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Joint Estimation of Battery Parameters and

State-of-Charge using an Extended Kalman Filter:

A Single-Parameter Tuning Approach
Henrik Beelen, Henk Jan Bergveld and M.C.F. Donkers

Abstract—The joint estimation of the State-of-Charge and the
parameters of a battery model is typically done using nonlinear
extensions of the Kalman filter, such as the well-known and
widely-used Extended Kalman filter (EKF), in combination with
a simple but relatively accurate equivalent-circuit model. The
main limitation of the joint EKF is that extensive tuning of the
covariance matrices is required when implementing the observer
in an application. This tuning is a tedious task with no clear
guidelines for the tuning procedure. Furthermore, the joint EKF
and its extensions do not explicitly address model uncertainty
and sensor noise, which may be the cause for the problematic
tuning. In this paper, we combine a nonlinear observer with the
structured representation of model uncertainty and disturbances
as typically used in a robust-observer design approach. Therefore,
the joint EKF for simultaneous estimation of State-of-Charge and
model parameters will be presented for the case that includes
cross-correlated noises. Moreover, inspired by the conditions for
enforcing convergence of the State-of-Charge estimation error, a
so-called forgetting factor will be introduced to the joint EKF.
These adaptations lead to an observer with a single tuning
parameter. The experimental results show that tuning of the
proposed observer is straightforward and that the performance
is similar to a regular joint EKF with a root-mean-square State-
of-Charge error of 0.5%.

Index Terms—Joint Estimation, Kalman Filter, State-of-
Charge Estimation, Parameter Estimation, Lithium-ion batteries

I. INTRODUCTION

TODAY, Lithium-ion batteries are essential for enabling

a technologically advanced and sustainable society. Due

to the relatively high energy density, Lithium-ion batteries

are used to power, e.g., a wide variety of portable devices

as well as the fast-growing fleet of electric vehicles (EVs)

around the world. Especially in EVs, accurate information

on the remaining charge, i.e., the State-of-Charge (SoC), is

of paramount importance to the driver in order to know the

remaining driving range. The Battery Management System

(BMS) typically monitors current, voltage and temperature, but

the SoC can unfortunately not be measured directly. Therefore,

the SoC is typically estimated using the measured quantities

in combination with model-based techniques, see, e.g., [1, 2]

and references therein. Although SoC estimation can be done

with observers designed for accurate electrochemistry-based

battery models, see, e.g., [3, 4], an Equivalent-Circuit Model

The authors are with the Eindhoven University of Tech-
nology, 5600 MB Eindhoven, The Netherlands (e-mail:
{h.p.g.j.beelen,h.j.bergveld,m.c.f.donkers}@tue.nl). Henk Jan Bergveld
is also with NXP Semiconductors, 5600 KA Eindhoven, The Netherlands.

(ECM) is often used due to its simplicity and relatively good

accuracy, see, e.g., [1, 5, 6]. The ECM can be interpreted as

a low-order model that approximates the dynamical behaviour

of the battery voltage with linear state dynamics and a static

nonlinearity in the output of the model. Due to this nonlinear

relation, SoC estimation is typically done using nonlinear

extensions of the Kalman filter (KF), such as the well-known

and widely-used Extended Kalman filter (EKF), see, e.g.,

[1, 6–10].

In [6], it has been shown that the EKF, if model uncertainties

are ignored and the EKF has been tuned adequately, already

achieves a close-to-optimal estimation accuracy (i.e., close to

the so-called Cramér-Rao lower bound). Unfortunately, the

EKF (and many of its extensions) do not explicitly address

the (rate of) convergence of the SoC estimation error and

robustness with respect to model uncertainty and sensor noise.

Namely, the estimation error of the discrete-time EKF is

bounded under the conditions that the model uncertainty and

disturbing noise terms are small enough, as well as that the

initial estimation error is small enough, see [11]. Furthermore,

sufficient conditions for local asymptotic convergence of the

estimation error have been established in [12], where it has

been shown that an appropriate tuning of the measurement-

noise covariance matrix can significantly improve the domain

of attraction. Moreover, it has been shown in [13] that the

estimates of the EKF might be divergent or biased in general,

whilst in [14], the EKF is found to be a good all-round choice,

but not very robust against large uncertainties on the model

parameters.

It has been found in [1] that in case of non-adaptive ECM

parameters (i.e., the model parameters have been identified

offline), the EKF fails to deliver adequate performance due to

significant model inaccuracy. Namely, the model parameters

typically vary due to the fact that the model is only an

approximate representation of the real battery behaviour. This

highlights the considerable importance of parameter adaptation

to provide a more accurate model for use in real-world battery-

powered applications. To realise the parameter adaptation for

the adaptive EKF (e.g., joint EKF or dual EKF), additive noise

is used to model the (expected) parameter variations, thereby

controlling how quickly the EKF adapts the model parameters,

see, e.g., [1, 8, 13]. By doing so, model uncertainty and param-

eter variations and its effect on the (rate of) convergence of the

estimation error are considered only implicitly. Furthermore,

in [1] it has been shown that, unlike the non-adaptive EKF, the

joint EKF for estimation of SoC and ECM parameters requires



MANUSCRIPT SUBMITTED TO IEEE TRANS. ON CONTROL SYSTEMS TECHNOLOGY 2

significant tuning effort. Moreover, this tuning highly depends

on the sensitivity of the model parameters with respect to the

identification data. Also, in [1], it has been concluded that the

EKF performance heavily depends on tuning of the covariance

matrices. Typically, these matrices are tuned by trial-and-error

as there are no clear guidelines for the tuning. In general,

tuning is a trade-off between estimation bias and variance of

the observer, as shown in [15].

In summary, the aforementioned EKF-based methods re-

quire extensive tuning of the covariance matrices, which is a

tedious task without explicit tuning guidelines. To address the

aforementioned drawbacks of the EKF in case of offline esti-

mation of the model parameters, a robust-observer approach

based on Linear Matrix Inequalities (LMIs) can be used to

perform SoC estimation, see, e.g., [3, 4, 16, 17]. This ap-

proach results in observers with a structured way of capturing

disturbances and model uncertainty and, consequently, tuning

of the observer is likely more straightforward. Note that the

term straightforward is used in the sense that (1) the number of

tuning parameters is limited and (2) there are clear and explicit

guidelines for tuning these parameters so that the user knows

what to expect when changing a tuning parameter. However,

as we will show in Section II-C, extending the robust-observer

approach presented in [16], or adapting other robust-observer

approaches, see, e.g., [3, 4, 17], towards joint estimation of

ECM parameters and SoC is not feasible. Consequently, an

observer for nonlinear systems such as the joint EKF should

be considered, which suffers from non-obvious tuning as

explained previously.

In this paper, an observer for nonlinear systems (i.e., the

joint EKF) is combined with a structured approach of taking

into account model uncertainty and disturbances. The main

goal is to find an observer with straightforward tuning. More

specifically, the EKF equations are rearranged to accommodate

the cross-correlated disturbances that appear by assuming the

aforementioned model structure. Also, a forgetting factor is

introduced. The forgetting factor is inspired by the fact that

the conditions for enforcing convergence of the estimation

error bear a close resemblance to a so-called forgetting factor.

The forgetting factor can also be interpreted as the dual of

the discount factor in optimal controller design. This will

lead to an adapted version of the EKF for joint estimation

where the covariance matrices do not need to be chosen, or

tuned, since they depend directly on the specific structure

of disturbance and uncertainty. Consequently, regardless of

battery model order, there is only a single tuning parameter

for the observer, which allows for straightforward tuning. Note

that this single-parameter tuning of the joint EKF is the main

contribution of this work, since the accuracy of SoC estimation

is already close-to-optimal with a perfectly tuned joint EKF

[6]. The proposed observer will be validated experimentally

with realistic EV drive-cycle data and compared to other

existing approaches in the literature.

