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ABSTRACT
Motivation: Two known types of meiotic recombination are cros-
sovers and gene conversions. Although they leave behind different
footprints in the genome, it is a challenging task to tease apart their
relative contributions to the observed genetic variation. In particular,
for a given population SNP data set, the joint estimation of the cros-
sover rate, the gene conversion rate, and the mean conversion tract
length is widely viewed as a very difficult problem.
Results: In this paper, we devise a likelihood-based method using
an interleaved hidden Markov model (HMM) that can jointly estimate
the aforementioned three parameters fundamental to recombination.
Our method significantly improves upon a recently proposed method
based on a factorial HMM. We show that modeling overlapping gene
conversions is crucial for improving the joint estimation of the gene
conversion rate and the mean conversion tract length. We test the
performance of our method on simulated data. We then apply our
method to analyze real biological data from the telomere of the X

chromosome of Drosophila melanogaster, and show that the ratio of
the gene conversion rate to the crossover rate for the region may not
be nearly as high as previously claimed.
Availability: A software implementation of the algorithms discus-
sed in this paper is available at http://www.cs.berkeley.edu/
˜yss/software.html.
Contact: yss@cs.berkeley.edu

1 INTRODUCTION
A major evolutionary mechanism responsible for generating gene-
tic variation in a population is meiotic recombination, which creates
a chimeric genome from the two homologous genomes of an indi-
vidual. Two known types of meiotic recombination are crossovers
and gene conversions, which are typically modeled as follows. Both
events involve taking two equal-length parental sequences to pro-
duce a descendant sequence of the same length. In a crossover event,
the descendant sequence consists of some prefix of one of the paren-
tal sequences, followed by a suffix of the other parental sequence.
In a gene conversion event, the descendant sequence is formed by
copying a short segment (called a “conversion tract”) starting at a
particular position in one of the parental sequences to the same
position in the other parental sequence. Hence, the typical pattern
created by gene conversion is: a prefix of sequence h followed by
a short internal fragment of a sequence h′, which is then followed
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by a suffix of the first sequence h. It is believed that the conversion
tract typically ranges between 50 and 2000 bp (Jeffreys and May,
2004; Hilliker et al., 1994).

Although crossovers and gene conversions have different effects
on the evolutionary history of chromosomes and therefore leave
behind different footprints in the genome, it is a challenging task
to tease apart their relative contributions to the observed genetic
variation. For example, the methods employed in recent studies
(Crawford et al., 2004; Myers et al., 2005; International Hap-
Map Consortium, 2005) of recombination rate variation in the
human genome actually capture combined effects of crossovers and
gene-conversions.

Studying gene conversion is important for a number of reasons,
a few of which we mention below. First, in several organisms—
e.g, humans (Frisse et al., 2001; Pritchard and Przeworski, 2001)
and D. melanogaster (Langley et al., 2000)—gene conversion has
been shown to be necessary to explain the observed pattern of lin-
kage disequilibrium (LD), i.e., the statistical non-independence of
alleles at different loci. Second, it has been argued that ignoring
gene conversion may cause problems in association studies (Wall,
2004a) and linkage analysis (Mancera et al., 2008). Third, methods
for detecting signatures of natural selection usually require estima-
tes of fine-scale recombination rates (see, for example, Voight et al.
2006), and their success may hinge on having reliable estimates
of crossover and gene conversion rates, as well as the distribu-
tion of the conversion tract length. Lastly, gene conversion also
plays an important role in molecular evolution. Biased gene conver-
sion is believed to be a significant source of biases in substitution,
and variation in biased gene conversion effects appears to be par-
tially responsible for variation in substitution patterns across the
mammalian phylogeny (Hwang and Green, 2004).

Gene conversion rate variation in the human genome is currently
not well understood, though a recent sperm-typing study (Jeffreys
and May, 2004) of the major histocompatibility complex region sug-
gests that the rate of gene conversion can be about 5 to 15 times
higher than that of crossover. Gene conversion has been hard to
study in populations because of the lack of fine-scale data. However,
the genomic resequencing data to be produced over the next several
years will allow us to quantify the fundamental parameters of gene
conversion. Therefore, algorithmic and statistical tools to study gene
conversion are becoming increasingly more important.

Song et al. (2007) recently developed algorithms to distinguish
the role of gene conversion from crossover in the derivation of SNP
sequences in a population. Their method can produce an explicit
evolutionary history of the input sequences using mutations and
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recombinations (crossovers and gene conversions), but it cannot
produce estimates of recombination parameters. The parameters
fundamental to recombination are the crossover rate, the gene con-
version rate, and the mean conversion tract length—the conversion
tract length is often assumed to follow a geometric distribution
(Wiuf and Hein, 2000), in which case the mean completely specifies
the distribution. Joint estimation of all three parameters is widely
viewed as a very difficult problem. There currently exist several sta-
tistical methods (reviewed in Section 2) that can jointly estimate
crossover and gene conversion rates, but all existing methods, with
the only exception being the recent work of Gay et al. (2007), cannot
estimate the mean conversion tract length at the same time.

