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Joint estimation of phase and phase diffusion
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Phase estimation, at the heart of many quantum metrology and communication schemes,

can be strongly affected by noise, whose amplitude may not be known, or might be subject

to drift. Here we investigate the joint estimation of a phase shift and the amplitude of

phase diffusion at the quantum limit. For several relevant instances, this multiparameter

estimation problem can be effectively reshaped as a two-dimensional Hilbert space model,

encompassing the description of an interferometer probed with relevant quantum states—

split single-photons, coherent states or N00N states. For these cases, we obtain a trade-off

bound on the statistical variances for the joint estimation of phase and phase diffusion, as

well as optimum measurement schemes. We use this bound to quantify the effectiveness of

an actual experimental set-up for joint parameter estimation for polarimetry. We conclude by

discussing the form of the trade-off relations for more general states and measurements.
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E
fficient sensing and imaging of samples that cannot be
exposed to high field intensities require the optimization of
the amount of information acquired from each run of an

experiment. Judiciously designed quantum strategies can lead to
significant improvements of sensitivities, when compared with
classical strategies with probes of equivalent energy content1.
Phase estimation illustrates well the advantages of quantum
metrology, with wide-ranging practical applications2–7.
Variations of many physical properties such as weak fields8

displacements or changes in concentration9,10 can be efficiently
observed as phase shifts.

A central aspect of sensing in a real scenario is the interaction
between the system and the environment. When one takes into
account this coupling, the promised quantum enhancement is
likely to be lost11. This has been extensively shown in the case of a
lossy interferometer12–15 while, more recently, theoretical and
experimental efforts have been directed at studying the limits of
phase estimation in the presence of phase diffusion16–20. Phase-
diffusive noise describes fluctuations in the modes of an
interferometer, which can be modelled as random phase-kicks.
This process reduces the visibility of interference, directly
affecting precision measurements as, for instance, in Ramsey
interferometry. The works cited above studied the limits of phase
estimation given a known amount of phase diffusion.

However, in several physical processes, such as path length
fluctuations of a stabilized interferometer, thermal fluctuations of
an optical fibre and weak coupling of the probed system to the
environment, phase and phase diffusion may vary in time.
Consequently, phase estimation relying on past estimates of the
magnitude of phase diffusion may lead to inaccuracies. A more
accurate and robust solution consists in estimating the phase shift
and the phase diffusion in a simultaneous, joint scheme. This
allows for the monitoring of both parameters on the relevant
timescale avoiding systematic effects. Moreover, the consideration
of joint estimation for phase and noise amplitude leads to a fair
accounting of resources, eliminating the need for precise
calibration before the estimation. These represent important
motivations for exploring the fundamental limits of this multi-
parameter scenario. Similar investigations have received con-
siderable attention recently21–32.

In this paper, we study theoretically as well as experimentally
the simultaneous estimation of phase shift and diffusion using
quantum states that can be effectively described in a two-
dimensional Hilbert space (as qubits). This provides a description
of two-arm interferometry with some of the relevant probe states
in quantum metrology—coherent and N00N states33. We find that
the quantum precision limit for the estimation of each of
the parameters cannot be reached for both parameters
simultaneously. We derive a trade-off relation that must be
obeyed by the statistical variances attainable through any physical
measurement and use it to identify a double-homodyne set-up as
an optimal choice for phase and phase diffusion measurements for
the considered set of probe states. We show this trade-off via a
tunable measurement, which we characterize by quantum detector
tomography. Finally, we analyse the applicability of our bounds for
more general states and measurements. To this end, we present the
results of numerical searches for optimum measurements acting
on Holland-Burnett states2, as well as on a pair of qubits. We also
present the performance of the double-homodyne measurement
set-up that we identified as optimal, in the presence of losses.

Results
Quantum estimation theory. Fisher information (FI) provides an
asymptotic measure of the amount of information on the para-
meters of a system that is acquired by performing a measurement
on it. For parameters l, in terms of the probabilities associated to

the measurement results pn¼ pn(l), the FI matrix elements
read34 Fi;j ¼

P
n pn

@2

@li@lj
logðpnÞ ¼

P
n

1
pn

@pn
@li

@pn
@lj
. The Cramér–Rao

bound states that, for all unbiased estimators l̂, the expected
covariance matrix with elements defined as gi;j ¼ hl̂il̂ji� hl̂iihl̂ji
satisfies

g � ðMFÞ� 1 ð1Þ
where M is the number of experimental runs. The Cramér–Rao
bound is saturated asymptotically by the maximum likelihood
estimator, upon elimination of systematic errors. FI provides a
useful indicator of the optimality of a given experiment and
constitutes a useful tool for designing measurements with the goal
of minimizing statistical errors.