The outline of the paper is as follows. In Section II, the

joint-estimation problem of SoC and parameter estimation

with disturbances and model uncertainty will be introduced.

Subsequently, in Section III, the EKF with cross-correlated

noise and forgetting will be introduced in two steps. First,

the EKF is extended in a generic way such that it accommo-

dates cross-correlated noises and forgetting and, second, this

extended EKF will be adapted towards the specific problem

of the joint estimation of battery SoC and parameters. In

Section IV, the proposed observer will be validated with

realistic driving profiles of EVs obtained with an experimental

setup. Furthermore, the proposed observer will be compared

to other joint-estimation approaches. Section V discusses the

results and, finally, conclusions will be given in Section VI.

II. STATE AND PARAMETER ESTIMATION

This section first describes the battery model including the

model uncertainty and the typical disturbances in practical

applications. Second, it will be shown that robust observers

are not suitable for jointly estimating the SoC and the ECM

parameters, motivating the need for an alternative.

A. Battery Modelling

The battery behaviour can be modelled using an equivalent

circuit model (ECM), see, e.g., [1, 9], which models the battery

using a static nonlinear function that describes the Electro-

Motive Force (EMF) as a function of the battery SoC (i.e.,

EMF-SoC function) combined with a linear model (consisting

of resistors and capacitors) describing the dynamic voltage

behaviour, known as the overpotential. Since the battery SoC

is defined as the amount of charge stored in the battery,

normalised over the nominal capacity C0, the SoC dynamics

can be defined by the integral of the battery current.

In case the overpotential is assumed to be of first-order

(i.e., consisting of a single RC-circuit in combination with a

series resistance), the battery can be described as the following

nonlinear discrete-time state-space model of the form







[

sk+1

ok+1

]

=

[

1 0

0 θ1

][

sk

ok

]

+

[
Ts

C0

θ2

]

uk

yk = V EMF(sk) + ok + θ3uk,

(1)

in which sk ∈ [0, 1], ok ∈ R, uk ∈ R and yk ∈ R denote the

SoC, overpotential state, input current Ibatt
k and output voltage

V batt
k , respectively, at time kTs, in which k is the discrete

time instant and Ts is the sampling time, which is Ts = 1s

in this paper. The function V EMF(s) describes the nonlinear

relation between the battery SoC and the EMF and this relation

can be determined by performing characterisation experiments

with the battery cell, which will be discussed in Section IV.

The parameters θ = [θ1 θ2 θ3]⊤, with θ1 = exp −Ts

R1C1

, θ2 =

R1(1− exp −Ts

R1C1

) and θ3 = R0, are related to the parameters

of the electrical circuit elements of the ECM, see [1, 9] and

references therein for more details.

The time-varying nature of the model parameters θ can be

accommodated for in the model by taking the “dynamics”

θk+1 = θk, since it is assumed that the model parameters

slowly vary over time and therefore θk+1 ≈ θk, see, e.g.,
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[1, 8]. By extending (1) with the aforementioned model for

the parameter dynamics, the battery model is then given by











sk+1

ok+1

θk+1




 =






1 0 0

0 θ1k 0

0 0 I











sk

ok

θk




+






Ts

C0

θ2k
0




uk

yk = V EMF(sk) + ok + θ3kuk.

(2)

In this paper, a first-order overpotential model has been

considered, as it has been shown in [5, 18] that a higher-

order overpotential model not always leads to higher model

accuracy. Still, the model typically does not capture all dy-

namics of the underlying nonlinear and infinite-dimensional

physical system. This modelling mismatch can be taken into

account by accommodating for the propagation of modelling

errors in the model through an additive signal representing

the modelling residual, which is denoted by an additive signal

wk. Moreover, in practical applications where SoC estimation

is applied (e.g., in EVs), sensor noise is considered to be

a well-known source of disturbance. As will be shown in

Section IV.A, this disturbance can be characterised by a non-

zero-mean noise signal. This noise signal might even be

nonstationary, which roughly means that the (sample) bias

and (sample) variance of this signal are time-varying. In the

system description, noise on the current sensor can be taken

into account as an additive input uncertainty on the input uk by

means of the disturbance vk. Measurement uncertainty, i.e., an

additive disturbance directly acting on the voltage output yk, is

not considered in this paper, since accurate voltage sensors can

be used in practical applications, while using accurate current

sensors is often more costly.

Combining the state variables sk, ok and θk into xk =
[
s⊤k o⊤k θ⊤k

]⊤
and taking into account the previously de-

fined modelling uncertainties and input disturbance, (2) can

be rewritten to
{

xk+1 = A(θk)xk +B(θk) (uk + vk) + E(θk)wk

yk = h(xk) +D(θk)(uk + vk) + F (θk)wk,
(3)

where h(xk) = V EMF(sk) + ok and E and F are matrices

that are used to describe the modelling residual. Measurement

noise (i.e., from the voltage sensor) is not considered as vk and

wk in (3) represent an additive input disturbance and model

residual, respectively, and only act on the output through

matrices D and F . For the model residual wk, we assume

that it is stationary white noise, as is often done in system

identification, see, e.g., [19]. For the sensor disturbance vk, it

might be more realistic to assume that it is a bounded distur-

bance. Fortunately, in [16] it has been shown that observers

that are optimised for (amplitude) bounded disturbances and

those that are optimised for white-noise random disturbances

behave almost the same. Finally, it should be noted that the

nominal capacity C0 of the battery is assumed in this paper

to not change over time, since the battery experiments have

been conducted in a short period of time where no significant

change in nominal capacity is to be expected. However, when

employing state-estimation algorithms in battery-powered ap-

plications, the battery will age over time and the capacity will

fade, see [20] and references therein. In that case, C0 should be

updated, for which various methods are suggested in literature,

see, e.g., [20] and references therein.

B. Structure of the Uncertainty Matrices E and F

In this paper, two types of model structures for parameter

estimation of the overpotential model are considered, i.e.,

an Auto-Regressive model with eXogenous inputs (ARX)

and an Output-Error (OE) model, which are common model

structures encountered in system identification, see, e.g., [19].

We consider these model structures in this paper because of

their relative simplicity. The main difference between these

model structures is how they lead to a different description of

the modelling residual (i.e., matrices E and F ) that will be

used in the EKF design. The first-order ARX model is given

by

y
op

k =
b0 + b1q

−1

1 + a1q−1
uk +

1

1 + a1q−1
wk, (4)

where q is the shift operator (i.e., y
op

k−n = q−ny
op

k ) and

uk and y
op

k are the input and output of the overpotential

model, respectively. Furthermore, a1, b0 and b1 are the model

parameters and the signal wk is the modelling residual (or

modelling error). A state-space realisation of (4) in observable

canonical form is given by







ok+1 = −a1
︸︷︷︸

θ1

k

ok + (b1 − a1b0)
︸ ︷︷ ︸

θ2

k

uk −a1
︸︷︷︸

θ1

k

wk

y
op

k = ok + b0
︸︷︷︸

θ3

k

uk + wk,
(5)

where it can be seen clearly that the modelling residual wk

enters the state equation of the system description as θ1kwk.

Subsequently, for the uncertainty matrix E(θ) of the system in

(3), using the overpotential model with ARX model structure

in (5) yields E(θ) =
[
0 θ1 01×3

]⊤
, where, given that θ1k

is time-varying, E(θk) is time-varying as well. Note that, for

compactness of notation, a matrix with zeros of size m rows

and n columns is denoted by 0m×n.

Besides the ARX model structure, a first-order OE model

structure can be considered, which has the form

y
op

k =
b0 + b1q

−1

1 + a1q−1
uk + wk. (6)

Compared to the ARX model in (4), the OE model is char-

acterised by a different propagation of the modelling residual.