To obtain accurate parameter estimates, it is crucial to make full
use of data, and that is exactly what Gay et al. (2007) aimed to
achieve in their work. Specifically, they constructed a likelihood-
based method by incorporating gene conversion into a popular fra-
mework called the “Product of Approximate Conditionals” (PAC),
first proposed by Li and Stephens (2003) to estimate crossover rates
only. The work of Gay et al. marks important progress towards
developing practical tools for studying gene conversion.

The goal of this paper is to improve on the work of Gay et al.
(2007) by introducing modifications to the model which we show
are crucial to make the joint estimation of all three parameters fea-
sible. Briefly, Gay et al. disallowed overlapping gene conversions in
their model, for computational simplicity. We show that this simpli-
fication frequently leads to gross errors in the estimation of the gene
conversion rate and the mean conversion tract length, when all three
parameters are being estimated. In their paper, Gay et al. did not
try to estimate the mean conversion tract length, but always fixed
it to some reasonable value (actually, the true value in the case of
simulation study). Therefore, they did not encounter this problem
when testing their method. In this paper, we devise algorithms to
incorporate overlapping gene conversions into the PAC model and
show that this modification dramatically improves the estimation of
the gene conversion rate and the mean conversion tract length.

To test the performance of our method, we carry out a simulation
study. We then apply our method to analyze real biological data from
the telomere of the X chromosome of Drosophila melanogaster,
and show that the ratio of the gene conversion rate to the crossover
rate for the region may not be nearly as high as it was claimed to be
by Gay et al. (2007).

2 PREVIOUS METHODS
We briefly review previous work on estimating recombination para-
meters. Throughout this paper, the population-scaled crossover and
gene conversion rates are denoted by ρ = 4Nec and γ = 4Neg,
respectively, where Ne is the effective population size, c is the
per-generation probability of crossover per unit distance (kb in this
paper), and g is the per-generation probability of initiating a gene
conversion per unit distance. The conversion tract length is assumed
to follow a geometric distribution, and λ denotes the mean of that
distribution.

2.1 An overview of previous work
There exist several statistical methods for estimating gene conver-
sion rates from population genetic data. Padhukasahasram et al.

(2006) suggested using multiple summary statistics from SNP
data to estimate crossover and gene conversion rates jointly. This
approach makes only partial use of the information in the data.

The methods proposed by Frisse et al. (2001), Ptak et al. (2004)
and Wall (2004b) generalize the composite-likelihood approach of
Hudson (2001). Briefly, these methods break up the data set into
smaller subsets (pairs or triplets of segregating sites), compute the
likelihoods (as functions of ρ and γ, with λ fixed) for the subsets,
and then multiply those likelihoods together to form a composite
likelihood. The point estimates of ρ and γ are obtained by maxi-
mizing the composite likelihood over a suitably chosen finite grid.
These methods do not take into account the dependence between the
smaller subsets.

Assuming that each gene conversion tract contains a single SNP,
Hellenthal (2006) incorporated gene conversion into the PAC fra-
mework, originally proposed by Li and Stephens (2003) to esti-
mate crossover rates only. Gay et al. (2007) later generalized this
approach to allow for an arbitrary conversion tract length, and their
method can be used to estimate ρ, γ and λ jointly from SNP data.
The main advantage of these likelihood-based approaches is that
they improve the statistical efficiency of the estimates by utilizing
as much of the information in the data as possible. The work of Gay
et al., further detailed below, is most relevant to our own work.

2.2 The PAC model with gene conversion
The PAC model is motivated by the coalescent (Kingman, 1982)
and its generalization to include recombination (Hudson, 1983).
The main idea of the model is to relate the observed pattern of LD
directly to the underlying recombination processes.

Given a set H = {h1, . . . , hn} of haplotypes sampled from a
population, the probability of observing H given ρ, γ and λ can be
decomposed as

P(h1, . . . , hn | ρ, γ, λ) = P(h1 | ρ, γ, λ)× P(h2 | h1, ρ, γ, λ)

× · · · × P(hn | h1, . . . , hn−1, ρ, γ, λ). (1)

Unfortunately, the exact conditional probabilities on the right hand
side are unknown. Therefore, Li and Stephens (2003) proposed
using efficiently computable approximations π̂ to substitute for
the exact probability distribution P, thus obtaining the following
approximation for the joint probability:

P(h1, . . . , hn | ρ, γ, λ) ≈ π̂(h1 | ρ, γ, λ)× π̂(h2 | h1, ρ, γ, λ)

× · · · × π̂(hn | h1, . . . , hn−1, ρ, γ, λ). (2)

We denote the right hand side of (2) by LPAC(ρ, γ, λ). The goal
is to estimate ρ, γ and λ under the framework of maximum like-
lihood estimation (MLE), using LPAC as a surrogate function for
the original intractable likelihood function (1).

By exchangeability, the value of the right hand side of (1) is
invariant under a permutation of the haplotype indices 1, . . . , n.
However, because the π̂ in (2) are not exact, the PAC likelihood
LPAC does depend on the order of haplotypes being considered.
To account for this lack of exchangeability, Li and Stephens (2003)
suggested averaging the PAC likelihood over several (say, between
10 and 20) random permutations of the input haplotypes.

