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Abstract—Oscillator phase noise limits the performance of high
speed communication systems since it results in time varying
channels and rotation of the signal constellation from symbol to
symbol. In this paper, joint estimation of channel gains andWiener
phase noise in multi-input multi-output (MIMO) systems is an-
alyzed. The signal model for the estimation problem is outlined
in detail and new expressions for the Cramér-Rao lower bounds
(CRLBs) for the multi-parameter estimation problem are derived.
A data-aided least-squares (LS) estimator for jointly obtaining
the channel gains and phase noise parameters is derived. Next,
a decision-directed weighted least-squares (WLS) estimator is
proposed, where pilots and estimated data symbols are employed
to track the time-varying phase noise parameters over a frame.
In order to reduce the overhead and delay associated with the es-
timation process, a new decision-directed extended Kalman lter
(EKF) is proposed for tracking the MIMO phase noise throughout
a frame. Numerical results show that the proposed LS, WLS, and
EKF estimators’ performances are close to the CRLB. Finally,
simulation results demonstrate that by employing the proposed
channel and time-varying phase noise estimators the bit-error rate
performance of a MIMO system can be signi cantly improved.

Index Terms—Channel estimation, Cramér-Rao lower bound
(CRLB), extended Kalman lter (EKF), multi-input multi-output
(MIMO), weighted least squares (WLS), Wiener phase noise.

I. INTRODUCTION

A. Motivation and Literature Survey

W IRELESS communication links are expected to carry
ever higher rates over the available bandwidth. The ex-

tensive research in the eld of multi-input multi-output (MIMO)
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systems has shown that such systems are capable of signi cantly
enhancing bandwidth ef ciency of wireless systems [1], [2].
However, achieving synchronous transmission in today’s high
speed wireless systems is a challenging task, since many rapidly
varying synchronization parameters need to be simultaneously
and jointly estimated at the receiver [3]. Therefore, accurate and
ef cient algorithms that enable synchronous high-speed com-
munication are of broad interest [4].
Phase noise, which is present in wireless communication

systems due to imperfect oscillators [5]–[12], is greatly detri-
mental to synchronization unless its parameters are accurately
estimated and compensated [3]. The effect of phase noise
on the performance of wireless communication systems is
more pronounced at higher carrier frequencies [4]. In addition,
motivated by the large available bandwidth in the E-band
(60–80 GHz) extensive research has been recently carried
out on ef cient algorithms that are capable of outperforming
traditional phase noise tracking schemes, e.g., those based on
the phase-locked loop (PLL). In the case of MIMO systems,
each transmit and receive antenna may be equipped with an
independent oscillator. For example, in the case of line-of-sight
(LoS) MIMO systems1, a single oscillator cannot be used for
all the transmit or receive antennas since the antennas need
to be placed far apart from one another [13]2. Similarly, in
multiuser MIMO or space division multiple access (SDMA)
systems, multiple users with independent oscillators transmit
their signals to a common receiver [15]. Thus, in order to
comprehensively address the problem of phase noise mitigation
in MIMO systems, algorithms that can jointly estimate multiple
phase noise parameters at the receiver are of particular interest
[13], [15].
In single carrier communication systems, phase noise is mul-

tiplicative and results in a rotation of the signal constellation
from symbol to symbol and erroneous data detection [3]. The
Cramér-Rao lower bounds (CRLB) and algorithms for estima-
tion of phase noise in single-input single-output (SISO) systems
are extensively and thoroughly analyzed in [3], [16]–[30]. How-
ever, these results are not applicable to MIMO systems, where
a received signal may be affected by multiple phase noise pa-
rameters that need to be jointly estimated at the receiver [13],
[31]–[33]. As a matter of fact, for SISO systems, Kalman lter-
based methods have been effectively applied in [16], [20], [25],
[29] for signal detection in the presence of phase noise. How-
ever, as stated previously these approaches are not applicable to
the case of MIMO systems and the results in [16], [20], [25],

1LoS MIMO has been effectively demonstrated for microwave backhauling
by Ericsson AB.
2For a 4 4 LoS MIMO system operating at 10 GHz and with a transmitter

and receiver distance of 2 km, the optimal antenna spacing is 3.8 m at both the
transmitter and receiver [14].
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and [29] are focused on signal detection and do not analyze or
investigate the estimation performance of Kalman lter based
phase noise mitigation methods.
The effect of phase noise on the capacity and performance of

space division multiplexing (SDM)MIMO communication sys-
tems has been analyzed in [31]–[33], where it is demonstrated
that phase noise can greatly limit the performance of multi-
antenna systems. In [31], the effect of oscillator con guration
at the transceiver antennas and the resulting phase noise on a
MIMO beamforming system is analyzed in detail. In [32], [33],
it is demonstrated that imperfect knowledge of phase noise and
channel have a considerable impact on the capacity of MIMO
systems. However, the impact of imperfect knowledge of phase
noise and channel on the performance of a MIMO system for
different numbers of antennas, modulation schemes, and phase
noise variances is not investigated. In [13], pilot-aided estima-
tion of phase noise in a MIMO system is investigated, where a
Wiener ltering approach is applied to estimate the phase noise
parameters corresponding to the transmit and receive antennas.
However, the scheme in [13] is based on the assumption that
the MIMO channel is perfectly known at the receiver and it re-
quires that while one antenna transmits its pilots, the remaining
antennas stay silent, which is bandwidth inef cient and results
in signi cant overhead. In addition, in [13], the CRLB for the es-
timation problem is not derived and the performance of the pro-
posed MIMO phase noise estimator is not investigated. To the
best of the authors’ knowledge, a complete analysis of the joint
estimation of channel and phase noise parameters inMIMO sys-
tems has not been addressed in the literature to date.
In orthogonal frequency division multiplexing (OFDM)

