about some probability distributions associated 
with our joint encryption scheme. Let N, p, q, g satisfy the requirements for our joint 
encryption scheme: g has order )~ = |  in Z~v, N = pq, p = q mod4,  where p and 
q are primes of  length k such that gcd(p - I, q - 1) = O(1). Let U[X] be the uniform 
distribution on the set X. For any z 6 (g), define (9 z to be the following distribution on 
(g): [ zg  r mod N: r ~R ZN]. 

Fact  3. The distribution of jointly encryupted bits for a given bit is ~)1 x ~)1 >( U [Z~/]. 
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Proof.  The first term of  a joint encryption is gr mod N for r eR ZN, i.e., an element 
with distribution |  The second term is similar. The fourth term has distribution U[Z*u] 
since it multiplies a value in Z~v by s 6R Z~,. The third term is deterministic given the 
other three. [] 

Fact  4. For all z E (g), | and U[(g)l  are statistically indistinguishable. 

Proof. Le t /z  = ( ( p -  l ) ( q -  1))/)~. I f z g r m o d N  = y, then zgr 'modN = y for 
every r = r '  mod )~. It follows that under | )~ - P - q + 1 elements are selected with 
probability Iz /N each, and p + q - I elements are selected with probability (/z + 1)/N 
each. Under U, all ~. elements are selected with probability 1/~. each. 

I| - U[(g)]l = ~ I| - U[(g)][x]l 
xe(g) 

= ( ~ . - p - q + l )  ~ ~ + ( p + q - l )  /x+____~l 1 
N X 

= O(2-k).  [] 

Fact  5. For all zl . . . . .  Zm E (g), m = poly(k), | • "'" • | and U[(g)] m are 
statistically indistinguishable. 

Proof. Under | • " '" • | at least O- - p - q + 1) m elements have probability 
at most  (iz/N) m, and at most ~m _ ( ~  _ p _ q + 1)" elements have probability at most 
((Iz + I ) /N)  m. Thus 

IOz, X ' ' ' X O z m - - U [ ( g ) ] m [  < ( k - - p - - q + l )  m ( N )  -- 

+ (~.m _ (~. _ p _ q + 1)m) 

= O (2-k) .  []  

3.3. Properties of Our Joint Encryption Scheme 

We identify some useful properties of  our joint encryption scheme. 

Claim 1 (Compact). The size of each encrypted bit is four elements of Z N, independent 
of the number of participants. 

Claim 2 (XorTHomomorphic). From Es(b) and Es(b') itiseasytocomputeanelement 
in {z: Ds(z) = b ~ b'}. 

Proof. If  Es(b) = lot, 13, y, 8] and Es(b') = [~',/~', y ' ,  8'], then 

[dot' mod N,/~/~' m0d N, yy '  mod N, 6~' mod N] 

is an encryption of  b ~ b' under the keys of  S. [] 
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Cla im 3 (Blindable). From Es(b) it is easy to sample from {z: Ds(z) = b} with a 
distribution that is statistically indistinguishable from uniform. 

Proof.  If [or,/~, y, 8] is a joint encryption using Es, and r, r '  6R ZN, s 6R Z~v, then 

I 0/ (I'-I)r (I'-I / r' g 1 [0t', ~ ' ,  y ' ,  8'] = gr mod N, f lgr 'mod N, ys  2 gXj mod N, 8s gX~ mod 
\jES \jES / 

is a joint encryption of the same value. The value u '  is drawn from | is drawn from 
| 8' is drawn from U[Z~], and y '  is deterministic given the other three and the value 
of the encrypted bit. From the preceding section, we know that | x | x U[Z*u] is 
statistically indistinguishable from the uniform distribution U[(g)]  x U[(g)] x U[Z*N] 
(and statistically indistinguishable from | x | x U[Z~v], the distribution of joint 
encryptions). [] 

Cla im 4 (Witnessable). There is a function Wi such that Di (Es (b)) is easy to compute 
from E s( b ) and Wi ( E s( b ) ). Furthermore, each witness is half the size of an enc~. ption 
(i.e., two elements Of ZN). 