The approximate conditional π̂(hk+1 | h1, . . . , hk, ρ, γ, λ) is
constructed by assuming that haplotype hk+1 is an imperfect mosaic
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Fig. 1. Illustration of the imperfect copying process with crossovers and
gene conversions (adapted from Figure 2 of Li and Stephens 2003). Haplo-
type h4 is created as a mosaic of fragments copied from haplotypes
h1, h2, h3. The shading shows from which haplotype each fragment is
copied. The copying process is assumed to be Markovian along the sequence.
Moving from left to right, there is a crossover event between h1 and h2 with
a breakpoint at position “a”. Then, there is a gene conversion event between
h2 and h3, with a conversion tract between positions “b” and “c”. Filled and
unfilled circles represent different alleles. The second and the last circles in
h4 result from imperfect copying.

of the first k haplotypes. That is, hk+1 is obtained by copying seg-
ments from h1, . . . , hk; a crossover or a gene conversion can change
the haplotype from which copying is performed. Furthermore, copy-
ing can be imperfect, corresponding to mutation. See Figure 1 for
an illustration. The copying process proceeds along the sequence
from one end to the other, and it is assumed to be Markovian. This
process can easily be modeled as a hidden Markov model (HMM)
(Rabiner, 1989).

To compute π̂(hk+1 | h1, . . . , hk, ρ, γ, λ), Gay et al. (2007) set
up two hidden Markov chains along the sequence. This is illustrated
in Figure 2(a), in which the “X chain” is for crossovers and the
“G chain” is for gene conversions. The two chains evolve along
the sequence independently of each other and, therefore, the model
is a factorial HMM (Ghahramani and Jordan, 1997), satisfying the
following identity:

P(Xj+1, Gj+1 | Xj , Gj) = P(Xj+1 | Xj) P(Gj+1 | Gj), (3)

where the index j denotes the position along the sequence, and
Xj ∈ {1, . . . , k} and Gj ∈ {∅, 1, . . . , k} are hidden states. The
states Xj and Gj jointly determine the index cj of the haplotype
from which hk+1,j (allele at the jth site of hk+1) is copied: If
Gj = ∅ (the null state which indicates that the jth site is not in
a gene conversion tract), then cj = Xj ; otherwise, cj = Gj . To
capture the imperfect nature of the copying process resulting from
mutation, the emission probability of the HMM is set up as follows:

P(hk+1,j | Xj , Gj) =

8>>><>>>:
θ

2(kL + θ)
, if hk+1,j 6= hcj ,j ,

2kL + θ

2(kL + θ)
, if hk+1,j = hcj ,j ,

(4)

where L is the number of polymorphic sites in the input data (i.e.,
the length of each haplotype) and θ/L is the rate of mutation per site.
If θ is not specified, it is estimated by using Watterson’s unbiased
estimator (Watterson, 1975):

θ̂ = L

 
n−1X
m=1

1

m

!−1

. (5)

As in the original PAC model of Li and Stephens (2003), crosso-
ver is modeled as a Poisson process with rate ρ across the sequence.
The transition probability of the X chain has only two distinct cases,
depending on whether the hidden states of adjacent sites are the
same or not:

P(Xj+1 | Xj) =

8>>><>>>:
e−

ρdj
k +

1

k

„
1− e−

ρdj
k

«
, if Xj = Xj+1,

1

k

„
1− e−

ρdj
k

«
, if Xj 6= Xj+1,

(6)
where dj is the physical distance between sites j − 1 and j.

The transition probability of the G chain is more complicated. By
assuming that the conversion tract length follows a geometric dis-
tribution, both initiation and termination of a conversion tract are
modeled as Poisson processes along the sequence, with rates γ and
1/λ, respectively. Gay et al. used λ (not 1/λ) to denote the termi-
nation rate and assumed that the termination process goes on all the
time, even when the copying process is not in a gene conversion
state. Further, they make an additional assumption that conversion
tracts from different gene conversion events cannot overlap. For
example, consider the following probability of moving from state
g ∈ {1, . . . , k} to state g′ ∈ {1, . . . , k}, where g 6= g′:

P(Gj+1 = g′ | Gj = g) =

Z dj

0

e−x/λ

λ

(1− e−γx/k)

k
dx. (7)

This formulation requires terminating the gene conversion tract
from g before initiating a new one from g′. The integrand corre-
sponds to the probability of there being at least one gene conversion
event after the last termination event at distance x to the left of site
j + 1. In general, Gay et al.’s formulation implicitly allows for an
infinite number of gene conversion initiation events to occur before
the last termination event.

Lastly, the initial probability of the G chain depends on how the
rate of starting a gene conversion tract compares to the rate of ending
one, i.e.,

P(G1 = g) =

8>>><>>>:
1/λ

1/λ + γ/k
, if g = ∅,

γ/k

k(1/λ + γ/k)
, if g 6= ∅.