For a set of probabilities that originated from measurements on
a quantum system, the ultimate limit on the covariance matrix is
set by the quantum Cramér–Rao bound in terms of the quantum
FI (QFI) matrix35,36. Introducing the symmetric logarithmic
derivative (SLD) operator Lj for parameter lj, obeying
2@ljr ¼ Ljrþ rLj, the QFI matrix is defined as
Hij¼Re[Tr[rLiLj]] and it bounds the FI matrix corresponding
to any particular measurement: HZF. For a single parameter, the
ultimate bound can always be achieved choosing the
measurement given by the eigenvectors of the SLD operator. In
the case of a multi-parameter problem, if the SLDs corresponding
to different parameters do not commute then the FI values for the
two parameters are maximized by incompatible measurements.

Interferometry with phase diffusion. We consider an inter-
ferometer with phase difference f between its two arms. The
annihilation operators corresponding to each arm are labeled
â and b̂. Different physical processes lead to phase diffusion and
the corresponding channel can be modelled as a random phase
shift distributed according to a normal distribution of width D,
called the noise amplitude. Acting on a mode a with initial state
rin, the phase diffusion channel yields

r ¼ N DðrinÞ ¼
1ffiffiffiffiffi
2p

p
D

Z
dxe�

x2

2D2UxrinU
y
x ð2Þ

where Ux¼ exp(ixâwâ) is the phase shift operator. In the Fock
basis, the result is the exponential erasing of the off-diagonal
elements of the density matrix:

N Dðjnihm jÞ ¼ e�D2ðn�mÞ2 jnihm j : ð3Þ
This mapping can be attained, alternatively, by solving the

master equation corresponding to phase diffusion16. Quantum
strategies aiming at an enhancement of the precision in phase
estimation make use of N00N states, defined as
1ffiffi
2

p jN0iþ j0Nið Þ. Even under phase diffusion, the evolution of

these states lies in the 2D space spanned by jN; 0i ¼ 1ffiffiffiffiffi
N !

p ðâyÞN

j00i and j0;Ni ¼ 1ffiffiffiffiffi
N !

p ðb̂yÞN j00i. A 2D picture also describes
classical phase estimation strategies relying on coherent states.
Indeed, a split coherent state with amplitude a yields the same
precision as a collection of |a|2 independent split single photons
(that is, N00N states with N¼ 1). In these relevant cases, our two-
mode probe state can be effectively modelled as a single qubit
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which, acted upon by a phase shift f and a phase diffusion
channel parametrized by D, yields
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The QFI matrix corresponding to parameters f and D,
depending on the probe parameter y can be calculated, using
the SLD.

Hyðf;DÞ ¼ HyðDÞ ¼ sin2y
e� 2D2

0
0 4D2

e2D2 � 1

 !
: ð6Þ

The maximum QFI corresponds to equatorial states with
y¼ p/2. From now on we shall refer to the diagonal elements of
the matrix Hp/2(D) as H11 and H22. For N00N states and for
coherent states with amplitude a, the QFI matrices read

HðN00NÞðDÞ ¼ N2Hp=2ðNDÞ; ð7Þ

HðcohÞðDÞ ¼ ja j 2 HyðDÞ; ð8Þ
respectively.

The SLDs corresponding to the two parameters do not
commute. However, for equatorial states (corresponding to
balanced interferometers), the expectation value of their com-
mutator vanishes, that is, Tr[r(L1L2� L2L1)]¼ 0 for y¼ p/2. In
principle, when this condition is satisfied, a measurement that
attains the QFI for joint estimation of both parameters can be
constructed31. This requires a collective measurement on multiple
copies of evolved probe states, which is a challenging task to
implement. Therefore, we firstly restrict our search for an optimal
strategy to separable positive operator-valued measurements
(POVMs) that is, measurements that act on probe states
individually. We discuss extensions to joint measurements
subsequently.

Trade-off in the estimation precision for / and D. In order to
assess the performances of these measurements we consider the
quantities F1,1/H1,1 and F2,2/H2,2, that is, the ratios between the FI
and QFI values for f and D. Finding a relation between these
ratios would effectively express the interplay that exists between
the estimator variances corresponding to the two parameters. As
shown in Supplementary Note 1, a trade-off relation can be
derived, which is obeyed for all probe states and separable
measurements:

F1;1
H1;1

þ F2;2
H2;2

� 1: ð9Þ

The most naive bound for the quantity in Equation (9) is equal
to 2, and it would be in principle achievable by means of a
measurement that is optimal for both parameters. With this
inequality, we not only prove that such measurement does not
exist but we also quantify the maximum precision achievable in a
joint estimation. Specifically, we prove that any measurement that
is independently optimum for the estimation of one of the
parameters is completely insensitive to the other. This bound is
saturated by all POVMs with elements in the equatorial plane of
the Bloch sphere, which have the form

�j ¼
nj
2

1
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1
2 e

� iwj

1
2 e

iwj 1
2
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; ð10Þ

with 0onjo1, 0rwjr2p, where the probability of out-
come j is Tr[rPj] and

P
j �j ¼ I.