Namely, if we take the coefficient a1 = 0 in the second term of

(4) (i.e., the propagation of wk), we find the OE model in (6).

In other words, when applying the structure of the OE model

in (6) to the battery model in (3), it is found that E(θ) = 05×1.

Furthermore, it can be seen that both overpotential model

structures, ARX and OE, yield F = 1 in (3). For more details

on the ARX and OE model structures, the reader is referred

to [19].

C. Robust-Observer Approaches to Joint Estimation

As mentioned previously, robust-observer approaches to

battery SoC estimation have been presented in the literature,
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see, e.g., [3, 4, 16]. In [3, 4], a robust observer is used in

combination with electrochemistry-based battery models to

estimate the SoC using estimates of the Lithium-ion concentra-

tions. In [16], a robust observer is presented for estimating the

SoC using an ECM. In general, the robust-observer approaches

to battery SoC estimation can be interpreted as an alternative

to the widely-used EKF. The approach presented in [16]

is based on the explicit model structure in (3) with time-

invariant model parameters. The main advantage of the robust-

observer approach is that it addresses the convergence of the

SoC estimation error and robustness with respect to model

uncertainty and sensor noise explicitly, resulting in only one

tuning parameter, regardless of the model order. This makes

tuning of the robust observer more straightforward than tuning

of the EKF, since this typically requires choosing the process-

noise covariance Q and measurement-noise covariance R,

which is a cumbersome task.

In case of joint estimation of states and parameters, a

typical approach in the literature is to use an EKF-type of

observer, such as the joint EKF, see, e.g., [1, 8]. However,

based on the advantages of the robust-observer approaches

as presented in [3, 4, 16] (i.e., straightforward tuning and

an explicit interpretation of convergence and disturbance), a

robust observer is preferred for joint estimation. To achieve

this, the nonlinear system can be described as an uncertain

linear system, which can be done using a polytopic system

description, where the polytope is defined by a number of

vertices based on the lower bounds and upper bounds of

the linearised system. For example, in [17] a robust-observer

approach is presented for the joint estimation of states and

parameters of a time-varying system using polytopic linear

models and LMIs. In order to find a robust observer gain L

for the polytopic system, the LMIs need to be satisfied for

every i ∈ {1, . . . , n}, which means that the system needs to

be observable at every vertex of the polytopic system.

To assess the observability at the vertices, the nonlinear

system in (3) can be denoted as

{

xk+1 = f(xk, uk)

yk = g(xk, uk)
(7)

and the observability of its linearisation can be analysed.

For the sake of clarity and simplicity of this analysis, let us

consider only one time-varying parameter, namely θ1k in (2).

However, this analysis can be easily extended to include the

time-varying parameters θ2k and θ3k as well as higher-order

overpotential models, and will lead to the same conclusion.

The linearised system matrices are given by

Ā = ∂f(x,u)
∂x

=





1 0 0
0 θ1 o

0 0 1



 (8a)

C̄ = ∂g(x,u)
∂x

=
[
∂V EMF(s)

∂s
1 0

]

. (8b)

The observability matrix for this linearised system is given by

O =








C̄

C̄Ā

C̄Ā2







=








∂V EMF(s)
∂s

1 0

∂V EMF(s)
∂s

θ1 o

∂V EMF(s)
∂s

(
θ1
)2

o
(
θ1 + 1

)







, (9)

where it is found that

det (O) = ∂V EMF(s)
∂s

(
θ1o

(
θ1 + 1

)
− o(θ1)2

)

−
(

∂V EMF(s)
∂s

o
(
θ1 + 1

)
− ∂V EMF(s)

∂s
o
)

= 0, (10)

and, therefore, the linearised system is unobservable for every

linearisation. This means that any uncertain polytopic rep-

resentation of the battery system (7) will be locally unob-

servable, meaning that a robustly stabilising observer does

not exist, or at least, cannot be synthesised using extensions

of the results of [3, 4, 16] or using the approach in [17].

Consequently, a nonlinear-observer approach, based directly

on the observability of the nonlinear system in (7), will be

analysed next.

Instead of analysing the observability of the vertices of

the linearised system (which can be used to synthesise a

robust observer), let us verify whether the nonlinear system

in (2) with one varying parameter (i.e., θ1) is observable

by means of using Lie derivatives, see, e.g., [1, 21] and

references therein. Let dg denote the gradient of g(x, u)
given by dg =

[
∂g
∂s

∂g
∂o

∂g
∂θ

]
. Then, the nth-order Lie

derivative of g(x, u) with respect to f(x, u) is given by

Ln
f g = Ln−1

f Lfg with Lfg = dgf(x, u), where it should

be noted that L0
fg = g(x, u). For (7), the observability matrix

is given by

O =







∂g
∂x

∂Lfg

∂x
∂L2

fg

∂x






=





∆Ṽ 1 0

∆Ṽ +∆2Ṽ ζ θ1 o

∆Ṽ +3∆2Ṽ ζ+∆3Ṽ ζ2 (θ1)2+θ1 o(2θ1+1)+θ2u



, (11)

where ∆iṼ = ∂iV EMF(s)
∂si

and ζ = s+ Ts

C0

u. The determinant of

O is given by

det (O) = ∆Ṽ
(
(θ1)2o+ θ1θ2u− θ2u− 2oθ1

)

+∆2Ṽ
(
− θ2su− 2osθ1 − Ts

C0

θ2u2 − 2 Ts

C0

oθ1u
)

+∆3Ṽ
(

os2 + 2 Ts

C0

osu+
T 2

s

C2

0

ou2
)

, (12)

and the system is locally observable if det (O) 6= 0. Assuming

that θ1 6= 0, θ2 6= 0 and Ts

C0

6= 0, we have that det (O) 6= 0 if

the system is either excited (i.e., u 6= 0) or not in equilibrium

(i.e., o 6= 0) and there exist an m ∈ {1, 2, 3} such that

∆mṼ 6= 0 (cf. [1]). Therefore, it can be stated that, generally,

the nonlinear system is locally observable, meaning that it is

possible to reconstruct the states of the system from input-

output data. This analysis explains why nonlinear observers

such as the EKF typically work very well, whereas an LMI-

based robust-observer approach cannot be applied due to the
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unobservable vertices of the polytopic system. Still, tuning of

the nonlinear observers may be cumbersome task.

To summarise, since extending the robust-observer ap-

proaches towards joint estimation is not feasible, we propose to

use a nonlinear observer — the EKF — for joint estimation.

The EKF will be adapted based on the specific structure of

model uncertainty and disturbance as presented in (3) so as

to achieve explicit tuning with only a single tuning parameter.

Although a robust version of the EKF is not uncommon, see,

e.g., [22], tuning of the covariance matrices is still needed. It

has been shown in [16] that the EKF yields similar perfor-

mance as the robust-observer design and despite the fact that

there is no robustness guarantee for the EKF, it has been shown

to be stochastically stable, see, e.g., [11, 23]. Furthermore, it is

widely used throughout literature for joint estimation, see, e.g.,

[1, 2, 8]. The systematic approach towards model uncertainty

and input disturbance with the specific model structure in (3)

can be achieved by including cross-correlated noises in the

EKF.

To allow for parameter adaptation in case of the parameter

“dynamics” θk+1 = θk in (2), the parameters of the (regular)

joint EKF for state and parameter estimation are typically

subject to additive noise. However, a physical interpretation

for this cannot be given and therefore, no (artificial) additive

noise is assumed for the parameters in (3). Instead, a forgetting

factor can be introduced to enforce that the state and parameter

estimates are based on recent data. Furthermore, the forgetting

factor can be interpreted as the dual of introducing a discount

factor in the cost function in optimal controller design.