phase noise is convolved with the data symbols [7], [34]–[36].
Therefore, the effect of phase noise can be partitioned into a
multiplicative part and an additive part that results in inter-
carrier interference (ICI) and signi cant performance loss [7].
Since in OFDM systems, the multiplicative part of phase noise
affects all subcarriers similarly [35], it is referred to as the
common phase error (CPE) and can be easily compensated by
a phase rotation as shown in [7], [34], [36], [37]. On the other
hand, the additive part of phase noise is more challenging to
mitigate and considerable research has been carried out to an-
alyze and reduce its resulting ICI in SISO-and MIMO-OFDM
systems [7], [35], [38]. More speci cally, the algorithms in
[7], [36], [39]–[41] are only applicable to SISO-OFDM sys-
tems and do not provide any means of estimating or tracking
multiple phase noise parameters. In [42], it is shown that
channel and phase noise need to be jointly estimated at a
SISO-OFDM receiver and new algorithms for obtaining them
are presented. In order to further improve system performance,
an approach for joint estimation and suppression of CPE and
ICI in SISO-OFDM systems based on the variational inference
approach have been presented in [43], where it is discussed
that in most practical scenarios of interest, the phase noise
process varies much more quickly than the channel and, as a
result, the effect of phase noise cannot be mitigated using a
simple training approach. However, the results in [42], [43] are
only applicable to SISO-OFDM systems, the derived CRLB
for channel estimation [42] does not take the effect of phase
noise into account, and the estimators in [42] can be only
applied to wireless systems where the receiver is equipped
with a PLL. Furthermore, the iterative algorithms in [43] can

potentially result in unwanted delay and overhead in high speed
communication systems.
Even though the results in [35] provide schemes for miti-

gating the effect of phase noise induced ICI in MIMO-OFDM
systems, they present no means of estimating the CPE or the
multiplicative phase noise affecting these communication sys-
tems. Algorithms for CPE estimation in MIMO-OFDM sys-
tems have been proposed in [34], [37], [38]. However, these
schemes are based on the assumption that the MIMO channels
are known and are limited to scenarios where a single oscillator
is used at all the transmit or receive antennas. As a result, the ap-
proaches in [34], [37], [38] cannot track multiple channels and
phase noise parameters and cannot be applied to various MIMO
systems. Moreover, in [34], [37], [38], no speci c performance
bound, e.g., CRLB, for the estimation of channel and phase
noise parameters is derived. In [15], a new algorithm for esti-
mation of the CPE in SDMA MIMO-OFDM systems has been
proposed. Even though the maximum a posteriori estimator in
[15] can trackmultiple phase noise parameters, it has a very high
computational complexity, it is based on the assumption that
the MIMO channels are perfectly known, and the performance
of the proposed estimators is only veri ed for low-to-moderate
phase noise variances. Finally, in [15], the CRLB for estimation
of multiple phase noise parameters in SDMAMIMO systems is
not derived.
It is important to note that compared to single carrier sys-

tems, phase noise deteriorates the performance of OFDM sys-
tems more signi cantly [44]. This sensitivity to phase noise in
OFDM systems is evenmore severe as the constellation size and
number of subcarriers increases [44]. Therefore, application of
single carrier systems to very high speed communication links
may be advantageous. Moreover, application of single carrier
SDM instead of OFDM in wireless communication systems that
operate in frequency non-selective fading channels may result
in reduced overhead and cost, since OFDM signalling requires
additional signal processing at the transmitter and receiver (a
fast Fourier transform (FFT) and an inverse FFT at the receiver
and transmitter, respectively) [45], necessitates more overhead
due to the cyclic pre x [45], and requires linear ampli ers [46].
For example, in the case of high speed LoS microwave back-
haul links (backhaul networks connect cellular base stations to
the core network), the wireless channel is not frequency selec-
tive [47]–[49] and, therefore, single carrier SDM is used instead
of OFDM [47]. Moreover, OFDM may not be suitable for wire-
less systems that operate in nonlinear channels due to OFDM
signals’ amplitude variations and high peak-to-average power
ratio (PAPR) [46]. An example can be found in satellite com-
munication links, where use of high power ampli ers results in
signi cant non-linearity in the wireless channel [46, p. 383]. Fi-
nally, single carrier systems are considered to be advantageous
in the E-band due to their low PAPR (at very high carrier fre-
quencies the dynamic range of power ampli ers is limited) and
their better performance when using high rate or weak error cor-
recting codes [50, p. 261].

B. Contributions

In this paper, joint estimation of multiple phase noise param-
eters and channel gains in a single carrier SDM MIMO system
equipped with transmit and receive antennas is analyzed.
The system model for the estimation problem is formulated
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in detail and new CRLBs for the multiple parameter estima-
tion problem corresponding to online processing of the received
signal are derived. A data-aided least squares (LS) estimator for
jointly obtaining the channel gains and phase noise values is
derived. Next, the pilot and estimated data symbols in combi-
nation with a decision-directed3weighted least-squares (WLS)
estimator are used to track the time-varying phase noise pro-
cesses over a frame. In order to reduce overhead and delay asso-
ciated with the estimation process, a decision-directed extended
Kalman lter (EKF) is also proposed. The performance of the
proposed LS, WLS, and EKF based channel and phase noise es-
timators is shown to be close to the derived CRLBs over a wide
range of signal-to-noise ratio (SNR) values. Moreover, simula-
tion results demonstrate that by employing the proposed channel
and phase noise estimators the bit-error rate (BER) performance
of a MIMO system can be signi cantly improved in the pres-
ence of time-varying phase noise. Finally, the effect of number
of antennas, modulation scheme, and phase noise variance on
the performance of MIMO systems with imperfect knowledge
of channel and phase noise is investigated4. The contributions
of this paper can be summarized as follows:
� The joint estimation of channel gains and phase noise in an

MIMO system is parameterized and new CRLBs
for themulti-parameter estimation problem in cases of both
data-aided and decision-directed estimation are derived.
The CRLBs are then used as a benchmark for the perfor-
mance of the proposed estimators and are also applied to
quantitatively determine the effect of unknown phase noise
on channel estimation accuracy and vice versa.

� Algorithms for estimating and tracking the unknown
channel gains and time-varying phase noise, respectively,
throughout a frame are proposed. A data-aided LS esti-
mator for jointly obtaining the MIMO channel and phase
noise parameters is proposed. Next, novel WLS and EKF
based estimators are proposed that are shown to accurately
track the phase noise over a frame and reach the derived
CRLB. A complexity analysis is carried out to show that
the proposed EKF can ef ciently track multiple noisy and
time-varying phase shifts in a MIMO system.

� Extensive simulations are carried out that investigate the
performance of MIMO systems in the presence of imper-
fectly estimated channels and phase noises for different
phase noise variances, modulations, synchronization
overheads, channel conditions, and Doppler rates. These
simulations demonstrate that application of the proposed
channel and phase noise estimators can signi cantly im-
prove the performance of MIMO systems.