In the above HMM formulation, it is straightforward to compute
the conditional probability π̂(hk+1 | h1, . . . , hk, ρ, γ, λ) by using
the standard forward-backward algorithm.

3 OUR MODEL
As described above, the work of Gay et al. (2007) assumes that
crossovers and gene conversions are independent, and that gene
conversion tracts cannot overlap. In this section, we construct a
new model that couples the crossover and gene conversion proces-
ses. We then describe how overlapping gene conversions can be
incorporated into the model.

3.1 Interleaved HMM
By assuming independence of the two hidden chains, the factorial
HMM formulation of Gay et al. (2007) cannot model the typical
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(a)
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Fig. 2. Two different versions of HMM for computing the conditional probability π̂(hk+1 | h1, . . . , hk, ρ, γ, λ). Unshaded circles represent hidden variables,
whereas shaded ones correspond to observed variables. The symbols dj denotes the physical distance between sites j and j + 1. In addition to a coupling of
the two hidden chains, we allow pairwise overlaps of gene conversions. (a) A factorial HMM in which the two hidden chains are independent of each other.
Gay et al. (2007) used this model. (b) An interleaved HMM with coupled hidden chains.

alternating pattern of gene conversion; i.e., a prefix of haplotype h
followed by an internal fragment of a haplotype h′, which is then
followed by a suffix of the first haplotype h. To remedy this, we
couple the two hidden chains by using an interleaved HMM, illu-
strated in Figure 2(b). Direct edges from the G chain to the X chain
constrain the X chain to stay in its previous state whenever the G
chain is “active.” More precisely,

P(Xj+1 | Xj , Gj+1) =

8<: I(Xj+1 = Xj), if Gj+1 6= ∅,

P(Xj+1 | Xj), if Gj+1 = ∅,
(8)

where P(Xj+1 | Xj) in the second line is the same as in (6). If
site j + 1 is in a conversion tract (i.e., Gj+1 6= ∅), the G chain is
“active” and the copying process keeps track of the previous state of
the X chain (i.e., Xj+1 = Xj). If Gj+1 = ∅, the X chain evolves
according to the usual transition probability P(Xj+1 | Xj).

We point out that coupling the two hidden chains does not incre-
ase the complexity of the forward-backward computation. Even in
the factorial HMM, the two hidden chains become dependent upon
conditioning on the observed variables. Therefore, the computatio-
nal complexity is the same for both HMMs.

3.2 Modeling overlapping gene conversions
The key new feature of our model is that it allows for overlapping
gene conversion events in the copying process. This means that the
copying process does not need to terminate a gene conversion event
before initiating another gene conversion event.

Figure 3 shows two examples of genealogies that can generate
overlapping gene conversion tracts in the coalescent model with
gene conversion (Wiuf and Hein, 2000). In Figure 3(a), two gene
conversion events have conversion tracts that overlap partially, while
in Figure 3(b), one conversion tract is entirely nested inside the other
conversion tract.

Motivated by the common belief that the conversion tract length
is typically short, between 50 and 2000 bp (Jeffreys and May, 2004;

Hilliker et al., 1994), we restrict each overlap to involve only a pair
of gene conversion events, although a generalization to more than
two gene conversion events can easily be achieved at the expense
of more computation time. In terms of the underlying HMM, we
augment the state space of the G chain as follows. When com-
puting π̂(hk+1 | h1, . . . , hk, ρ, γ, λ), we include ordered pairs
{(g, g′) | g, g′ = 1, . . . , k} in the state space of the G chain, in
addition to the singlet states {g | g = ∅, 1, . . . , k} considered in
Gay et al.’s model. If Gj = (g, g′), then site j of haplotype hk+1 is
within a region of overlapping gene conversion events involving two
haplotypes hg and hg′ . The second entry g′ in a doublet state (g, g′)
is said to be “active” and it indicates that the conversion tract from
hg′ overwrites the conversion tract from hg at marker j of hk+1. In
Figure 3(a), g is active in the region of overlapping gene conversi-
ons, while in Figure 3(b) g′ is active in the region of overlap. As
in Gay et al.’s model, the hidden states Xj ∈ {1, . . . , k} and Gj

jointly determine the index cj of the haplotype from which hk+1,j

is copied. In our model,

cj =

8<:
Xj , if Gj = ∅,
g, if Gj = g 6= ∅,
g′, if Gj = (g, g′).

We use the same emission probability as that shown in (4).