Remark 1. Under certain experimental conditions, it can

happen that the system becomes unobservable, or at least

poorly observable. This situation occurs when both uk → 0
and ok → 0 and might cause the SoC estimates to not

converge. This problem may be solved by ensuring that the

observer performs an update only if the measured data has

considerable sensitivity with respect to states and parameters,

see, e.g., [24].

III. EKF WITH CROSS-CORRELATED NOISE AND

FORGETTING

Since robust-observer approaches are not feasible for the

joint estimation of the SoC and the ECM parameters, the

joint EKF will be taken as a basis for joint estimation. This

EKF will be adapted to accommodate the specific structure

of uncertainty and disturbance of (3). To achieve this, the

joint EKF needs to accommodate for cross-correlated noise

and a forgetting factor needs to be included. As mentioned

above, this forgetting factor ensures that the parameter and

state estimates are only based on recent data. It should be noted

that the joint EKF that is typically used for joint estimation of

the SoC and the ECM parameters does neither accommodate

cross-correlated noise nor includes a forgetting factor.

Fortunately, for linear systems, results for the Kalman filter

(KF) exist that either consider cross-correlated noise, see, e.g.,

[25, Chapter 5.5], or consider a forgetting factor, see, e.g., [26,

Chapter 7.4]. Even though combining these elements might be

trivial, results for the KF that include both elements, to the best

of our knowledge, do not exist and we will therefore develop

them in this section. We will first develop the theory for linear

time-varying systems and, subsequently, extend these results

to an EKF form to make it suitable for jointly estimating the

battery SoC and ECM parameters.

A. KF with Cross-Correlated Noise and Forgetting

First, the linear KF will be extended so as to accommodate

cross-correlated noise and forgetting. Therefore, consider the

linear time-varying system
{

xk+1 = Akxk +Bkuk + w̃k

yk = Ckxk +Dkuk + ṽk,
(13)

where w̃k = Gk[w
⊤

k v⊤k ]
⊤ and ṽk = Mk[w

⊤

k v⊤k ]
⊤. Now,

assuming that E{wkw
⊤

k } = 1, E{vkv
⊤

k } = 1 and E{wkv
⊤

k } =
E{vkw

⊤

k } = 0, we find that

E

{[
w̃k

ṽk

][
w̃k

ṽk

]⊤
}

=

[
Qk Sk

S⊤

k Rk

]

=

[
GkG

⊤

k GkM
⊤

k

MkG
⊤

k MkM
⊤

k

]

, (14)

where Qk and Rk denote the (time-varying) process-noise

covariance and measurement-noise covariance, respectively,

of the noises w̃k and ṽk. The cross correlation between

the noises w̃k and ṽk is denoted by Sk, which is typically

assumed to be Sk = 0 in the literature (see, e.g., [1, 8]),

i.e., no cross correlation. However, in (13) and (14), Sk

can be nonzero and, therefore, a formulation of the KF is

required that accommodates the nonzero Sk (which can later

be extended towards the nonlinear system (3)). According to

[25, Chapter 5.5], the two-step KF with cross-correlated noise

(i.e., Sk 6= 0) is given by a measurement update

Lk=P+
k C⊤

k

(
CkP

+
k C⊤

k +Rk

)−1
(15a)

x̂−

k+1= x̂+
k + Lk(yk − Ckx̂

+
k −Dkuk) (15b)

P−

k+1=(I − LkCk)P
+
k (15c)

and the time update

x̂+
k+1=Akx̂

−

k+1+Bkuk+SkR
−1
k (yk−Ckx̂

−

k+1−Dkuk) (15d)

P+
k+1=(Ak−SkR

−1
k Ck)P

−

k+1(Ak−SkR
−1
k Ck)

⊤

+Qk − SkR
−1
k S⊤

k , (15e)

where taking Sk = 0 will yield the regular KF.

Subsequently, to fully implement the structure of the robust

observer in the EKF structure, “forgetting” is necessary to

allow for parameter adaptation since it is assumed in (2)

that θk+1 = θk, i.e., no parameter adaptation1. To allow for

the “forgetting”, a forgetting factor γ can be implemented,

which is often used in estimation schemes, i.e., new data (or

new observations) are considered to be (exponentially) more

important than older data.

1It should be noted that this is a different approach than the approach for
parameter adaptation with the (regular) joint EKF. Namely, in that case, the
parameters are subject to additive noise, i.e., θk+1 = θk+rk , where the noise
rk is zero-mean and white with a Gaussian distribution. The variance of rk is
taken as a tuning parameter so as to achieve the desired performance for the
parameter adaptation. As mentioned previously, tuning of this variance may
be a tedious task and, therefore, using a forgetting factor (with straightforward
tuning) can be interpreted as an alternative for the additive noise.
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An implementation of this forgetting or “fading memory”

is presented in [26, Chapter 7.4]. Using this approach as a

starting point, a forgetting factor γ is added to (15). The

implementation of this forgetting factor is given in the Ap-

pendix. The resulting two-step KF with cross-correlated noise

and forgetting is given by the measurement update

Lk= P̃+
k C⊤

k (CkP̃
+
k C⊤

k + γRk)
−1 (16a)

x̂−

k+1= x̂+
k + Lk(yk − Ckx̂

+
k −Dkuk) (16b)

P̃−

k+1=
1
γ
(I − LkCk)P̃

+
k (16c)

and the time update

x̂+
k+1=Akx̂

−

k+1+Bkuk+SkR
−1
k (yk−Ckx̂

−

k+1−Dkuk) (16d)

P̃+
k+1=(Ak−SkR

−1
k Ck)P̃

−

k+1(Ak − SkR
−1
k Ck)

⊤

+Qk − SkR
−1
k S⊤

k , (16e)

where γ ≤ 1 is the forgetting factor2, which is typically chosen

close to 1, e.g., γ = 0.999. This adapted KF formulation can

now be applied to the LTI system in (13). However, in order to

apply the KF with cross-correlated noise and forgetting (16) to

the nonlinear battery system in (3), it is necessary to extend

the formulation in (16) towards an EKF formulation, which

will be given in the following subsection.

B. EKF for Battery Joint Estimation

In order to apply the newly derived KF with correlated noise

and forgetting3 in (16) to the nonlinear system in (3) so as to

perform joint estimation of battery states and parameters, a

nonlinear extension of the KF is needed. First, the system in

(3) is rewritten to






xk+1 = A(θk)xk +B(θk)uk
︸ ︷︷ ︸

=f(xk,uk)

+G(θk)rk

yk = h(xk) +D(θk)uk
︸ ︷︷ ︸

=g(xk,uk)

+M(θk)rk,
(17)

where rk = [w⊤

k v⊤k ]
⊤. The system in (17) is nonlinear

due to the function h(xk) in the output equation and, besides

the parameter-dependent matrices A(θ), B(θ) and D(θ), the

matrices G(θ) = [E(θ) B(θ)] and M(θ) = [F D(θ)] are

also parameter-dependent. Second, recall that the state vector

is given by xk = [s⊤k o⊤k θ⊤k ]
⊤, i.e., the state vector is

augmented with the parameter vector. Subsequently, in order

to obtain an EKF implementation, the state equations are

linearised at each time instant k, see, e.g., [8]. Consequently,

the linearised system matrices Ak and Ck of are given by

Ak = ∂f(xk,uk)
∂xk

=









1 0 0 0 0
0 θ1k ok uk 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1









(18)

2 It should be noted that [26] defines the forgetting factor as the reciprocal
of the notation used in this paper, meaning that the forgetting factor is γ ≥ 1

in [26]. We use this notation as it makes the forgetting factor to have a similar
interpretation as the forgetting factor typically used in Recursive Least Squares
(RLS).