A further bound on statistical variances can be derived from
this relation and Equation (1). The expected variance of the phase
shift estimator obeys g1;1 ¼ VarðfÞ � ½MðF1;1 � F2

1;2=F2;2Þ�
� 1

and an analogous relation can be written for the phase diffusion
amplitude. Using the fact that the off-diagonal elements of the FI
matrix are real numbers, we get Var(f)Z(MF1,1)� 1 and g2,2¼
Var(D)Z(M F2,2)� 1. Notice that the off-diagonal elements of the
FI matrix correspond to the coupling of estimators for the two
parameters, which results in increased statistical errors. Thus, the

statistical variances obey

H � 1
1;1

VarðfÞ þ
H � 1

2;2

VarðDÞ � M: ð11Þ

This inequality is one of our main results. It is saturated when
the inequality given in Equation (9) is saturated and the off-
diagonal elements of the FI matrix are zero.

An optimal measurement. In Supplementary Note 1, we show
that the bound in Equation 11 can be saturated for POVMs in the
equatorial plane that are symmetric with respect to the measured
state—meaning that for each operator of the form given in
Equation (10), parametrized by nj¼ n and wj¼fþ d, the POVM
set contains another element, parametrized by nj0 ¼ n and wj0 ¼
f� d for some d. Note that in general the POVM saturating the
bound depends on the specific value of the phase f.

We prove in Supplementary Note 2 that a double homodyne
set-up, combining modes a and b on a beam splitter and
measuring the X and P quadratures, respectively, in the beam
splitter’s two outputs, saturates the bound in Equation (11)
independently of the value of f. Figure 1 shows the dependence
of the variances on D for this set-up, which is depicted in
Supplementary Fig. 1.

Experiment. We adopt our theory to quantify the effectiveness of
an actual experimental set-up for joint parameter estimation for
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Figure 1 | Joint parameter estimation by double homodyne. (a) The ratios

between optimum single parameter statistical variances and statistical

variances that can be achieved with the double homodyne set-up, as a

function of phase diffusion amplitude, for a split single photon probe state

(first order N00N state). Note that, for low phase diffusion amplitude, the

homodyne set-up measures phase optimally. (b) FI elements, for a split

single photon. Blue corresponds to phase estimation precision and red to

phase diffusion amplitude estimation precision, while black corresponds to

the sum of the two. For N00N states with N photons, plots a and b scale by

a factor of N2 vertically and by a factor of 1/N horizontally. A schematic of

this measurement set-up, which implements a continuous measurement, is

included as Supplementary Fig. 1.
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polarimetry by investigating how close the implementation
compares with the optimal bound in Equation (11). We are not
aiming at demonstrating a quantum advantage and realize our
implementation with coherent states. The joint estimation of
phase and phase diffusion requires a measurement with at least
three outputs. This is because the FI matrix corresponding to any
single qubit (two-output) projective measurement is singular.
Thus, it cannot be inverted, yielding unbounded estimator
variances. We implemented a four-outcome measurement based
on a displaced Sagnac polarization interferometer33,37depicted in
Fig. 2. Our measurement realizes a mixture of the optimal
projective measurements for estimating the phase and the phase
diffusion amplitude, respectively. The set-up can be arranged to
tune the different weights of these measurements by rotating a
waveplate.

Complete information about the POVM associated to each of
these measurements is obtained via detector tomography38. This
technique adopts a quorum of input states and records the
probabilities of the outcomes. The Born rule then allows to
reconstruct the measurement operator. These reconstructed
POVMs are then used to compute the relevant FI matrix, as
detailed in the Methods section. In Fig. 3 we report our results,
where the variances Var(f) and Var(D) have been estimated from
the classical Cramér–Rao bound. The plot is obtained by varying
the measurement from sx, the optimal measurement for phase
estimation, to sy, the optimal measurement for estimating the
phase diffusion amplitude.