C. Organization

The remainder of the paper is organized as follows: in
Section II the phase noise model and MIMO framework used
throughout the paper are outlined, Section III derives the new
CRLBs for both cases of data-aided and decision-directed esti-
mation, Section IV presents the novel channel and phase noise
estimation algorithms while Section V provides numerical and
simulation results that examine the performance of MIMO
systems in the presence of estimated channel and phase noise.

3For decision-directed, the prior pilot and estimated data symbols are used to
estimate the current symbol’s phase noise parameters.
4This paper is partly presented at SPAWC 2012 [51].

Finally, Section VI concludes the paper and summarizes its key
ndings.

Notation

Superscripts , , and denote conjugate, conju-
gate transpose, and transpose operators, respectively. Bold face
small letters, e.g., , are used for vectors, bold face capital al-
phabets, e.g., , are used for matrices, and represents the
entry in row and column of . , , and ,
denote the identity, all zero, and all 1 matrices, respec-
tively. stands for Schur (element-wise) product, is the
absolute value operator, returns the phase of complex vari-
able , denotes the element-wise absolute value of a vector
, is used to denote a diagonal matrix, where the di-
agonal elements are given by vector . is used to de-
note the diagonal elements of matrix . denotes the ex-
pected value of the argument, and and are the real
and imaginary parts of a complex quantity, respectively. Finally,

and denote real and complex Gaussian
distributions with mean and variance , respectively.

II. SYSTEM MODEL

A point-to-point MIMO system with and transmit and
receive antennas, respectively, is considered (see Fig. 1). As
shown in Fig. 2 each frame of length symbols is assumed
to consist of a training sequence (TS) of length symbols,
data symbols, and pilot symbols that are transmitted every
symbol interval. In this paper, the following set of assumptions
is adopted:

A1. The pilot symbols are assumed to be known at the
receiver. Moreover, it is assumed that all transmit an-
tennas simultaneously broadcast mutually orthogonal TSs
of length to the receiver.
A2. In order to ensure generality, each transmit and receive
antenna is assumed to be equipped with an independent
oscillator as depicted in Fig. 1. This ensures that the system
model is in line with previous work in [13] and is also
applicable to various MIMO scenarios, e.g., LoS MIMO
and SDMA MIMO systems.
A3. The analyses in this paper are based on the assumption
of Quasi-static and frequency- at fading channels, where
the channel gains are assumed to remain constant over
a frame, i.e., the channel gains are modeled as unknown
deterministic parameters over a frame. Nevertheless, in
Section V, the performances of the proposed channel
and phase noise tracking schemes in the presence of
time-varying channels are investigated.
A4. The time-varying phase noise process is modeled as
a random-walk or Wiener model. It should be noted that
phase noise is assumed to evolve much more slowly than
the symbol rate. Therefore, phase noise is assumed to not
change during the duration of a symbol but to change from
symbol to symbol.
A5. Perfect timing and frame synchronization is assumed,
which can be achieved by standard frame synchronization
algorithms using a timing feedback loop [18].

Note that Assumptions A3, A4, and A5 are in line with pre-
vious phase noise estimation algorithms in SISO and MIMO
systems in [3], [13], [17], [18], [52]–[54]. Moreover, Assump-
tion A3 is reasonable in many practical scenarios, e.g., in LoS

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at IEEE Transactions on 

Signal Processing, published by IEEE.   Copyright restrictions may apply.  doi:  10.1109/TSP.2012.2202652



4 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 9, SEPTEMBER 2012

Fig. 1. System model for a point-to-point MIMO systems.

Fig. 2. Timing diagram for transmission of training, pilot, and data symbols
within a frame.

MIMO systems applied to microwave backhaul [47] and satel-
lite communication links [46], where the channel gains vary
much more slowly than the phase noise process. More impor-
tantly, unlike the results in [3], [13], [17], [18], [52]–[54], which
assume that the channel gains are estimated and equalized be-
fore phase noise estimation, in this paper we jointly estimate
the MIMO channel gains and phase noise parameters. Note that
even though the analyses in this paper are based on the assump-
tion of quasi-static fading channels, in Section V, it is demon-
strated that by selecting an appropriate synchronization over-
head, the proposed estimators can accurately trackMIMO chan-
nels and phase noise processes in the presence of time-varying
channels with different Doppler rates.
The discrete-time baseband received signal model at the

antenna of the MIMO receiver is given by5

(1)

where
� is the , for , -ary modulated
transmitted symbol that corresponds to the transmit
antenna and consists of both pilots and data symbols;

� is the quasi-static unknown channel gain from the
transmit to the receive antenna, which is assumed

to be constant over the length of a frame and to be dis-
tributed as a complex Gaussian random variable, i.e.,

from frame to frame;

� is the channel gain from the transmit to
the receive antenna;

5Throughout this paper indices , , and
are used to denote transmit antennas, receive antennas, and symbols,

respectively.

� and correspond to the sample of the
phase noise at the transmit and receive antenna,
respectively;

� denotes the overall
phase shift from the oscillator and channel corresponding
to the transmit and receive antenna; and

� is the zero-mean complex additive white Gaussian
noise (AWGN) at the receive antenna, i.e.,

. Note that the AWGN variance, , is assumed
to be known since it can be estimated at the receiver [55].

The discrete time phase noise model in (1) is motivated by the
results in [3], [7], [13]. More importantly, for free-running oscil-
lators, it is found that the phase noise process can be modeled
as a Brownian motion or Wiener process [5]–[10]. Therefore,
and , for and , are given by

[5]–[10]

(2)

where the phase innovations for the transmit and receive
antennas, and , respectively, are assumed to be
white real Gaussian processes with and

. The variances of the innovations or

the phase noise rate at the and transmit and receive
antennas, and , respectively, are given by [5]–[10],

[38]

(3)

where the constants and denote the one-sided 3-dB band-
width of the Lorentzian spectrum of the oscillators at the
and transmit and receive antennas, respectively, and
is the sampling time. As shown in [11], [12], in practice, the
phase noise innovation variance is small, e.g., using the mea-
surement results in [12, Fig. 16], and [12, Eq. (10)] for a free-
running oscillator operating at 2.8 GHz with ,
the phase noise rate is calculated to be . Fi-
nally, throughout this paper it is assumed that and

are known at the receiver, given that they are dependent on the
oscillator properties.
Equation (1) can be written in vector and matrix form as

(4)

where
� ;
� ;
� ;
� , for ;

� is an
matrix;
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� is an
matrix;

� is an matrix;
� ;
� is the channel gain matrix;
� ; and
� .