3.3 Transition probabilities for the augmented G chain
We now describe the transition probabilities P(Gj+1 = s′ | Gj =
s) for the augmented G chain in the computation of π̂(hk+1 |
h1, . . . , hk, ρ, γ, λ). Instead of using the formulation described in
(7), which implicitly allows for infinitely many gene conversion
events between two adjacent sites, we explicitly enumerate all pos-
sible “valid” paths of events defined to satisfy the following two
properties: 1) Each “valid” path starts in state s and ends in state
s′, and 2) contains at most a initiations and b terminations of
gene conversions. In our implementation, we use a = b = 1
for simplicity, but it is straightforward to consider larger values
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g g′

g → (g′, g)→ g′

g

g′

(a)

g g′

g → (g, g′)→ g

gg′

(b)

Fig. 3. Genealogical interpretations of overlapping gene conversions. Each genealogy contains two gene conversion events. Thin horizontal lines represent
genetic material non-ancestral to the present-day sample, whereas thick horizontal lines correspond to ancestral material. Short vertical lines mark the boun-
daries of gene conversion tracts. (a) Two gene conversion tracts partially overlap. The left part of the blue conversion tract is non-ancestral because it is
overwritten by the red conversion tract from a more recent gene conversion event. The “active” haplotype in the region of overlapping gene conversion is g.
(b) One conversion tract is completely nested inside the other conversion tract. The blue conversion tract overwrites the middle part of the red conversion tract.
The “active” haplotype in the region of overlap is g′.

of a and b without increasing the asymptotic complexity of the
forward-backward algorithm in our HMM.

For a = b = 1, the path (g, g′) → g′ → (g′, g′′) is valid since
it contains exactly one initiation event and one termination event.
In contrast, the path g → ∅ → g′ → (g, g′) is not valid since it
contains two initiation events.

For a given pair of states s, s′ of the G chain (and for given values
of a and b), all valid paths starting in s and ending in s′ can be
enumerated using dynamic programming. We use Ps,s′ to denote
the set of all such valid paths. To compute the probability P(Γ) for
a given path Γ ∈ Ps,s′ , we make the following assumptions:

• Instead of allowing the termination process to run all the time,
which Gay et al. (2007) assume, we assume that no termination
event can occur if the current state in Γ is the ∅ state.

• If the current state in Γ is a singlet g, then an initiation event
uniformly chooses g′ ∈ {1, . . . , k} and creates either (g, g′) or
(g′, g) with equal probability; the termination process has rate
1/λ.

• If the current state in Γ is a doublet (g, g′), then no initiation
can occur, since we assume only pairwise overlaps of gene con-
versions. The termination process has rate 2/λ, and when a
termination event occurs, one makes a transition from (g, g′)
to either g or g′ with equal probability.

With the above assumptions, P(Γ) can be computed by integra-
ting over all possible positions along the sequence where the events
in Γ can happen. In contrast, recall that Gay et al. only integrate
over the position of the last termination event. It turns out that the
main computation involves a symbolic convolution of exponential
functions, which can be easily evaluated. The transition probability
P(Gj+1 = s′ | Gj = s) can be obtained by adding up the proba-
bility of all valid paths in Ps,s′ and then normalizing to make sure

that the outgoing probabilities sum to 1, that is,

P(Gj+1 = s′ | Gj = s) =

P
Γ∈Ps,s′

P(Γ)P
s′
P

Γ∈Ps,s′
P(Γ)

.

As a concrete example, consider the transition probability
P(Gj+1 = g′ | Gj = g), where g, g′ ∈ {1, . . . , k} and g 6= g′.
For a = b = 1, Pg,g′ contains three valid paths, namely Γ1 = g →
∅ → g′, Γ2 = g → (g, g′) → g′, and Γ3 = g → (g′, g) → g′. The
probability of Γ1 is given by

P(Γ1) =

Z dj

0

Z dj−x

0

»
1

λ
e−x/λ · e−(dj−x−y)/λ

–
×
»
e−γx/k · γ

k
e−γy/k 1

k
· e−γ(dj−x−y)/k

–
dy dx

=
λγ e−γdj/k−dj/λ

k2

Z dj

0

1

λ

Z dj−x

0

1

λ
ey/λdy dx

=
λγ e−γdj/k−dj/λ

k2

„
−1 + edj/λ − dj

λ

«
.

The integrand corresponds to the probability of there being exactly
one termination event and exactly one initiation event, with the
termination (respectively, initiation) event occurring at distance x
(respectively, x + y) to the right of site j. Integrating over all possi-
ble values of x and y yields the probability of Γ1. In a similar vein,
one can show that the probabilities P(Γ2) and P(Γ3) are given by

P(Γ2) = P(Γ3) =
1

2

λγ e−γdj/k−dj/λ

k2

„
−1 + e−dj/λ +

dj

λ

«
.

The transition probability P(Gj+1 = g′ | Gj = g) is proportional
to P(Γ1) + P(Γ2) + P(Γ3).