3Recall that the KF with correlated noise (i.e., Sk 6= 0) may be interpreted
as the standard or fully-fledged KF. Still, to emphasise that Sk 6= 0, we use
the term “KF with correlated noise”.

and

Ck = ∂g(xk,uk)
∂xk

=
[

∂V EMF(sk)
∂sk

1 0 0 uk

]

. (19)

Now, the EKF for joint estimation with the specific structure

for model uncertainty and input disturbance as in (3) is found

by using the linearised system matrices Ak and Ck, as in (18),

in the KF equations in (16). An important property of the

resulting algorithm and a valuable contribution of this work is

that there is only one tuning parameter: the forgetting factor γ.

The tuning procedure of γ is relatively easy: start with γ = 1,

which can be interpreted as “no forgetting” (i.e., the EKF with

correlated noise) and gradually decrease γ until the algorithm

yields satisfactory performance (in terms of the estimation

error). Results of the procedure with an experimental setup

will be presented in Section IV.

In order to apply the EKF in (16) to the battery system

(17), the remaining matrices Bk, Dk and the covariance

matrices Qk, Rk and Sk in (16) need to be known. The

matrices Bk = B(θk) and Dk = D(θk) can be taken directly

from (17). The covariance matrices have been defined in (14)

for system (13) and we can obtain them for system (17)

by taking Qk = G(θk)G(θk)
⊤, Rk = M(θk)M(θk)

⊤ and

Sk = G(θk)M(θk)
⊤. Finally, as mentioned in Section II-B,

the matrices E(θk) and F , which appear in G(θk) and M(θk),
depend on the chosen model structure for the battery model,

which implies that Qk, Rk and Sk depend on the model

structure. Namely, if an ARX model structure is chosen, then

Ḡ(θ) =

[

0 1
C0

θ1 θ2

]

and M(θ) =
[
1 θ3

]
, (20)

where for compactness of notation Ḡ(θ) is used, since G(θ) =
[
Ḡ⊤(θ) 02×3

]⊤
. Consequently, Q̄k = Ḡ(θk)Ḡ

⊤(θk) and

Qk =

[

Q̄k 02×3

03×2 03×3

]

. (21)

Using the ARX-model structure yields

Q̄k=





1
C2

0

θ2

k

C0

θ2

k

C0

(θ1k)
2+(θ2k)

2



, Sk=






θ3

k

C0

θ1k+θ2kθ
3
k

03×1




, Rk=1+(θ3k)

2.

(22)

In case of an OE model, Ḡ(θ) and M(θ) are given by

Ḡ(θ) =

[

0 1
C0

0 θ2

]

and M(θ) =
[
1 θ3

]
, (23)

leading to

Q̄k=





1
C2

0

θ2

k

C0

θ2

k

C0

(θ2k)
2



, Sk =






θ3

k

C0

θ2kθ
3
k

03×1




, Rk = 1 + (θ3k)

2. (24)

Based on the two model structures considered in Sec-

tion II-B, two different sets of the covariance matrices Q̄k,

Rk and Sk are presented in (22) and (24). It can be seen

that the covariance matrices based on the ARX model in

(22) differ from the covariance matrices based on the OE
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model in (24), except for Rk. For instance, note the missing

(θ1k)
2 and θ1k terms in Q̄k and Sk, respectively, for the OE

model in (24) compared to the ARX model in (22). As a

result, the assumed variance on the second state of the system

(i.e., the overpotential state ok) is substantially smaller for

the OE case than in the ARX case since typically θ1k / 1
and θ2k is relatively small. Therefore, similar to a regular

(joint) EKF, choice of model structure and model order (of the

overpotential model) mainly depends on, first, model quality

(i.e., modelling accuracy in terms of open-loop simulation)

and, second, trial and error with the proposed algorithm and

the resulting estimation accuracy.

To summarise, an EKF for battery joint estimation has

been constructed with only one tuning parameter and two pre-

tuning choices, namely, model structure and model order of the

overpotential model. For brevity, we will refer to the proposed

joint EKF with Correlated noise and Forgetting as “joint EKF

CF”. Note that, in contradiction to typical implementations

of the EKF for joint estimation, the matrices Qk, Rk and Sk

are time-varying in the proposed algorithm, which is due to

the specific uncertainty structure used in the system in (3).

The computational complexity of the proposed EKF is not

significantly larger than that of existing EKF methods.

IV. RESULTS

In this section, the tuning and performance of the proposed

observer will be evaluated and compared to existing observers

using realistic EV drive-cycle data. First, the experimental

setup and the two experimental drive cycles will be discussed.

Second, the effects of design choices (i.e., tuning and model

structure) for the proposed joint EKF CF will be analysed and,

finally, the joint EKF CF will be compared to other existing

model-based estimation methods, using the experimental drive

cycles.

A. Experimental Setup and Test Profiles

To extensively validate the proposed observer, an experi-

mental setup has been used which is controlled by a LabVIEW

interface and consists of a climate chamber, an electronic

load and power supply and two current sensors. The first

current sensor is a highly accurate laboratory-grade (lab-grade)

sensor (LEM IT 60-S ULTRASTAB) and is used for battery

characterisation, e.g., obtaining an EMF-SoC curve and identi-

fication of a battery model with time-invariant parameters. This

lab-grade current sensor is also used to generate a reference

for SoC estimation by integrating the current measurements,

i.e., using the so-called Coulomb-Counting (CC) method, to

obtain the true SoC, see, e.g., [27]. The second current sensor

is a production-grade sensor (LEM DHAB S/133), which is

typically used for automotive applications (e.g., EVs) and is

used for validating the observers. The current measurements

obtained using the two sensors will be compared below. The

battery cell under test is a Lithium Nickel Cobalt Aluminium

Oxide (LiCoNAlO2) cell with a (measured) nominal capacity

of C0 = 12.6Ah and a nominal voltage of 3.68V. The EMF-

SoC curve, i.e., the function V EMF(s) in (2), is shown in Fig. 1

020406080100
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Fig. 1: EMF-SoC curve.

and is characterised with a pulsed-current test using data from

the lab-grade current sensor.

In order to test the proposed observer and to compare the

observer to existing approaches, the battery needs to be excited

with a certain current profile. In this paper, a test case has

been created that is as close to a real application as possible.

Therefore, the test profiles are based on an EV application

where a vehicle speed profile is taken in combination with a

model of the longitudinal vehicle dynamics to obtain a current

profile for the battery pack of the vehicle. It should be noted

that highly dynamical current profiles have been used, which

avoids potential issues with observability (cf. Remark 1).

Subsequently, assuming a certain capacity of the battery pack

in combination with a typical nominal pack voltage of 400 V,

and an efficiency of the regenerative braking of ηr = 0.6,

the current for one battery cell is obtained. Subsequently, this

current has been used to excite the battery. All tests have been

conducted in the climate chamber at a temperature of 20◦C.

The velocity profiles selected for the experiment are the

class-3 cycle of the Worldwide harmonized Light vehicles

Test Procedure (WLTP) and a number of velocity profiles

that were measured on the road in the Netherlands, with both

city and highway driving. Using these velocity profiles, two

experimental drive cycles have been constructed with the aim

of achieving a significant discharge of the battery in order

to test the observers in a substantial part of the SoC range.

Therefore, the first drive cycle consists of a repetition of six

WLTP cycles on a 40-kWh battery pack as shown in the

left column of Fig. 2, where the battery is discharged from

SoC = 97% to SoC = 28%. In Fig. 2a, the velocity profile

of the drive cycle is shown and in Fig. 2c and Fig. 2e, the

measured battery current (using the production-grade sensor)

and battery voltage, respectively, are depicted.