The following remarks are in order.
Remark 1: Given that both the channel gains, , and phase
uctuations, , in (4) are assumed to be unknown, the TS at
the beginning of each frame is used to jointly estimate a total of

parameters at the receiver. Next, since in most practical
scenarios of interest, the channel gains vary much more slowly
compared to the phase noise processes [43], the pilot and esti-
mated data symbols are used to only estimate the phase
noise parameters, , over the frame.
Remark 2: It is a well-known fact that the Bayesian CRLB

(BCRLB) [56, p. 84] is better suited for determining the lower
bound on the estimation accuracy of random parameters. How-
ever, deriving the exact a priori joint distribution of the
parameters , and the multi-parameter BCRLB are
very dif cult to obtain. Therefore, using the assumption that
phase noise of a practical oscillators varies slowly with time and
the Taylor series approximation, we incorporate the phase noise
innovations, and , in to the additive noise
term, and transform the joint estimation of channel gains,
, and phase uctuations, into a deterministic multi-pa-

rameter estimation problem over the length of the observation
sequence.

III. CRAMÉR-RAO LOWER BOUNDS

In this section, new expressions for the Fisher’s informa-
tion matrices (FIMs) and the CRLBs for data-aided estimation
(DAE) and decision-directed estimation (DDE) of phase noise
and channel gains in MIMO systems are derived. Note that the
derived CRLBs are applicable to online processing of the re-
ceived signals for joint estimation of phase noise and channels.

A. CRLB for DAE

In order to coherently detect the transmitted signal at time
instant , , the MIMO receiver needs to jointly estimate
the channel gains and phase noise parameters, and ,
respectively. As a result, the vector parameter of interest is
given by

(5)

where , for . Let us consider
that a TS of length is used to estimate the parameters of
interest at time instant , and . In the following steps,
we seek to express the corresponding received signal vector as
a function of the parameters of interest.
The phase noise model in (2) can be rewritten as

(6)

Using (6), the received signal at the receive antenna in (1)
can be modelled as (7) at the bottom of the page.
For small values of , (7b) can be tightly approximated as

(8)

since for practical oscillators the phase noise innovation vari-
ances are small [11], [12] and the Taylor series expansion of the

term, for small phase in-
novations and can be approximated by

(9)

Note that the small angle approximation in (9) has also been
used in [7] and [57] for estimating and analyzing the effect of
phase noise in SISO systems. Finally, Remark 5 at the end of this
subsection compares the derived data-aided CRLB against the
posterior CRLB (PCRLB) in [21] for SISO systems and shows
that the above approximation is valid even for high phase noise
variances, e.g., [11], [12], [19], [27], [29].
The received training signal at the antenna in (7) can be

written in vector form as

(10)

(7a)

(7b)
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where
� ;
� ;
� ; and
�

.
The received signals at all receive antennas, , can
be written as . Note that based

on Assumption A2, , , , and

, are mutually independent. In
addition, it follows from the assumptions in Section II and (1)
that and , , and , ,
and , are mutually independent. Subsequently,
the received signal vector, , is distributed as ,
where the mean and the covariance matrix of ,
and , respectively, are given by

(11a)

...
. . .

... (11b)

In (11), is given by and as
shown in Appendix A, the sub-matrices , for

and , can be determined
as

(12)
where is an matrix given by

...
...

...
. . .

...

Proposition 1: The FIM for joint DAE of
channel gains and phase noise parameters is given by

...
. . .

... (13)

In (13), , for , are matrices
that are determined as shown in (14) at the bottom of the page,
where

� is an
matrix;

� is an matrix,
is an matrix;

� is an matrix;
� the row and column, for , elements
of the matrices , , , and are given
by

and the matrices and are de-
rived in Appendix A.
Proof: See Appendix A. The following remarks are in

order:
Remark 3: The CRLB for the estimation of channel gains

and phase noise parameters, and , for ,
respectively, in (5) is given by

(15)

Given the structure of the FIM in (13) and (14), it is dif cult
to nd a closed-form expression for the CRLB for an
MIMO system. However, partitioned matrix inverse [58] can
be applied to nd a closed-form expression for the CRLB for
speci c values of and .
Remark 4: The FIM for estimation of overall

channels in (4), , can be also determined in
a similar fashion as above, where the submatrices

, for , are given by

(16)

In (16), ,

,

(14)
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Fig. 3. The CRLB and PCRLB in [21] for data-aided estimation of phase noise
in a SISO system with and .

denotes the row and column element of and
, for , is determined as

.
(17)

Using (15), the FIM in (17) can be applied to nd the CRLB
for estimation of the overall MIMO channels including phase
noise, . Note that as shown in Section V-B, is used at
the MIMO receiver to equalize the effect of channels and phase
noise. Therefore, the CRLB on the estimation accuracy of
can be used to determine the effect of channel and phase noise
estimation accuracy on the performance of MIMO systems.
Remark 5: Fig. 3 compares the data-aided CRLB for estima-

tion of phase noise against the PCRLB in [21] for SISO systems.
In addition to illustrating that the CRLB derived in this paper is
accurate, Fig. 3 veri es the small angle approximation applied
in this section for different values of and phase noise vari-
ance in SISO systems. It is shown that even for large phase noise
variances, e.g., , [11], [12], [19], [27], [29], the
derived CRLB is close to the PCRLB in [21].
Remark 6: The FIM in (13) and (14) is not block diagonal.

Therefore, the estimation of channel magnitudes and phase
noise parameters in a MIMO system are coupled with one
another, i.e., channel estimation accuracy is affected by the
presence of phase noise and vice versa. This result indicates
that channel and phase noise estimation need to be carried out
jointly in a MIMO system.

Remark 7: The CRLB usually depends upon unknown pa-
rameters. Here, it is also intuitively reasonable that channel and
phase noise estimation accuracies depend on their actual values,
e.g., if the channel gains are extremely small, indicating low
SNR conditions, the channel and phase noise estimation vari-
ances will be large [59].