Table 1 lists the transition probabilities in the G chain of our
implementation with a = b = 1. In the table, g, g′, g′′ denote
distinct elements of {1, . . . , k}.
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Table 1. Transition probabilities P(Gj+1 = s′ | Gj = s) for the gene conversion chain in the computation of π̂(hk+1 | h1, . . . , hk, ρ, γ, λ), assuming at
most one initiation and at most one termination of gene conversions between adjacent sites.

state s at marker j state s′ at marker j + 1 P(Gj+1 = s′ | Gj = s) up to normalization

∅ ∅ e−γdj/k +
γλ e−γdj/k

k

“
−1 + e−dj/λ +

dj

λ

”
∅ g

γλ e−γdj/k−dj/λ

k2 (−1 + edj/λ)

g (g, g)
γλ e−γdj/k−2dj/λ

k2 (−1 + edj/λ)

g (g, g′) γλ e−γdj/k−2dj/λ

2k2 (−1 + edj/λ)

g g e−γdj/k−dj/λ +
λγ e−γdj/k−dj/λ

k2

h
(k + 1)

“
−1 + e−dj/λ +

dj

λ

”
+

“
−1 + edj/λ − dj

λ

”i
g g′ λγ e−γdj/k−dj/λ

k2

h“
−1 + e−dj/λ +

dj

λ

”
+

“
−1 + edj/λ − dj

λ

”i
g ∅ e−γdj/k(1 − e−dj/λ)

(g, g) (g, g) e−γdj/k−2dj/λ +
2γλ e−γdj/k−2dj/λ

k2

“
−1 + edj/λ − dj

λ

”
(g, g) (g, g′) γλ e−γdj/k−2dj/λ

k2

“
−1 + edj/λ − dj

λ

”
(g, g) g 2e−γdj/k−dj/λ(1 − e−dj/λ)

(g, g′) (g, g) or (g′, g′) or (g′, g)
γλ e−γdj/k−2dj/λ

k2

“
−1 + edj/λ − dj

λ

”
(g, g′) (g, g′) e−γdj/k−2dj/λ +

γλ e−γdj/k−2dj/λ

k2

“
−1 + edj/λ − dj

λ

”
(g, g′) (g, g′′) or (g′, g′′) γλ e−γdj/k−2dj/λ

2k2

“
−1 + edj/λ − dj

λ

”
(g, g′) g or g′ e−γdj/k−dj/λ(1 − e−dj/λ)

Here, g, g′, g′′ denote distinct elements of {1, . . . , k}.

3.4 Initial probabilities of the G chain
We wish to use the stationary distribution of the transition matrix of
the G chain as the initial probability at the first SNP site. However,
in the computation of π̂(hk+1 | h1, . . . , hk, ρ, γ, λ), the size of the
transition matrix is (1 + k + k2)× (1 + k + k2), since there are 1
null state ∅, k singlet states (g), k degenerate doublet states (g, g),
and k2 − k non-degenerate doublet states (g, g′), where g 6= g′.
Finding an eigenvector of that transition matrix could be computa-
tionally expensive for moderate values of k. Therefore, we make the
following approximation: we collapse the transition matrix to a 4×4
matrix, whose rows and columns are indexed by “null”, “singlet”,
“degenerate doublet,” and “non-degenerate doublet.” Each entry in
the collapsed matrix is obtained by summing over the corresponding
entries in the original transition matrix. We find the left eigenvec-
tor v = (v0, v1, v2, v3) of the collapsed matrix with eigenvalue 1.
Then, for g, g′ ∈ {1, . . . , k}, where g 6= g′, the initial probabilities

of the G chain are specified as

P(G1 = ∅) = v0, P(G1 = g) =
v1

k
,

P(G1 = (g, g)) =
v2

k
, P(G1 = (g, g′)) =

v3

k2 − k
.

3.5 Complexity of the algorithm
Since the augmented HMM has O(k3) states when computing
π̂(hk+1 | h1, . . . , hk, ρ, γ, λ), a naive implementation of the
forward-backward algorithm takes O(k6L) time, where L is the
number of polymorphic sites in the input data (i.e., the length of each
haplotype). Hence the computational complexity of the PAC like-
lihood LPAC (for fixed parameters ρ, γ, λ) in our model is O(n7L),
where n is the total number of input haplotypes. However, by
exploiting the sparsity and regularity of transition probabilities, we
can use algorithmic shortcuts to reduce the complexity to O(n4L).
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As in Gay et al.’s method, we use a standard derivative-free optimi-
zation procedure to find the maximum likelihood estimates of ρ, γ, λ
based on LPAC .

4 RESULTS
In this section, we summarize the performance of our method
on simulated data and then consider a real biological application.
In both cases, we compare our method with GenCo, the method
developed by Gay et al. (2007).

4.1 Simulation study
To test the performance of our method, we used Hudson’s (2002)
coalescent simulation program MS to generate simulated data sets.
In general, it is possible that the evolutionary history of a particu-
lar region R in a genome involves gene conversions with one end
of the conversion tract falling outside R and the other end falling
within R. To account for such events, we simulated a 30 kb region
and then discarded 5 kb from each end. In all simulations, we used
θ = 1.0/kb for mutation rate and λ = 0.5 kb for the mean con-
version tract length, both of which being relevant to humans (see
Ptak et al. 2004 and Frisse et al. 2001, respectively). For each data
set, both GenCo and our method were each run 10 times, taking
20 random permutations of haplotype order in each iteration. The
same permutations were used in the two methods. In the first itera-
tion, both GenCo and our method started the optimization procedure
at the true values of ρ, γ and λ, while in the subsequent iterations,
the maximum likelihood estimates from the previous iteration were
used as initial values.