The second drive cycle is the MMD cycle4 and is shown

in the right column of Fig. 2 and consists of three trips of

city and highway driving on a single charge of a 80-kWh

4The MMD cycle consists of three separate trips starting in Eindhoven and
ending in different places in the Netherlands, combined in one cycle with a
total length of 232km. Trip 1: Eindhoven to Mijdrecht (M), 119km. Trip 2:
Eindhoven to Meterik (M), 51km. Trip 3: Eindhoven to Demen (D), 62km.
All trips consist of both highway and city driving.
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(a) WLTP cycle vehicle speed profile. (b) MMD cycle vehicle speed profile.

(c) WLTP cycle, Ibatt. (d) MMD cycle, Ibatt.

(e) WLTP cycle, V batt. (f) MMD cycle, V batt.

Fig. 2: Experimental EV drive cycles.

battery pack, where the battery is discharged from SoC = 85%
to SoC = 14%. Observe the changing voltage behaviour at

the end of the MMD cycle in Fig. 2f, after approximately

t = 9000s, where the SoC is dropping below 20%. This

behaviour indicates a slower rate of diffusion, implying that the

model parameters have changed, i.e., larger internal resistance

causing a larger overpotential and thus a larger voltage drop

as observed in Fig. 2f. In other words, the battery behaviour

becomes more nonlinear, which clearly motivates the necessity

of estimating model parameters online as opposed to offline

estimation, which will be further substantiated through the

results in this section.

Lastly, comparing the measurements of the lab-grade current

sensor with the production-grade current sensor motivates the

need for SoC estimation in general. In Fig. 3, a short section

of the measured current with the production-grade sensor from

Fig. 2c is shown, which now also includes the data from the

lab-grade current sensor. It can be seen that the production-

grade sensor in blue is biased and can be characterised by

a significantly higher standard deviation than the lab-grade

current sensor. Moreover, this bias is time-varying (i.e., sensor

drift) and is therefore calculated as the absolute average of the
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Fig. 3: WLTP cycle, zoom of Ibatt with production-grade

sensor (blue) and lab-grade sensor (red).

difference between the two current signals, which is found to

be 26 mA for the WLTP drive cycle and 33 mA over the MMD

cycle. Although this might seem small, a bias of 33 mA over

a time of 4 hours will result in an SoC error of 1.3% using the

production-grade sensor in combination with the CC method

for the battery cell used in this paper.

B. Results of EKF with Correlated Noise and Forgetting

As mentioned in Section III, the joint EKF CF is charac-

terised by only one tuning parameter, i.e., γ, and two pre-

tuning choices, i.e., model structure and model order of the

overpotential model. In this paper, a first-order model is chosen

as denoted in (4) and (6) for the ARX model and OE model,

respectively. Consequently, observer synthesis of the joint EKF

CF depends on γ and the choice for either an OE or ARX

model structure. The effect of these choices is analysed by

synthesising different observers for these different choices and

applying the observers to the measured WLTP data in Fig. 2.

In order to verify convergence of the estimation error and thus

the effect of γ, the initial conditions are taken as SoC = 92%
(i.e., 5% deviation with respect to the true SoC) and θ10 = 0.95,

θ20 = 0 and θ30 = 0.01. It should be noted that the initial

parameter values θ0 are taken close to the parameter values

that have been found through offline characterisation of the

parameters using the WLTP cycle. Furthermore, recall that

the measured current used for estimation is taken from the

less-accurate production-grade sensor in Fig. 2c.

The results of this study in terms of parameter estimation

and SoC estimation are shown in Fig. 4. In this figure, the left

column depicts the results for an ARX model structure and

the right column depicts the results for an OE model structure.

The estimates of the parameters θ1k, θ2k and θ3k and the SoC

estimation error are depicted from top to bottom, respectively.

For every plot with parameter estimates, the dashed black

line shows the parameter values that have been estimated

offline and the coloured dashed lines depict the estimated

parameters using the joint EKF CF for a range of γ values.

The offline identification of the battery model was performed

by taking a different section of the WLTP data such that the

validation data do not overlap entirely with the identification

data. Moreover, the black dashed lines show that there is a

significant difference between the offline parameters of the OE

model and the ARX model. For the online estimation with the

joint EKF CF, it can be seen from the plots in Fig. 4 that

decreasing γ results in more “aggressive” adaptation of the

parameter, which can be explained by the fact that a smaller

γ results in faster “forgetting” of older data and thus faster

adaptation. Interestingly, in case of an ARX model structure,

θ1k and θ2k do not seem to converge to the offline parameters

for the selected initial conditions for the state and parameter

estimates, whereas for the OE model structure, θ1k and θ2k
converge more closely to the offline parameter values (i.e.,

the dashed black line). It seems that using the ARX model

structure in the (nonconvex) joint estimation problem is more

sensitive for initial conditions than the OE model structure.

In Fig. 4g and Fig. 4h, the SoC estimation errors are shown

for the ARX model structure and OE model structure, respec-

tively. Similar to the parameter-estimation results, it can be

seen that decreasing γ results in faster and more “aggressive”

adaptation. Moreover, it can be seen that the SoC error in

Fig. 4h with the OE model structure is significantly smaller

than the SoC error in Fig. 4g using the ARX model structure

for the selected initial conditions for the state and parameter

estimates. This might again be due to the fact that the ARX

model structure is more sensitive for initial conditions than

the OE model structure. Therefore, we will take the OE model

structure for the joint EKF CF and subsequently, only γ is a

tuning parameter for the algorithm, where, based on the results

with WLTP data in Fig. 4, 0.999 ≤ γ ≤ 0.9999 is preferred.

C. Comparison with Existing Approaches

The proposed joint EKF CF will be compared to existing

model-based estimation methods, using the model in (2). First,

the need for online estimation of parameters will be shown.

Second, it will be shown that the estimation accuracy of

the joint EKF CF, which has only one tuning parameter,

is comparable to other state-of-the-art estimation techniques,

which typically have a multitude of tuning parameters. The

latter will demonstrate the main contribution of this work:

an accurate joint-estimation method with only a single tuning

parameter γ with straightforward tuning.

For the comparison, a number of commonly-used estima-

tion methods are selected. First, to show the necessity of

online parameter estimation, the proposed observer will be

compared to the (regular) EKF for which the parameters

have been identified offline. For online parameter estimation

(or frequently referred to as parameter adaptation), a wide

variety of approaches exists in the literature, see [1, 2, 10] and

references therein. These approaches can roughly be divided

into two categories. The first category consists of approaches

that solve the highly coupled joint-estimation problem in one

step, for which the joint EKF and related extensions (e.g.,

sigma-point KF, unscented KF, etcetera) are well-established

in the literature and are widely applied, see, e.g., [1, 2, 8].

The second category consists of approaches that solve the

estimation problem in two steps, a parameter-estimation step
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(a) ARX model, θ1
k

. (b) OE model, θ1
k

.

(c) ARX model, θ2
k

. (d) OE model, θ2
k

.

(e) ARX model, θ3
k

. (f) OE model, θ3
k

.

(g) SoC error with ARX model. (h) SoC error with OE model.

Fig. 4: Estimated model parameters and SoC error with ARX and OE model for different settings of γ.



MANUSCRIPT SUBMITTED TO IEEE TRANS. ON CONTROL SYSTEMS TECHNOLOGY 11

and an SoC-estimation step. Typically, the model parameters

are estimated using a recursive least-squares (RLS) approach

and in the other step, a model (based on the estimated

parameters) is used in combination with an EKF for model-

based SoC estimation. see, e.g., [27–29]. In summary, the

following estimation methods will be compared.

• Offline EKF: SoC estimation only; with tuning of (sym-

metric) covariance matrices Q ∈ R
2×2 and R ∈ R

1×1 (if

a first-order overpotential model is used). No parameter

adaptation is employed; the parameters have been iden-

tified offline with a separate identification experiment.