B. CRLB for Decision-Directed Estimation (DDE)

Since in most practical scenarios of interest channel gains
vary much slower than the phase noise processes [43] and
based on the assumption of quasi-static fading channels, the
estimates of the channel magnitudes obtained using the TSs and
data-aided estimation can be used over the frame. Therefore, in
the case of DDE, denote as the number of previous symbols
used to estimate the symbol’s phase noise parameters,

, which consist of both pilots and estimates of data sym-
bols. In order to make the analysis in this subsection tractable,
we assume DDE with perfect decision feedback. Note that even
though this assumption makes the proposed CRLB a looser
bound for decision directed estimators with imperfect decision
feedback, the numerical results in Section V demonstrate that
the derived DDE-CRLB is a valid and accurate lower bound
for both cases of perfect and imperfect decision feedback.
Based on the above set of assumptions the vector of parame-

ters of interest for DDE, , is given by

(18)

The FIM for the DDE, , can be derived in a
similar fashion as that of DAE in (13), where the sub-
matrices of denoted by , for ,
are given by6

(19)

In (19), denotes the covariance matrix of the ob-
servation sequence in the decision-directed scenario,

, which is determined
by replacing with in (12), where is given by

...
...

...
. . .

...

In addition, in (19),

is an matrix,

is an matrix, ,
and are de ned below (14), and is deter-

mined by replacing with in below (14).
The CRLB for the decision directed case, is given by

.

6Similar steps as the ones outlined in Section III-A and Appendix A are used
and, therefore, are not repeated here.
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IV. CHANNEL AND PHASE NOISE ESTIMATION

In this section, an LS estimator for joint data-aided estimation
of channels and phase noise parameters and a WLS estimator
and EKF for decision-directed tracking of phase noise parame-
ters over a frame are derived.

A. Data-Aided Estimation (DAE)

The conditional likelihood function of given the channel
magnitudes and phase noise parameters at time instant , and

, respectively, is given by

(20)

Based on (20) and since the covariance matrix, in (11) and
(12), is a function of both channel magnitudes and phase noises,
the derivation of the joint maximum-likelihood estimator of
channel and phase noise parameters is highly complex. There-
fore, in this section we derive a signi cantly less complex
data-aided LS estimator. Using (20), the joint LS estimates of
and , and , respectively, can be determined as

(21)

The cost function in (21) can be modi ed as

(22)

where and and are de ned in
(14) and (4), respectively. Using well-known methods, the LS
estimate of , , can be shown to be

(23)

where the second equality in (23) follows from Assumption A1,
i.e., . As demonstrated in [11], [12] and dis-
cussed in Section II, for most practical oscillators, the phase
noise variances, and in (3), are very small.

Therefore, the LS estimator is expected to accurately obtain the
MIMO channel and phase noise parameters. Using (23), esti-
mates of the channel magnitude and phase noise matrices are
determined by

(24)

respectively. Simulation results in Section V-B show that the
performance of the proposed LS estimator in (24) is close to the
CRLB over a wide range of SNR values.

B. Decision-Directed Estimation

In order to track the phase noise parameters throughout a
frame, in this subsection WLS and EKF decision-directed es-
timators are proposed.

1) Weighted Least-squares Estimator: The conditional log-
likelihood function (LLF) up to an additive constant can be de-
termined as

(25)

where , and , , are de ned
in Section III-B. Using (25), decision-directed WLS estimates
of the symbol’s phase noises, , is given by

(26)

In order to reduce the computational complexity, the term
in (26) is omitted, resulting in a WLS estimator.

Numerical results demonstrate that in (12)
does not vary signi cantly for different phase noise values,

.
Note that the minimization in (26) requires an exhaustive

search over an dimensional space, which is computation-
ally intensive. Even though the proposed WLS estimator may
be computationally complex to implement, it is used to verify
the CRLB derivations and to assess the performance of the pro-
posed EKF estimator. In addition, the computational complexity
of this exhaustive search and the proposed WLS estimator can
be reduced by applying alternating projection (AP) [60]. AP is
an iterative process, where at each iteration the right hand side of
(26) is minimized with respect to one of the phase noise param-
eters, e.g., , while the remaining terms are kept at their most
updated values. In other words, AP reduces the multi-dimen-
sional minimization problem into a series of one-dimensional
minimizations. Even though AP is not guaranteed to converge
to the true estimates, in [60, Sec. IV-A] it is shown that AP
converges to a local maximum and through proper initializa-
tion, it results in global convergence. Since phase noise does not
vary quickly with time, the phase noise estimates obtained at the
beginning of each frame, using the data-aided LS estimator in
Section IV-A, are used to initialize the AP process for the WLS
estimator. This ensures that the iterative algorithm converges
more quickly. In addition, the numerical simulations in Fig. 6
indicate that using the above initialization, AP converges to the
true estimates in only 4 cycles.
2) Extended Kalman Estimator: This section presents an

EKF to track phase noise parameters , in
decision-directed mode. First, the state and observation are de-
veloped for the EKF. Using (2), , can be written
as

(27)

where is the sum of the
phase noise innovations for the transmit and the
receive antennas. Using (27), the unknown state vector

is given by

(28)
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where the state noise vector

is distributed as . The state noise co-
variance matrix, , is an
matrix that can be determined straightforwardly as

...
. . .

... (29)

(30)

The observation equation for the Kalman lter is given by

(31)

where .
Since the observation equation in (31) is a non-linear function
of the unknown state vector , the EKF is used instead. The
EKF uses Taylor series expansion to linearize the non-linear
observation equation in (31) about the current estimates [61].
Thus, the Jacobian matrix is evaluated by computing the rst
order partial derivative of with respect to the state vector

as

...
...

. . .
...

(32)

where denotes the Jacobian matrix eval-
uated at , and

(33)

Using (28)–(33), the remaining EKF equations can be formu-
lated as (34)–(38) at the bottom of the page, where
� ;

� is the
predicted state vector at the symbol;

� ;
� ;
� is the Kalman gain matrix;
� is given in (24); and
� is the ltering error covariance
matrix.

Note that the ltered state vector estimate, , and the
ltering error covariance matrix, ,

are updated every symbol using the Kalman gain .
Before starting the EKF recursion (32)–(38), and

should be initialized with appropriate values,
where corresponds to the last training symbol. It is as-
sumed that the Kalman lter initializes the state vector as

, where

is found using (24). The error covariance matrix, ,
is initialized as , where is a
constant that is used to adjust the reliance of the EKF on the
data-aided estimates obtained using the LS estimator7.

C. Complexity Analysis

In this subsection, the computational complexity of the WLS
and EKF in decision-directed mode is analyzed. Throughout
this section, computational complexity is de ned as the number
of complex additions plus number of multiplications [59] re-
quired to update the phase noise estimates at every symbol. Let
us denote the computational complexity of the WLS algorithm

7In this paper is generally selected to be a small value, e.g, , since
as shown in Section V-B the data-aided estimates are accurate.