For the crossover rate, we used ρ = 0.5 or 1.0 per kb, while for
the gene conversion rate, we used γ = 0.5, 1.0 or 2.5 per kb. For
each parameter setting, we generated 100 simulated data sets each
with 20 haplotypes. For each simulated data set, we estimated all
three parameters ρ, γ, and λ, while θ was set to Watterson’s estimate
(5). Shown in Table 2 is a summary of performance results. The
columns labeled ρ̂, γ̂, and λ̂ display the mean and standard deviation

(shown in parentheses) of the corresponding estimates. The column
labeled #(ρ̂; k) shows the number of data sets with crossover esti-
mates ρ̂ within a factor of k from the true ρ; the columns labeled
#(γ̂; k) and #(λ̂; k) are similarly defined for gene conversion rate
γ and the mean tract length λ, respectively.

Estimation of ρ: Both our method and GenCo produced reasona-
ble estimates of ρ. The two estimates had similar means, but our
estimate generally had a smaller variance than that of GenCo.

Estimation of γ: Our improvement over GenCo is clearly illustra-
ted in the estimation of γ. GenCo’s estimate of γ was substantially
biased upward, with means above the true γ by factors of tens to
thousands. In most cases, this significant bias was not a result of
only a few outliers; as the column labeled #(γ̂; 10) in Table 2 and
the upper-left histogram in Figure 4 show, GenCo produced very
large estimates of γ for a significant fraction of simulated data sets.
In contrast, as Table 2 and the upper-right histogram in Figure 4
indicate, our estimate of γ was much more well-behaved for all
parameter settings, though it was slightly biased upward for γ = 0.5
and 1.0 per kb.

Estimation of λ: GenCo’s estimate of λ was slighted biased upward.
This upward bias occurred even though many estimates were well
below the true value λ = 0.5 kb, as shown in the bottom-left
histogram in Figure 4. In GenCo, a very large γ̂ was usually accom-
panied by a very small λ̂. In comparison, as Table 2 and the
bottom-right histogram in Figure 4 show, our estimate of λ is much
more accurate, with a smaller variance. However, as the cases with
γ = 2.5/kb suggest, our estimate of the mean tract length λ seems
slightly biased downward when γ is large.

4.2 A real biological application
Gay et al. (2007) used their method to study recombination patterns
in two genes—namely, su(s) and su(wa) surveyed by Langley
et al. (2000)—located near the telomere of the X chromosome of
Drosophila melanogaster. The su(s) and su(wa) loci are about

Table 2. Comparison of our method with GenCo on simulated data.

ρ γ λ Method ρ̂ γ̂ λ̂ #(ρ̂; 2) #(γ̂; 2) #(λ̂; 2) #(ρ̂; 10) #(γ̂; 10) #(λ̂; 10)

0.5 0.5 0.5 GenCo 0.51 (0.43) 3700 (23000) 1.4 (9.0) 66 29 26 98 64 62
Ours 0.48 (0.27) 1.7 (1.6) 0.50 (0.29) 75 37 83 99 96 100

0.5 1.0 0.5 GenCo 0.48 (0.47) 670 (4000) 0.56 (0.79) 76 47 45 98 79 78
Ours 0.46 (0.23) 2.0 (1.7) 0.49 (0.29) 78 59 80 99 98 100

0.5 2.5 0.5 GenCo 0.59 (0.62) 66 (560) 1.1 (4.1) 81 78 75 98 96 94
Ours 0.59 (0.27) 2.3 (1.2) 0.45 (0.15) 83 83 93 100 100 100

1.0 0.5 0.5 GenCo 0.84 (0.43) 380 (1200) 1.1 (3.5) 78 17 27 98 61 57
Ours 0.79 (0.26) 1.8 (2.6) 0.51 (0.30) 84 31 82 99 96 98

1.0 1.0 0.5 GenCo 0.79 (0.40) 230 (820) 0.91 (2.01) 77 55 49 99 79 76
Ours 0.81 (0.35) 1.8 (1.5) 0.51 (0.25) 86 71 85 100 99 100

1.0 2.5 0.5 GenCo 0.93 (1.30) 370 (2100) 1.3 (6.4) 71 71 60 98 88 85
Ours 0.85 (0.35) 2.6 (1.5) 0.44 (0.18) 80 86 85 100 100 100

The estimates of ρ and γ are per kb. For each triplet (ρ, γ, λ), we generated 100 simulated data sets using MS (Hudson, 2002) for θ = 1.0/kb and 20 haplotypes. Shown in the
columns labeled ρ̂, γ̂ and λ̂ are the mean and standard deviation (shown in parenthesis) of the corresponding parameter estimates. The symbol #(ρ̂; k) denotes the number of data
sets with an estimate ρ̂ within a factor of k from the true ρ. The symbols #(γ̂; k) and #(λ̂; k) are similarly defined for γ and λ, respectively.
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Fig. 4. Histogram of gene conversion rate estimates γ̂ and mean conver-
sion tract length estimates λ̂ relative to their true values. Based on 100
simulations with n = 20, ρ = γ = 1.0/kb and λ = 0.5 kb.