• RLS+EKF: Two-step approach: parameter estimation

using RLS with (a single) forgetting factor γrls and

SoC estimation using an EKF with tuning of (symmetric)

covariance matrices Q ∈ R
2×2 and R ∈ R

1×1.

• Joint EKF: Solving the joint-estimation problem using

the joint EKF with regular tuning of (symmetric) covari-

ance matrices Q ∈ R
5×5 and R ∈ R

1×1 (i.e., without

correlated noise and forgetting).

• Joint EKF CF: The approach developed in this paper

based on the joint EKF, with a single tuning parameter γ.

The comparison is performed as follows. The estimation

accuracy of the observers is analysed in terms of the SoC

estimation error, for which the measured or “true” SoC is

calculated with the CC method in combination with the

measured current from the lab-grade sensor. The SoC error

is then given by subtracting the estimated SoC from the true

SoC. The performance of the estimation methods is evaluated

for both drive cycles (WLTP and MMD cycle) in Fig. 2

and all observers have been tuned adequately so as to yield

good performance (in terms of the SoC estimation error).

The offline model parameters (used for the offline EKF and

for the initial conditions of the other observers) have been

identified with both the MMD and the WLTP cycle. Note that

the parameters identified with the MMD cycle are used for the

SoC estimation in the WLTP cycle and vice versa, in order

to ensure proper cross validation. The initial conditions for

the observers are taken as close as possible to the true values,

since convergence has already been shown previously in Fig. 4.

This means that the initial SoC estimate is taken to be the

true SoC and for the joint EKF and the joint EKF CF, the

initial conditions for the parameters are taken as the offline

identified OE parameters, since in this case, the proposed

joint EKF CF uses an OE model structure as discussed in the

previous section. Consequently, the other KF-based observers

(including the offline EKF) are also initialised with these

parameters so as to make a fair comparison. For the two-step

scheme with RLS and EKF (RLS+EKF), the initial parameter

estimates are the offline identified ARX parameters since an

ARX model structure is assumed in the RLS scheme (i.e., only

ARX yields a linear least-squares problem). Consequently, the

offline parameters have been estimated for both the OE model

structure as well as the ARX model structure for both drive

cycles. The initial conditions as well as the tuning of the

observers are given in Table I.

The results of the comparison can be found in Fig. 5 and

Table II. The left column of Fig. 5 depicts the estimation

results for the WLTP cycle. The estimated parameters θ1k, θ2k
and θ3k and the SoC estimation error are shown in Fig. 5 from

top to bottom, respectively. As mentioned previously, note that

the offline parameters in this figure have been identified with

an OE model structure. Similarly, the estimation results for

the MMD cycle are depicted in the right column of Fig. 5.

Subsequently, the SoC estimation errors in Fig. 5g and Fig. 5h

in terms of the root-mean-square error (RMSE) over the entire

drive cycle can be found in the third and fourth column of

Table II, respectively. The second column of Table II shows the

RMSE of the WLTP cycle with the incorrect initial conditions

as used in Fig. 4. Furthermore, the baseline for the SoC

estimation is shown in Table II by means of the RMSE of the

CC method using the production-grade sensor, where the error

is mainly caused by the time-varying bias of the production-

grade sensor.

In Fig. 5, we can observe that for the WLTP cycle, the

performance of the observers is similar and relatively accurate

in terms of the SoC estimation error. Table II confirms this

as the RMSEs are well below SoC = 1%. For the param-

eter estimation with the WLTP cycle, the observers behave

differently, although the differences in estimated parameters

are relatively small. Moreover, the parameter estimates are

close to the offline OE model parameters depicted with the

dashed magenta line. The results for the MMD cycle in the

right column of Fig. 5 are quite similar to those of the

WLTP cycle up to k ≈ 9000s. As mentioned previously,

from this point in time (i.e., low SoC range) the battery

behaviour becomes more nonlinear, see, e.g., [30]. Therefore,

the underlying parameters of the system change, which is

clearly visible in the voltage behaviour in Fig. 2f. To deal

with this phenomenon, the parameters of the battery model

need to be adapted as can be seen in Fig. 5b, Fig. 5d and

Fig. 5f, where all observers perform this parameter adaptation

differently. The resulting SoC estimation error as well as its

RMSE can be found in Fig. 5h and Table II, where it is

quite clear that not adapting the parameters, i.e., using the

offline EKF, yields the worst performance with an RMSE of

2.7%. This motivates the need to make the parameters of

the overpotential model time-varying (e.g., SoC-dependent),

thus motivating the need for online parameter estimation. The

other observers yield higher accuracy, where the RMSEs for

the joint EKF and the proposed joint EKF CF are relatively

similar. Note that (for the sake of completeness) the offline

EKF has been validated with both OE parameters as well as

ARX parameters (the results for the OE parameters are shown

in Fig. 5 and Table II). Although the parameter values are

slightly different, the estimation accuracy has been found to

be the same for both model structures.

TABLE I: Tuning and initial conditions of the observers.

offline EKF Q = I2×2 × 10−4, R = 1, P0 = I2×2

RLS+EKF γrls = 0.998, P rls

0
= I3×3

Q = I2×2 × 10−4, R = 1, P0 = I2×2

joint EKF Q = I5×5 × 10−4, R = 1, P0 = I5×5

joint EKF CF γ = 0.9999, P0 = I5×5
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(g) SoC error WLTP cycle. (h) SoC error MMD cycle.

Fig. 5: Model parameters and SoC error for different observers with in the left column, the results for the WLTP cycle and in

the right column, results for the MMD cycle. The offline model parameters have been identified using an OE model structure.
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TABLE II: Comparison of the estimation methods in terms of

the RMSE of the SoC estimation in [%], including CC (based

on the production-grade current sensor) as baseline.

WLTP (initial error) [%] WLTP [%] MMD [%]

CC 5.4 0.5 0.6

offline EKF 0.7 0.4 2.7

RLS+EKF 0.9 0.7 1.7

joint EKF 0.6 0.6 0.8

joint EKF CF 0.6 0.5 0.5

V. DISCUSSION

The results of the application of the proposed observer

and the comparison of estimation methods provide interesting

insights that are discussed further in this section. First, the

proposed joint EKF CF and the (regular) joint EKF achieve

similar performance, which is as expected. It is interesting to

note that the parameter estimation with the joint EKF seems to

be more “aggressive” than with the joint EKF CF, especially

for parameters θ2k and θ3k in Fig. 5 as can be seen from the

relatively fast parameter variations. In other words, the joint

EKF generally works well, but tuning of the observer has been

a major issue.

In this paper, the joint EKF has been adapted to make

it tuning-friendly with a particular emphasis on disturbance

attenuation and convergence properties for SoC estimation.

Furthermore, both the joint EKF and the joint EKF CF were

able to achieve accurate SoC estimation at the end of the MMD

cycle in Fig. 5h, where the nonlinear behaviour of the battery is

more pronounced, causing changes in the battery parameters.

This demonstrates the advantage of jointly performing SoC

and parameter estimation, even though both joint EKFs have

slightly higher computational complexity than the offline EKF.

It should be noted that both EKFs have similar computational

complexity as they have the same state dimensions and require

very similar computational operations. Moreover, since both

EKFs are capable of adapting the model parameters, they

are also both capable of working at different temperatures as

temperature has a significant effect on the overpotential of the

battery (and thus the value of the model parameters).

Interestingly, the RLS+EKF scheme with the tuning as

shown in Table I, which is also a joint-estimation scheme,

is significantly less accurate at the end of the MMD cycle.