Proof.  If Es(b) ---- [u, fl, y, 8], then Di (Es(b)) can be easily computed from 

[ot-X' mod N, ,B -~' rood N] 

for any i 6 S. [] 

3.4. SecuriO, of Our Joint Encryption Scheme 

A probabilistic encryption scheme is GM-secure [9] if, for any two plaintexts, the distri- 
butions of ciphertexts are computationally indistinguishable (where the keys are chosen 
independently of  the plaintexts). We say that a joint encryption scheme is GM-secure if 
Es is GM-secure for every nonempty S _c [1 �9 �9 �9 n]. 

The security of  our joint encryption scheme can be related to the security of  ElGamal 
encryption with a composite modulus. We define E1Gamal encryption with a composite 
modulus as follows: E(M) = [gr mod N, Mg r~ rood N] for g, N chosen as in our joint 
encryption scheme, public key gX mod N, r 6R ZN, and for M c .A/l, where the message 
space A,~ is the set of  elements of  Z~ with Jacobi symbol + 1. 

Cla im 5 (Security). If  ElGamal encryption with a composite modulus is GM-secure, 
then our joint encryption scheme is GM-secure. 

Proof.  Suppose, for purposes of  establishing a contradiction, that ElGamal encryption 
with a composite modulus is GM-secure while our joint encryption scheme is not GM- 
secure. Then it would be easy to distinguish between composite ElGamal encryptions 
of + 1 and - 1, since these can be easily converted into almost uniformly random joint 
encryptions of one and zero, as follows. 
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Let ( g r m o d N ,  ( - l ) b g r X m o d N )  be a composite EIGamal encryption of ( - 1 )  b 
(using EIGamal public key gX mod N and r ~1~ ZN). Then 

[gr mod N, gr' mod N, s2( - 1)b g rx mod N, sg r'x mod N] 

is a joint encryption Es(b) drawn from the proper distribution | x | • U[Z~v], when 
r' 6R ZN, s 6R Z*N (e.g., using joint public key 

E N,rl ..... / XHrm~ 
forr l  . . . . .  rlSl-i EIr (g)). [] 

However, when p -- q - 3 mod4, our encryption scheme (and composite 
EIGamal) is not GM-secure if composite quadratic character (residue versus nonresidue) 
is easy to compute. The attacker sees gX mod N, ct = gr mod N,/3 = gr' mod N, ), = 
(-- l)bs2g ~x modN, 3 = sg r'x mod N, where b is the value of the encrypted bit (and 
where x = ~_,i~sXi). Let QRN(V) = 0 if v is a quadratic residue modulo N and 
1 otherwise. If QRN(' )  is easy to compute, then the attacker can determine b = 
(Q RN(Ot) * Q RN(g x mod N)) ~ Q RN(F ). 

The security of the original E1Gamal public-key encryption scheme reduces to the 
difficulty of breaking an instance of the Diffie-Hellman key exchange scheme [4] (i.e., 
a problem that is no more difficult than but not known to be equivalent to the discrete 
log problem). McCurley [ 10] showed that E1Gamal encryption with a suitably restricted 
composite modulus is secure against an adversary who could break the Diffie-Hellman 
key exchange, or could factor the modulus, but not both (see also [ 12]). However, this was 
a proof of security in the sense that no polynomial-time algorithm can invert a nonneg- 
ligible fraction of ciphertexts, and not GM-security (computational indistinguishability 
of ciphertexts). In fact, without restricting the message space to have Jacobi symbol + 1, 
McCurley's version of composite E1Gamal is not GM-secure: the Jacobi symbol of an 
encrypted message could be computed. 

3.5. Comments About Our Joint Encryption Scheme 

An important property of other group-oriented encryption schemes is "threshold de- 
cryption," i.e., encryption such that any sufficiently large subset of parties can decrypt. 
Our joint encryption scheme, as described above, does not have this property, i.e., the 
threshold for decryption is always n. However, if g and N are chosen as suggested by 
McCurley [ 10], then the technical condition for incorporating threshold decryption into 
our scheme is met. Specifically, McCurley uses g = 16, N = pq,  p = 8r + 3, q = 8s - 1 
(where r, s have special structure), and this meets the condition of Desmedt and Frankel 
[3] for their modified shadow generation scheme based on Lagrange interpolation (i.e., 
g has odd order in Z~v). For our main result, message-efficient secure computation, we 
do not need the threshold decryption property. 
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Our joint encryption scheme uses four elements of ZN to encrypt a single bit. Here is 
a possible two-element scheme: 

Es(b) = g~ modN,  ( -1 )  b l--I g x~ modN 
\ jES  I 

for r eR ZN. This scheme has the same properties of compactness, xor-homomorphism, 
blindability, and witnessability as the four-element scheme; it could be substituted into 
the message-efficient secure computation protocol in Section 4. Like the four-element 
scheme, it is GM-secure if composite EIGamal is GM-secure. If the four-element scheme 
is not GM-secure, then neither is the two-element scheme; we do not know whether the 
converse is true. 