4.1 kb and 2.5 kb long, respectively, and are about 400 kb apart.
Langley et al. (2000) surveyed samples from both an African and a
European population, but only the African sample was considered
by Gay et al., and we do the same here. The su(s) data set contains
50 haplotypes and 41 SNPs, while the su(wa) data set contains 50
haplotypes and 46 SNPs.

Gay et al. reported that, upon fixing the mean tract length to
0.352 kb (Hilliker et al., 1994), they obtained ρ̂ = 0.067/kb and
γ̂ = 26.9/kb, thus concluding γ̂/ρ̂ = 432. In their paper, Gay
et al. did not specify whether the above estimates were for the su(s)
locus or the su(wa) locus. To compare their method GenCo with
our method, we redid the analysis, following the same procedure
as in Section 4.1, i.e., taking 20 random permutations of haplotype
order and iterating the computation 10 times. We used ρ = 1.0/kb
and γ = 1.0/kb as the starting values of the optimization proce-
dure in the first iteration. The results, summarized in Table 3, are
quite different between the two methods. Assuming λ = 0.352 kb,
GenCo suggests that the gene conversion rate is substantially higher
than the crossover rate in each gene, while our method implies that
the two rates are comparable.

We also performed analysis with λ as a free parameter; Gay et al.
(2007) did not consider this analysis in their paper. In this case, we
used ρ = 5.0/kb, γ = 5.0/kb, and λ = 0.352 kb as the starting
values of the optimization procedure in the first iteration. GenCo
and our method again produced generally different results. The cor-
responding maximum likelihood estimates of ρ, γ, and λ are shown
in Table 4. For the su(s) locus, GenCo and our method produced
similar estimates of γ, but GenCo produced a much smaller estimate

Table 3. Estimates of ρ and γ for the su(s) and su(wa) loci in D.
melanogaster, with λ held fixed at 0.352 kb.

Gene Method ρ̂ γ̂ γ̂/ρ̂

su(s) GenCo 1.7 12 7.1
Ours 3.9 5.1 1.3

su(wa) GenCo 0.57 28 48
Ours 9.4 7.1 0.76

The estimates of ρ and γ are per kb.

Table 4. Estimates of ρ, γ, and λ for the su(s) and su(wa) loci in D.
melanogaster.

Gene Method ρ̂ γ̂ γ̂/ρ̂ λ̂

su(s) GenCo 0.78 10 13 0.55
Ours 4.7 11 2 0.13

su(wa) GenCo 9.9 270 27 0.004
Ours 9.4 96 10 0.015

The estimates of ρ and γ are per kb, while the estimate of λ is in kb.

of ρ than that of our method, while the opposite is true for λ̂. For the
su(wa) locus, GenCo and our method produced similar estimates
of ρ, but GenCo produced a much larger estimate of γ than that of
our method, though both methods produced a value of γ̂ that was
substantially larger than ρ̂. The estimates of λ in both methods were
quite small; this could be an artifact of the methods, which tend to
produce small estimates of λ when estimates of γ are large.

As discussed in Section 4.1, both GenCo and our method tend to
overestimate γ (GenCo more so than our method), but the fact that
both methods detected strong signals of gene conversion suggests
that gene conversion is likely to have played an important role in
shaping the observed pattern of genetic variation in the two genes.
This agrees with Langley et al.’s conclusion. However, unlike what
Gay et al. (2007) concluded, our analysis implies that crossover may
not have been greatly suppressed in the su(s) and su(wa) loci.

5 DISCUSSION
High-throughput sequencing technology has advanced remarkably
in the past few years (Bentley, 2006), and soon it will become rou-
tine to obtain whole-genome sequence information. Such fine-scale
data from populations will allow us to quantify fundamental popu-
lation genetics parameters with high accuracy. In particular, it will
soon be possible to provide a genomic annotation of gene conversion
rates and characterize the distribution of conversion tract lengths.
Hence, improved algorithms and statistical tools for studying gene
conversion are much in need.

In this paper, we have developed a model that allows overlapping
gene conversions. We believe that this aspect of our model is cru-
cial in making the joint estimation of the gene conversion rate and
the mean conversion tract length feasible. Although the joint esti-
mation of the three parameters ρ, γ, and λ is indeed a very difficult
problem, and the method proposed here is unlikely to be optimal,
we believe that we have taken an important step towards devising a
robust, reliable method.

Our current method can be improved in several ways. When the
gene conversion rate γ is high, our method tends to underestimate
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the conversion tract length λ slightly. On the other hand, when γ is
small, our method tends to overestimate γ slightly. We believe that
both biases can be corrected by considering larger threshold values
(a and b) on the maximum number of allowed gene conversion
initiation and termination events. We will explore this improvement
in the future. Other important future directions include handling
missing data and variable rates across the sequence.

The PAC model proposed by Li and Stephens (2003) is a useful
framework with many applications. Hellenthal et al. (2008) recently
proposed using a PAC-based copying model to infer human colo-
nization history. Clearly, the accuracy of that inference method can
benefit from having a more realistic copying model, as that proposed
here.
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