(34)

(35)

(36)

(37)

(38)
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by . The terms and de-
note the number of complex multiplications and additions, re-
spectively, used by the WLS estimator and are determined as
shown in (39) and (40) at the bottom of the page, where de-
notes the number of alternating projection cycles used, and
denotes the step size in the WLS search in (26). Similarly, the
computational complexity of the EKF algorithm is denoted by

. The notations and are
used to denote the number of complex multiplications and ad-
ditions, respectively, used by the EKF estimator and are deter-
mined as

(41)

(42)

Remark 8: In order to quantitatively compare the computa-
tional complexity of the proposed WLS and EKF estimator, we
evaluate and for a 2 2 MIMO system. We as-
sume and in order to ensure that the performance of
the proposedWLS is close to the CRLB, the step size,
and in (39) and (40), respectively. It is observed that the
proposed EKF estimator is 3070 times more computationally
ef cient than the proposed WLS estimator.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of the proposed
estimators versus the CRLB. Subsequently, the BER of aMIMO

system employing the proposed channel and phase noise esti-
mators is investigated in detail. Throughout this section

, , and without loss of generality, it is assumed
that , and . The MIMO

channel matrix is generated as a sum of LoS and non-line-of-
sight (NLoS) components such that the overall channel matrix,
, is given by [14]

(43)

where denotes the Rician factor, i.e., the ratio between
the power of the LoS and NLoS channel components [62,
p. 52], and , respectively8. The elements of

are generated according to the model in [14] with the
antenna spacing at the transmitters and receiver, and ,
respectively, set to their optimum values, the distance between
transmitter and receiver is set to 2000 m, the antenna angles at
the transmitter and receiver, and , respectively, are set to

and , the carrier frequency is set to 60 GHz,
and unless otherwise speci ed . The elements of

are modeled asindependent and identically distributed
(i.i.d) complex Gaussian random variables with .
Walsh-Hadamard codes with binary phase-shift keying (BPSK)
or quadrature phase-shift keying (QPSK) are used for the TSs.
Given that the estimation range of the proposed WLS and
EKF estimators are limited to the phase unwrapping
algorithm in [3] is applied here, where phase noise estimates
for prior symbols are used in combination with the phase
noise variance to unwrap the estimate for the current symbol.
A minimum of Monte Carlo trials are used. Finally, the
mean-square error (MSE) performance of the proposed estima-
tors and the BER performance of the overall MIMO system are
investigated in the following subsections.

A. Estimation Performance

Channel realizations are drawn independently from themodel
in (43) for eachMonte Carlo simulation trial. BPSKmodulation
is used for the pilot and data symbols.Without loss of generality,
only theMSE for the estimation of channel gain and phase noise

8Note that and result in pure NLoS and LoS channels,
respectively [14].

(39)

(40)
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Fig. 4. MSE for DAE of channel, , for a 2 2MIMO system for different
phase noise variances.

for the rst antenna element is presented. Note that similar re-
sults are obtained for the estimation of the parameters for the
remaining antennas and are not presented here to avoid repeti-
tion.
Figs. 4 and 5 plot the CRLB and MSE for DAE of MIMO

channels, , and time-varying phases, respectively, versus
SNR. The CRLB in (15) is numerically evaluated for different
phase noise variances, e.g., .
Note that, , corresponds to a very high phase
noise variance [11], [12], [19], [27], [29]. The CRLB results
in Fig. 4 show that in the presence of phase noise, estimation
of the MIMO channel suffers from an error oor, which is di-
rectly related to the variance of phase noise innovations. This re-
sult can be anticipated given that as shown in (10) even at very
high SNR, where the effect of the AWGN noise, , is neg-
ligible, the additive noise corresponding to phase noise limits
the estimation accuracy. The same noise also limits the estima-
tion accuracy of the symbol’s phase noise parameters in
the data-aided case and results in an error oor in Fig. 5. Using
Monte Carlo simulations the MSE of the data-aided LS esti-
mator for jointly estimating the MIMO channels and phases in
(24) is also evaluated and compared to the CRLB. The results
in Figs. 4 and 5 show that the proposed LS estimator’s MSE
for channel estimation is close to the CRLB over a wide range
of SNR values while its MSE for phase estimation is slightly
higher than the CRLB at low SNR.
Fig. 6 plots the CRLB and MSE of the proposed WLS and

EKF for DDE of phase noise versus SNR. The CRLB for DDE
with perfect decision feedback in (19) is numerically evalu-
ated for different phase noise variances and . As de-
picted in Fig. 6, the CRLB for DDE of phase noise also suf-
fers from an error oor, which is higher compared to the DAE
in Fig. 5. This higher error oor is due to the Wiener model
of phase noise in (2) and since in the case of DDE the trans-
mitted symbols at time instant are assumed to be unknown,
i.e., only the observations up to the symbol,

can be used while estimating the

Fig. 5. MSE for DAE of phase noise for a 2 2 MIMO system for different
phase noise variances.

Fig. 6. Perfect decision feedback MSE for DDE of phase noise for a 2 2
MIMO system for different phase noise variances.

symbol’s phase noise. Therefore, as observed in Fig. 6 the
estimation accuracy of phases at time , , cannot reach
below the variance of the white Gaussian phase noise innova-
tions, and .
In Fig. 6, the MSE performances of the proposed WLS and

EKF estimators are also compared against the CRLB, where it
is shown that the proposed estimators’ MSEs are close to the
CRLB over a wide range of SNR values. In order to ensure a
fair comparison with the CRLB, the MSE performances of the
proposed WLS in (26) and EKF estimators in (32)–(38) are also
evaluated with perfect decision feedback. Note that even though
the Kalman lter is an optimal minimum mean-square error
(MMSE) estimator [55], the extended Kalman lter does not
have the same optimality properties and its performance highly
depends on the accuracy of the applied linearization [55]. There-
fore, as shown in Fig. 6, as the phase noise variances increase
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Fig. 7. Imperfect vs. perfect decision feedback MSE for DDE of phase noise
for a 2 2 MIMO system ( and ).

and the accuracy of the applied linearization for EKF decreases,
the gap between the MSE of the proposed EKF and the CRLB
slightly widens.
Fig. 7 compares the MSE of the proposed EKF estimator for

both perfect and imperfect decision feedback against the CRLB
in (19). It is shown that the proposed EKF estimator’s perfor-
mance while operating in imperfect decision feedback mode is
close to that of perfect decision feedback and the CRLB in (19)
over a wide range of SNRs. The latter indicates that even though
the CRLB in (19) is derived based on the assumption of perfect
decision feedback, it can be used as a tight bound for assessing
the performance of imperfect decision feedback based estima-
tors at medium-to-high SNR values. Finally, note that since the
estimator in [13] fails to accurately track phase noise with the
proposed system setup, its performance is not depicted in this
subsection.