3.6. Notation 

Since all joint encryptions in the remainder of this paper are with respect to the keys of 
all parties [1 . . .  n], we simplify the notation and write E(b) instead of Etl...nl(b). We 
also often omit "mod N" when obvious. Since our encryption scheme is probabilistic, 
Es(O) and Es(1) refer to almost uniformly random encryptions of these values (i.e., 
drawn from | • | x U[Z~v]). Given an encryption Es(b) = [a,/~, y, 6], an almost 
uniformly random ("blinded") encryption of the same value is denoted Es(b ~ 0) (i.e., 
drawn from | x O~ x U[Z~]).  We write gX = l-Iin__l gXi mod N. We use ")--~" to denote 
XOR, e.g., Y~=l bi -- bl �9 . . .  @ bn. 

4. Message-Efficient Secure Computation 

We now state our main result about secure computation with low message complexity in 
the cryptographic broadcast-only model. A boolean circuit consists of 1-ary NOT gates 
and 2-ary AND gates. 

Theorem 1. I f  EIGamal encryption with a composite modulus is GM-secure, then 
any boolean circuit with C gates can be privately evaluted by n parties using O(nC) 
encrypted bits of  communication. 

e 

We prove this theorem by presenting a circuit evaluation protocol and proving that 
it has the desired properties. The protocol is given in Section 4.1, and three lemmas in 
Section 4.2 prove correctness, communication efficiency, and privacy. 

4.1. Protocol for Circuit Evaluation 

The protocol begins with each party having its own input on its input tape, and its own 
private key xi together with the public key [N, gX, . . . . .  gX,] on its auxiliary tape. To 
start the protocol, each party broadcasts a joint encryption of its input bits. We show the 
encrypted output of any gate can be computed in a constant number of rounds from its 
encrypted inputs. For a NOT gate, the output can be found without any communication 
by XORing the encrypted input with a default encryption of a one (e.g., [ 1, 1, - 1, 1]). 
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For an AND gate, suppose the encrypted gate inputs are t~ = E(u)  and ~ = E(v).  
The protocol ends with every party able to compute tb = E(u A v), as follows: 

1. Each party i broadcasts/~i = E(bi) and Ci = E(ci),  where bi, ci ~R {0, 1}. 
2. Each party i broadcasts decryption witnesses Wi (t~') and Wi (~'), where: 

( a )  fi '  = E(u ~ bt @ . . .  @bn). 
(b) 13' = E(v  @ ct ~) " "  @ cn). 

3. Each party i broadcasts tb~ = E(wi)  = E(O ~ (bi A q )  ~ . . .  ~ (b~ A c~) 
(bi A v) ~ (u /x ci)), where: 
(a) E(bi A cj) ---- E(0)whenever  bi = 0. 
(b) E(bi A cj) = E(cj)  whenever bi = 1. 
(c) E(bi A v) and E(u A ci) are computed similarly. 

4. Each party i can now compute the encrypted output ~b of the AND gate: 
(a) w' = (u @ bl @ . . .  (9 b~) A (v @ cl @ " "  @ c~) = u' A v' (computable from 

step 2). 
(b) tb = E(w '  ~ wl ~ " " @ Wn). 

When the last gate in the circuit has been computed, all parties know a joint encryption 
of the circuit output. At this point, the parties broadcast decryption witnesses to enable 
all of them to compute the actual circuit output. 

4.2. Proof  o f  Theorem 1 

Lemma 1. The protocol in Section 4. l is correct. 