It should be noted that different tuning settings have been

analysed for this observer and that the settings as presented

in Table I yielded the most accurate results as shown in

Table II and Fig. 5h. It would therefore be interesting to further

investigate this difference in performance, which might be

due to the fact that the joint EKF solves the joint-estimation

problem in a strongly coupled fashion, where both the SoC

and the parameters are estimated simultaneously, whereas the

RLS+EKF scheme uses a more decoupled two-step approach.

Another important aspect is the interpretation of the SoC-

estimation results as presented in Table II, Fig. 5g and Fig. 5h.

Namely, the RMSEs of the proposed joint EKF CF and

the joint EKF are well below 1% SoC error for both drive

cycles. However, what does this number tell us and should

we aim for an even smaller error, and if so, would that

be a significant result? One could argue that an uncertainty

interval for the SoC estimation error should be used since

the final result, the SoC estimate, consists of a number of

steps and each single step introduces some uncertainty. For

example, in this paper, the nonlinear EMF-SoC function of the

battery model has been characterised at 20◦C using a pulsed-

current test, which is based on relaxation of the battery voltage.

The experimental validation has also been conducted at this

temperature. However, the EMF-SoC function is temperature-

dependent, see, e.g., [31], which suggests that, depending on

the characterisation of the EMF-SoC function, an error in the

SoC estimation will be introduced. For example, the function

can be characterised as a temperature-dependent function, see,

e.g., [9, Chapter 2], or simply as one single curve at one

temperature, which is typically used in the literature, see,

e.g., [32, Chapter 7]. Still, for the former case, it might be

interesting to extend the models used in this paper by including

thermal behaviour of the battery and apply the proposed EKF.

Furthermore, the EMF-SoC relation will (slowly) change

over time due the battery ageing, see, e.g., [31]. The exper-

iments in this paper are conducted over a short period of

time and, therefore, it is assumed that the ageing does not

significantly affect the EMF-SoC relation. However, over a

longer period of time, the change in the EMF-SoC relation

may introduce an additional error in the SoC estimation.

Consequently, it is preferable to calibrate or adapt the EMF-

SoC relation over time, for which approaches have been

proposed, see, e.g., [33, 34], or to incorporate an ageing model

in the methodology. Moreover, the method of obtaining the

EMF voltage can also introduce an error. For example, using

the voltage relaxation method (with the pulsed-current test) is

more accurate than using a method where the EMF-SoC curve

is determined based on averaging a small discharge current and

a small charge current, see [31]. In conclusion, an uncertainty

interval around the SoC error of approximately ±1% could

very well be reasonable. This would imply that all SoC errors

in this interval can be interpreted as equally accurate and we

cannot quantitatively compare methods with SoC errors that

lie within this interval.

Lastly, one could argue that the RMSE of CC in Table II is

relatively small and it could be argued that using an observer

for SoC estimation is not necessary. Indeed, for the relatively

short drive cycles in this paper, this may be true. However, the

problem of the CC method is that it is based on integrating

current and therefore the error will accumulate over time.

Moreover, and this may be an even bigger issue, the CC

method is based on exact knowledge of the initial condition.

For instance, using the experimental setup, an experiment of a

return trip with the MMD cycle has been performed (i.e., two

times 232km) with constant-current charging in between trips.

Then, the accumulated SoC error of the correctly initialised

CC method (using the production-grade current sensor) was

already 4.9% at the end of the cycle, demonstrating the need

for SoC estimation. Finally, further drift of the CC accuracy

may be caused by battery ageing and self discharge (which

are both temperature-dependent phenomena).
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VI. CONCLUSIONS

Battery State-of-Charge (SoC) estimation is often performed

using an nonlinear extension of the Kalman filter such as

the Extended Kalman filter (EKF) in combination with an

Equivalent-Circuit Model (ECM). However, the convergence

of the SoC estimation error and the robustness with respect to

model uncertainty are not addressed explicitly, making tuning

of these filters a tedious task without clear instructions on

the tuning procedure. In the literature, robust-observer design

procedures have been proposed that show promising results.

However, in order to ensure accurate SoC estimation under all

circumstances, joint estimation of SoC and ECM parameters

is necessary.

In this paper, it has been shown that extending the robust-

observer approaches towards the joint estimation of SoC and

ECM parameters is not feasible. Therefore, we have proposed

to combine a nonlinear observer with the structured repre-

sentation of model uncertainty and disturbance as typically

used in robust-observer design. To do so, the standard joint

EKF has been adapted to accommodate correlated noise and

forgetting, which resulted in an observer with a specific

structure for model uncertainty and disturbance with a single

tuning parameter, allowing for straightforward observer tuning.

The experimental results on realistic drive-cycle data have

shown that the performance of the proposed observer is similar

to the widely-used (and close-to-optimal) joint EKF with a

root-mean-square SoC error of 0.5%, resulting in an easy-to-

tune alternative to the joint EKF.

APPENDIX

IMPLEMENTATION OF THE FORGETTING FACTOR

Using the approach in [26, Chapter 7.4] as a starting point,

we will add a forgetting factor to (15) by redefining the

covariance matrices in (15) to Qk = γkQk, Rk = γkRk

and Sk = γkSk and by defining P̃+
k = γ1−kP+

k and

P̃−

k+1 = γ−kP−

k+1 in which γ ≤ 1 is the forgetting factor.

The measurement update of the observer is then given by

x̂−

k+1 = x̂+
k + Lk(yk − Ckx̂

+
k −Dkuk) (25)

with

Lk = P+
k C⊤

k

(
CkP

+
k C⊤

k + γkRk

)−1

= γ1−kP+
k C⊤

k

(
γ1−kCkP

+
k C⊤

k + γk−1γRk

)−1

= P̃+
k C⊤

k

(

CkP̃
+
k C⊤

k + γRk

)−1

, (26)

and

P−

k+1 = (I − LkCk)P
+
k

γkP̃−

k+1 = (I − LkCk) γ
k−1P̃+

k

P̃−

k+1 = γ−1 (I − LkCk) P̃
+
k . (27)

For the time update, we find

x̂+
k+1=Akx̂

−

k+1+Bkuk+γkSk(γ
kRk)

−1(yk−Ckx̂
−

k+1−Dkuk)

=Akx̂
−

k+1+Bkuk+SkR
−1
k (yk−Ckx̂

−

k+1−Dkuk) (28)

and

P+
k+1=(Ak−γkSk(γ

kRk)
−1Ck)P

−

k+1×

(Ak−γkSk(γ
kRk)

−1Ck)
⊤+γkQk−γkSk(γ

kRk)
−1γkS⊤

k

P+
k+1=(Ak−SkR

−1
k Ck)P

−

k+1(Ak−SkR
−1
k Ck)

⊤

+ γkQk − γkSkR
−1
k S⊤

k

P̃+
k+1=(Ak − SkR

−1
k Ck)P̃

−

k+1(Ak − SkR
−1
k Ck)

⊤

+Qk − SkR
−1
k S⊤

k (29)

where P̃+
k+1 = γ−kP+

k+1.

In summary, the two-step KF with cross-correlated noise

and forgetting is given by the measurement update

Lk= P̃+
k C⊤

k (CkP̃
+
k C⊤

k + γRk)
−1 (30a)

x̂−

k+1= x̂+
k + Lk(yk − Ckx̂

+
k −Dkuk) (30b)

P̃−

k+1=
1
γ
(I − LkC)P̃+

k (30c)

and the time update

x̂+
k+1=Akx̂

−

k+1+Bkuk+SkR
−1
k (yk−Ckx̂

−

k+1−Dkuk) (30d)

P̃+
k+1=(Ak − SkR

−1
k C)P̃−

k+1(Ak − SkR
−1
k C)⊤

+Qk − SkR
−1
k S⊤

k , (30e)

which completes the implementation of the forgetting factor γ.
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