B. MIMO System Performance

In this section the BER performance of uncoded 2 2 and
4 4 MIMO systems in the presence of phase noise is investi-
gated. The proposed LS estimator and training symbols at the
start of each frame are used to obtain the MIMO channel gains
and phases at time . These estimates are used to initialize the
state model of the one step ahead EKF estimator and obtain
the phase noise estimates for the data symbols at time .
Subsequently, the detected data symbols at time are used
to estimate the phase noise processes at time and this
process is carried out throughout the frame to the last symbol.
The frame length is set to symbols and new chan-
nels are generated for each frame. Unless otherwise speci ed,
the pilot spacing is set to , which corresponds to a syn-
chronization overhead of 10%. An MMSE linear receiver given
by

(44)

Fig. 8. Perfect and Imperfect decision feedback BER of a 2 2 MIMO system
for phase noise variance, , (BPSK and
).

is used to equalize the effect of phase noise and channel gains.
Note that since the matrices and in (4) are
diagonal, , phase noise does not affect the conditioning of
the overall MIMO channel matrix. Finally, the BER of a MIMO
system using the proposed decision-directed WLS estimator
is not presented, given that its application in practical settings
is limited due to its extremely high complexity as shown in
Section IV-C.
Fig. 8 depicts the BER performance of a 2 2 MIMO system

using the proposed LS channel and phase estimator without
phase tracking and with the proposed EKF phase tracking in the
presence of various phase noise variances. The scenario with
perfect channel estimation and synchronization is also plotted
and is used as a benchmark for assessing the performance of
the proposed channel and phase tracking system. The results
in Fig. 8 demonstrate that without phase tracking throughout
the frame, the MIMO system performance deteriorates signi -
cantly. On the other hand, by combining the proposed LS and
EKF channel and phase estimators, respectively, the BER per-
formance of the MIMO system is shown to improve immensely
even in the presence of very strong phase noise, e.g.,

. In addition, it is demonstrated that the proposed EKF
is capable of tracking the phase noise accurately with imperfect
decision feedback where the gap between the perfect and imper-
fect decision feedback scenarios is small (a performance gap of
1.5 dB with and ). More impor-
tantly, it is shown that the BER performance of a MIMO system
using the combination of the proposed channel and phase noise
estimators is close to the ideal case of perfect channel and phase
noise estimation (a performance gap of 3 dB with SNR=20 dB).
Finally, Fig. 8 shows that the overall MIMO system’s BER per-
formance suffers from an error oor at high SNR. This result
is anticipated, since at high SNR the performance of the MIMO
system is dominated by phase noise instead of AWGN and as de-
picted in Fig. 6, the effect of phase noise cannot be completely
eradicated.
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Fig. 9. Perfect and Imperfect decision feedback BER of a 2 2 MIMO system
for different pilot spacing (BPSK and ).

Fig. 9 illustrates the BER performance of a 2 2 MIMO
system using the proposed EKF phase tracking algorithm with
imperfect decision feedback for different pilot spacing. Based
on the results in Fig. 9, it can be concluded that for imperfect
decision feedback the proposed EKF algorithm is not very sen-
sitive to pilot spacing at low-to-medium SNRwhile at high SNR
pilot spacing has a more signi cant impact on MIMO BER per-
formance. This result is expected given that the proposed EKF
inherently relies less on the observations and more on the state
model at low SNRs. However, as the SNR increases the EKF al-
gorithm updates the phase noise estimates by relying more and
more on the observations.
Fig. 10 compares the BER performance of a 2 2 MIMO

system for higher order modulations, i.e., QPSK or 16-quadra-
ture amplitude modulation (16-QAM). The results in Fig. 10
show that even for denser constellations with imperfect deci-
sion feedback the proposed EKF is capable of tracking the phase
noise over the frame and improving the overall system perfor-
mance quite signi cantly. However, from the results in Fig. 10,
one can deduce that compared to BPSK modulation, by em-
ploying QPSK or 16-QAM, the BER gap between a MIMO
system based on perfect and imperfect decision feedback grows
larger, since denser constellations are more susceptible to er-
roneous decoding in the presence of phase noise. This perfor-
mance gap for denser constellations can be reduced by em-
ploying error-correcting codes in conjunction with the proposed
EKF estimator.
Fig. 11 depicts the BER performance of 2 2 and 4 4

MIMO systems in the presence of imperfect and perfect
channel and phase noise estimation. Fig. 11 shows that using
the proposed channel and EKF estimators the BER perfor-
mance of a 4 4 MIMO system is only 3 dB apart from the
idealistic case of perfect channel and phase noise estimation
at low-to-medium SNR. However, from the results in Fig. 11
it can be concluded that the performance of the proposed EKF
estimator degrades as the dimensionality of the MIMO system
increases. Therefore, for a 4 4 system, at high SNR, overall

Fig. 10. BER of a 2 2 MIMO system for QPSK and 16-QAM modulations
( and ).

Fig. 11. Perfect and Imperfect decision feedback BER of a MIMO system for
different and values, (BPSK modulation, , and
).

system performance is dominated by phase noise and compared
to a 2 2 MIMO system, the performance gap between the
cases of perfect and imperfect estimation widens. Note that for
many practical applications, such as microwave backhauling,
the number of transmit and receive antennas are not very large
and the proposed EKF algorithm can be applied effectively to
enable point-to-point communications over a wide range of
SNR values.
Fig. 12 illustrates the perfect and imperfect decision feed-

back BER of a 2 2 MIMO system using the proposed EKF
estimator for different Rician factors, .
The results in Fig. 12 demonstrate that the proposed EKF with
imperfect decision feedback is capable of tracking the phase
noise even for channels with a strong NLoS component, i.e.,

. In addition, it is observed that the performance
gap between the BER for perfect and imperfect decision feed-
back scenarios is reduced as the Rician factor increases. This
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Fig. 12. Imperfect and perfect decision feedback BER of a 2 2MIMO system
for different Rician factors , (BPSK, , and ).