Proof. Correctness follows from the xor-homomorphic and witnessable properties of 
our joint encryption scheme, together with the distributivity of AND over XOR: w' = 
(UObl ~)'" "~)bn )A(U~)Cl ~)'" "~Cn ) = (U AU)(~)~-]i (UACi)~Y~4 (bi AU)~)Y~.i, j (bi Acj ) 
(u A U) ~ ~ i  wi, where wi = (bi A V) ~) (U A Ci) �9 Y]j(bi A cj). [] 

Lemma 2. The protocol in Section 4.1 satisfies the communication claim o f  Theorem 1. 

Proof. The proof follows from the compactness of our joint encryption scheme. No 
communication is needed for each NOT gate. Each AND gate requires two rounds of 
communication (since the broadcasts for steps 2 and 3 can be performed in parallel), and 
message complexity 4n encrypted bits (actually, three encryptions and two decryption 
witnesses per party, where each witness is half the length of an encryption). [] 

It remains to be shown that the protocol in Section 4.1 is private. Intuitively, privacy 
is achieved because everything remains encrypted throughout the protocol except for 
certain values that are completely random. Nothing is decrypted (or even sent) when 
a NOT gate is computed. When an AND gate is computed, the only values that are 
decrypted are u' and v'. These were derived from the original inputs to the gate by 
"masking" them with random bi, ci values chosen by each party. Fully decrypting these 
masked inputs--while critical to the efficient evaluation of the gate in our protocol--  
gives no information about the real inputs. Other than these random masked inputs, no 
values are decrypted during the computation of an AND gate. 
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In the proof of  Lemma 3, we say that each input line is "owned" by one of t h e n  
parties, i.e., the party that knows the boolean value to be supplied on that line. 

Lemma 3. IF EIGamal encryption with a composite modulus is GM-secure, then the 
protocol in Section 4. l is private. 

Proof.  We show a direct reduction from the distinguishability of  a single encrypted 
bit. Suppose that a circuit C with n'  inputs exists for which distinguishable views are 
possible. That is, values Yl . . . . .  ~ i* ,  t~ i '+ l  . . . . .  ~n ' ,  ei*+l . . . .  en, exist such that 

C ( y l  . . . . .  J/i., t~i.+l . . . . .  an,) ~-- C ( y l  . . . . .  Yi., 6i*+1 . . . . .  8n') 

while VIEW~I...,j[y, . . . . .  y/., ai,+~ . . . . .  ~,,] and VIEW~...,j[y, . . . . .  Yi*, ei,+l . . . . .  e,,] 
are computationally distinguishable; here the ownership of  input lines to C has been 
chosen so that input lines [ 1 . . .  i*] are owned by parties in [ 1 . . .  t] and input lines 
[i* + 1 . . .  n'] are owned by parties in [t + 1 . . .  n]. Let/~ = E(b) be the joint encryption 
of an unknown bit. We show how to sample efficiently and almost uniformly from a 
distribution which is VIEW~I...tl[y I . . . . .  Yi,, 8i*+1 . . . . .  8n, ] whenever b = 0, and which 

is VIEW~...O[yl . . . . .  Yi*, ei,+l . . . . .  en,] whenever b = 1. Computational distinguisha- 
bility of the two distributions of views implies computational distinguishability of  jointly 
encrypted bits; this contradicts the assumed GM-security of  E1Gamal with a composite 
modulus (by Claim 5 of the preceding section). 

Although we have access to the private keys of  parties [ 1 �9 �9 �9 t], our simulation in fact 
requires no private keys at all. We simulate the contents of  the input and communication 
tapes of  an execution of the protocol as follows. Initially, the simulated broadcast of  each 
party i, 1 < i < n, is dj for every input line j owned by party i, where: 

�9 ~lj = E(y j )  for all j ,  1 < j < i*. 

�9 dj = E(Sj) for all j ,  i* + 1 < j < n', such that 6j = ej. 

�9 c l ) = E ( b ~ O ) f o r a l l j ,  i * + l  < j < n ' , s u c h t h a t S j = 0 a n d e j =  1. 
^ 

�9 dj = E ( b ~  1) for all j ,  i* + 1 < j < n', such that 3j = 1 ande j  = 0 .  

Notice that each encrypted input has a known value from among {0, 1, b, 1 - b}. This 
will also be true of  the output of  each gate, a fact that we exploit in our simulation of 
each AND gate. 

There is no communication for a NOT gate, so the simulation does nothing. Notice 
that it is easy to determine the value of the encrypted output of a NOT gate from among 
{0, 1, b, 1 - b} if the value of the encrypted input to the gate is known from among this 
set: 

NOT input NOT output 

E(0) E(1) 
E( l )  E(0) 
E(b) E(1 - b) 
E( 1 - b) E(b) 
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For computing each AND gate of  C, suppose that the jointly encrypted inputs are fi = 
' u 2 xru xr'~ ' v 2 xr~ ' E ( u ) = [ g ' ~ , g r " , ( - 1 )  s~g ,s~g ] a n d f ) =  E ( v ) = [ g r ~ , g r ~  s~g ,svgX~~ 

Further suppose that u and v have known values from among {0, 1, b, 1 - b}. The 
communication tape contents of  all n parties for the AND gate protocol can be computed 
as follows: 

1. The first simulated broadcast for each party i is/~i, Ci, where: 
(a) bi, ci ER {0, 1} for all i, 1 < i  < n. 

r' r' eR ZN; Sbl, Sc~ eR Z*N for all i, 1 < i < n. (b) rb,, b,, rc,, c, 

(C) For all i, 1 < i < n 1, bi E(bi)  [grb, gr'bi, (__l)b,s~,gXr~, xr'b - = = , , S b ,  g ' ]. 
, t 

(d) For all i, 1 < i < n - 1, Ci = E(c i )  ---- [g rci , g%,  ( -  1)C~s 2 gX%, Sc, gXrc, ]. 

(e) bn : E(bn(3u):[grb"gr",gro"gr",(-1)b"s2 ' 1) Usug2 xr, , Sb. gXrb: SugXr,]: 
r ! ! (f) ~=E(cn(3V)=[gr~ ,g~o  gc, gro,(__l)C, s2gXr~,t DVS 2 xr, S xr'~,S xr"l 

, , - -  , ~ g  , c,g og ~. 
2. The sacond simulated broadcast for each party i is Wi (fi'), Wi (~'), where: 

(a) Wi (fi') = [(gX, )--(rb I +'"+rbn ), (g~,)-t~;, +"'+~;.)]. 
(b) Wi (f:') = [(g~')-<r~ q-...q-r~ ) (gXi)--(rc I +'"+rc n )]. 

3. The third simulated broadcast for each party i is tbi = E(wi (3 O) where: 
(a) For 1 < i < n - 1, wi = ( u A c i ) ( 3 ( b i  A1) ) (3 (b i  A C l ) ( 3 " " ( 3 ( b i  ACn-I) (3 

(bi A (Cn (3 V)) : (U A Ci) (3 (bi A CI) ( 3 " "  (3 (bi A Cn). 

(b) Wn = (U A (Cn (3 V)) (3 ((bn (3 u) A V) (3 ((b~ (3 u) A CI) ( 3 . . .  (3 ((bn (3 u) /x  
Cn-1) (3 ( (b~ (3 u) A (c,, (3 v) ) = (u A v) (3 (b~ ACl) ( 3 . . .  (3 (b,, Acn) (3 (u A 
c~) ( 3 - . .  (3 (u A c , - 0 .  

(C) E(bi  A Cj) ----- E(0) whenever bi : O. 

(d) E (bi A c j )  : E (cj) w h e n e v e r  bi --  1. 

(e) E(bi /x v) and E(u /x ci) are computed similarly. 
(f) E(u A v) is computed from the known values of  u and v, according to the 

following table: 

A E(0) E(1) E(b) E(I - b) 

E(0) E(0) E(0) E(0) E(0) 
E( l )  E(0) E( l )  E(b) E(1 - b) 
E(b) E(O) E(b) E(b) E(O) 
E(l  - b) E(0) E(1 - b) E(0) E(1 - b) 

4. The encrypted output of  the gate is computed to be ~b, where: 
(a) w'  = (bl ( 3 . - .  (3bn) /x  (Cl ( 3 . . .  (3cn). 
(b) ~b = E(w'  (3 Wl ( 3 . . .  (3 wn). 

These four steps give the contents of  all communication tapes for an almost uniformly 
random execution of the AND gate protocol. Furthermore, the table in step 3(f) gives 
the value of the encrypted output of  the gate from among {0, 1, b, 1 - b}, as needed for 
later AND gates in the circuit. 