Fig. 13. BER performance of a 4 4 MIMO system using the proposed algo-
rithm compared to that of [13] for QPSK and BPSK modulations ( and

).

result can be anticipated given that as increases the MIMO
channel quality also improves, resulting in a smaller bit error
rate and in turn improving phase noise tracking in the case of
imperfect decision feedback.
Fig. 13 compares the BER performance of a 4 4 MIMO

system employing the proposed channel and phase noise estima-
tion algorithm against that of [13]. As outlined in [13],
orthogonal pilot symbols need to be transmitted from each an-
tenna. Thus, in order to ensure a fair comparison and maintain
a 10% synchronization overhead, the results corresponding to
[13] are generated by transmitting orthogonal pilot symbols be-
fore every stream of 40 data symbols. In addition, instead of as-
suming perfect channel knowledge as in [13], the MIMO chan-
nels are estimated using the transmitted pilot symbols for both
algorithms. Fig. 13 shows that for the same synchronization
overhead, the proposed algorithm noticeably outperforms the

Fig. 14. BER of a 2 2 MIMO system in the presence of time-varying and
phase noise (BPSK and ).

scheme in [13] for both QPSK and BPSK modulations. This re-
sult is expected since unlike the proposed EKF estimator, the
approach in [13] does not provide any means of tracking the
phase noise parameters using the received data symbols. There-
fore, phase noise rotates the signal constellation and results in a
signi cantly higher BER. Moreover, the results in Fig. 13 show
that even though the performance of the proposed EKF based
algorithm degrades as the number of antennas increases, it out-
performs the approach in [13] for different modulations.
Fig. 14 depicts the BER performance of a MIMO system

employing the proposed scheme in time-varying channels with
Doppler rates9 of and synchronization
overheads of . The results in Fig. 14 show that
even though the channels’ time varying nature negatively
affects system performance, for low Doppler rates and a
synchronization overhead of 16.6%, a MIMO system’s BER
employing the proposed LS channel estimator and EKF phase
noise tracking algorithm is close to that of quasi-static chan-
nels, i.e., no Doppler. However, as anticipated, as the Doppler
rate increases a higher synchronization overhead is needed
by the proposed scheme to maintain the same system perfor-
mance. Therefore, Fig. 14 shows that by taking advantage of
both training and received data symbols and balancing the
tradeoff between synchronization overhead and performance,
the proposed channel and phase noise tracking approach can
track different channel conditions, e.g., high and low phase
noise variances and Doppler rates, to achieve a speci c system
performance.

VI. CONCLUSION

In this paper, the estimation and effect of channel and phase
noise in SDM MIMO systems is analyzed. After outlining the
system model and deriving the CRLB for the multi-parameter
estimation problem, a new data-aided LS algorithm is proposed
that can jointly estimate the channel gains and phase noise. The
MSE of the proposed LS estimator is shown to be close to the

9The time-varying channels are generated based on the Jakes’ spectrum [63].
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CRLB over a wide range of SNR values. In order to track the
time-varying phase noise throughout a frame using the pilot and
estimated data symbols, decision-directed WLS and EKF based
estimators are proposed and it is shown that these estimators’
MSEs are close to the CRLB. Next, the combination of the pro-
posed LS and EKF estimators are applied to investigate the BER
performance of an uncoded MIMO system in the presence of
phase noise. The comparison is carried out for many different
parameters such as phase noise rate, pilot-spacing, choice of
modulation, and number of antennas. It is shown that the per-
formance of a MIMO system using the proposed estimators is
close to the idealistic setting of perfect channel and phase noise
estimation. For example, at an SNR of 20 dB for a 2 2 MIMO
system with imperfect decision feedback and a synchronization
overhead of 10%, there is a performance gap of 3 dB between
the two systems. We anticipate that this performance gap can
be further reduced by performing soft-decision feedback and
phase tracking using all the symbols within a frame, i.e., of-
ine processing. In addition, the results in Section V show that
by selecting an appropriate synchronization overhead, the pro-
posed estimators can trackMIMO channels and phase noise pro-
cesses in the presence of various Doppler rates. These results
demonstrate that the proposed channel and phase noise tracking
schemes can be used to enable application of MIMO systems to
new frontiers such as point-to-point microwave backhaul and
satellite communication links. Note that even though the pro-
posed scheme cannot be directly applied to frequency selective
channels, the principles and methodologies proposed here can
be used to develop new channel and multiple phase noise es-
timation algorithms for such channels. For example, it is well-
known that application of OFDM and orthogonal frequency di-
vision multiple access (OFDMA) can signi cantly improve the
performance of communication systems in frequency selective
channels. However, similar to single carrier systems, OFDM
and OFDMA systems may be affected by multiple multiplica-
tive phase noise processes [15], i.e., CPEs. Therefore, the algo-
rithms proposed here can be modi ed and applied to estimate
multiple phase noise parameters in such systems and improve
their performance. However, addressing this speci c problem
is beyond the scope of this paper and can be the subject of fu-
ture work.

APPENDIX
DERIVATION OF FIM

Here, the FIM for the data-aided estimation of is derived.
The received signal vector at the receive antenna,

is given by

(A.1)

where

�

;

� ;
� .

Based on the assumptions in Section II, the vector of received
signals at all receive antennas, , is dis-

tributed as , where

with , and the subma-
trices of the covariance matrix, , for

, can be determined as

(A.2a)

(A.2b)

(A.2c)

Note that (A.2b) follows from (A.2a) due to the assumption that
the AWGN and phase noise innovations , , are
mutually independent. Moreover, (A.2c) follows from the as-
sumption of mutual independence between the phase noise in-
novations corresponding to difference symbols10. Given that the
observation sequence, , has a complex Gaussian distribution,
the row and column entry of the submatrix for

and is given by [61]

(A.3)

where denotes the element of the vector of parame-
ters of interests corresponding to the receive antenna, in

10 and are assumed to be mutually independent for .
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(A.5)

(A.6)

(A.1). In order to evaluate the FIM, the derivatives and

need to be determined, where

(A.4)

In addition, the derivatives of the sub-matrices in (A.2),

and , for , can be evaluated as
shown in (A.5) and (A.5) at the top of the page. After sub-
stituting the derivatives in (A.4)–(A.6) into (A.3) and carrying
out straightforward algebraic manipulations, the elements of

can be obtained as

(A.7a)

(A.7b)

(A.7c)

(A.7d)

Using (A.7a)–(A.7d), , for , can be
obtained as shown in (14) in Section III-A.
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