Together with the auxiliary tapes of  parties [ 1 . --  t ], this allows us to sample efficiently 
and almost uniformly from a distribution which is VIEW~l...tl[Y1 . . . . .  Yi*, ~i*+1 . . . . .  ~n'] 
whenever b P = O, and which is VIEW[I ..tl[Vl . . . . .  Vi*, ei,+l . . . . .  en,] wheneverb = 1. In 
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fact, the distribution of real views is statistically indistinguishable from the distribution 
of simulated views, as the following argument shows. First, note that the entire transcript 
of the protocol, real or simulated, is given by the initial broadcasts and the broadcasts 
for every AND subprotocol. Second, note that for every encrypted bit broadcast either 
initially or during an AND subprotocol, the value of the bit is the same for the real 
and simulated views. The only difference between real and simulated views is that 
encryptions are selected from slightly different distributions. 

For each AND gate, the table below gives the distributions from which the real and sim- 
ulated views are drawn for each party in each round, where z, z', Yl . . . . .  Yn, Y'l . . . . .  Y'~ 
are specific values in (g). For the purposes of the proof, the actual values of z, z', yl . . . . .  
yn, Y'l . . . . .  Y'n, or any dependencies among them, are irrelevant: 

R o u n d  Rea l  v i e w  1 < i < n S i m u l a t e d  v i e w  1 < i < n - 1 S i m u l a t e d  v i e w  n 

[11 O I X O I X U[Z*N] (~1 X ~)1 X U[Z*N] 0 z X 0 z' • U[Z*N] 

[2] D e t e r m i n i s t i c  D e t e r m i n i s t i c  D e t e r m i n i s t i c  

[31 Or,. x O.,.~.. x U[Z~] Oz, x O,,., x UlZ~l O.,,. x e.;,. x UlZ~l 

Each encrypted input bit dj from the initial broadcast is drawn from the real view 
from | x | x U[Z*N]. For the simulated view, it is drawn from | x |  x U[Z*s] 
whenever i* < j < n' and 8j ~ Q, where [a,/~, y, 8] is the encryption of the unknown 

bit b. Otherwise, the encrypted input bit ttj is drawn for the simulted view from O1 x 

|  X U[Z*N].  

Using Facts 1, 2, and 5 established previously, the distributions of real and simulated 
views are statistically indistinguishable. A p.p.t, distinguisher for the two distributions 
of real views would thus give a p.p.t, distinguisher for the two distributions of simulated 
views. This would give a p.p.t, algorithm to distinguish the value of the encrypted bit 
b. This implies the GM-insecurity of our joint encryption scheme, contradicting the 
assumed GM-security of composite EIGamal. [] 

5. Concluding Remarks 

The same decrease in message complexity is possible using our joint encryption scheme 
with a circuit-scrambling protocol. Specifically, our joint encryption can serve as the 
bit commitment scheme underlying the secure computation protocol of Chaum et al. 
[1]. Only a single commitment accompanies each truth-table row as it passes from 
party to party, representing the XOR of modifications performed by all parties thus 
far. The size of the scrambled circuit remains O(C) after each scramble, for a total 
message complexity of O (nC) encrypted bits. Although the message complexities are 
the same, the round complexities for the two approaches are incomparable: O (n) rounds 
for circuit scrambling, and O(D) for gate-by-gate, where D is the depth of the circuit 
being computed. 

In this paper we have assumed a "writer" measure of message complexity. If one party 
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posts an encrypted bit to a publicly readable bulletin board, then the protocol is charged 
one encrypted bit. The same charge applies no matter how many of the other parties 
ever read that posted bit. It is reasonable to consider an alternative "reader" measure 
of message complexity, in which the protocol is charged m encrypted bits if a single 
encrypted bit is read by m of the other parties. With respect to the reader measure, the 
linear gain for Theorem 1 disappears; posting messages that are read by all other parties 
seems to be an essential feature of this approach. However, a linear gain still holds using 
our joint encryption scheme in the circuit-scrambling protocol of Chaum et al. This is 
because most broadcasts are read by only one other party, i.e., to pass a scrambled circuit 
from one party to the next. 

An interesting open question is whether a reduction in message complexity for secure 
computation is possible under weaker cryptographic assumptions. It would also be in- 
teresting to understand message complexity requirements better for secure computation 
in the cryptographic setting versus stronger adversaries. 
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