The experimental results are close to the optimum precision
given by Equation (11), with the imperfections of the imple-
mentation stemming mainly from no-unit interference visibility
and imperfect alignment of the set-up. The precision for the
estimates of f depends strongly on the measurement visibility

corresponding to outputs 1a and 1b (according to Fig. 3). For D,
the precision strongly depends on the visibility corresponding to
outputs 2a and 2b. The influence of non-unit visibility is more
pronounced for the latter, as we detail in the Supplementary
Methods.

Extensions. We have so far restricted both theoretical and
experimental studies to measurements on single quantum probes.
Collective measurements on multiple copies of probe states may
get closer to the multiparameter quantum Cramér–Rao bound in
some cases31. We study this for the simplest nontrivial case, that
of an entangled projective measurement on a pair of qubit probe
states that have undergone the same phase shift and phase
diffusion. In Supplementary Note 3, we analyse the performance
of a Bell measurement (in the basis in which the states of
Equation (5) are written).

In such a set-up, the Bell measurement can perform joint
estimation with precision surpassing the bound established in
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Figure 2 | Experimental set-up. In our set-up, the two modes a and b

correspond to the horizontal (H) and vertical (V) polarizations of a single

spatial mode. In this basis, the diagonal polarization states are defined as

jDi ¼ 1ffiffi
2

p ð jHiþ jViÞ and jAi ¼ 1ffiffi
2

p ðjHi� jViÞ and the circular

polarization states as |RS¼ |HSþ i|VS and |LS¼ |HS� i|VS. The four

outputs of the polarization interferometer correspond approximately

to the following POVM operators acting on the input polarization state:Q
1a¼ k|DS/D|,

Q
1b¼ k|AS/A|,

Q
2a¼ (1� k)|RS/R|,

Q
2a¼ (1� k)

|LS/L|, where k is a tunable parameter. This measurement should

saturate the inequality given in Equation 11 for certain input states.

PBS, polarizing beam splitter; HWP, half-wave plate; QWP, quarter-wave

plate.
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Figure 3 | Experimental results. Parametric plot of the estimates for the

ratios between optimum single parameter statistical variances and

optimum statistical variances achievable with our experimental set-up

(details in the Methods section). Blue points are calculated for a phase shift

of approximately p
2, optimized to obtain null off-diagonal elements of the FI

matrix. Red points are calculated for a phase shift differing by 1� with
respect to the one corresponding to the blue points. The black line gives the

ultimate limit. The blue and red dashed lines give the theoretical prediction

for the blue and red points, respectively, assuming visibilities of 96.5% for

outputs 1a and 1b and 99.4% for outputs 2a and 2b. Insert: Bloch sphere

representation of the estimated POVM operators, for the indicated setting

(all the estimated POVMs are represented in Supplementary Fig. 2). The

vectors represent the measurement operators corresponding to the four

outputs, each normalized. The numbers written on the vectors are the trace

norms of the corresponding operators, weighed by the total trace of the

four operators. We choose a phase diffusion amplitude D¼0.25 rad

(E14�). Error bars are obtained from a Monte-Carlo simulation with 500

repetitions, with random variations of the measured output intensities,

distributed according to measured fluctuations. Their length corresponds to

two standard deviations. Details on how this figure is obtained are

presented in the Supplementary Methods.
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Equation (11) for separable measurements, as long as the
amplitude of phase diffusion is less than D0, corresponding to

e�D2
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð1þ

ffiffiffi
5

p
Þ

q
. Indeed, for D¼ 0, a Bell measurement

yields

H � 1
1;1

VarðfÞ þ
H � 1

2;2

VarðDÞ ¼
3
2
M; ð12Þ

a value larger than the right side of the inequality given by
Equation (11), implying that greater precision can be obtained by
investing in collective measurements.

For a larger value of phase diffusion, we performed a numerical
search over all two qubit projective measurements, yielding the

achievable pairs of
H � 1

1;1

MVarðfÞ ;
H � 1

2;2

MVarðDÞ

n o
and also optimizing for the

smallest total of the entropy of entanglement for the corresponding
projectors. Figure 4 shows the results of this numerical search,
revealing how a higher violation of the bound derived for separable
measurements can be obtained with a more entangled measurement.

Our trade-off relations have been derived for those states
whose evolution is effectively described in a 2D Hilbert space. In
order to explore the form that this trade-off takes with probe
states in larger spaces, we present a numerical study of the
performance of Holland–Burnett (HB) states2. These provide the
same precision scaling as N00N states, but are more resilient to
losses than the latter. An HB(N) state results from the
interference of two N-photon modes on a beam splitter.

We performed a numerical search over all projective measure-
ments on the 4D space corresponding to the HB(3) state,
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entanglement of the projectors found by the search in the corresponding area,
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measurement). The maximum sum of coordinates in this graph is 1.48 and the

corresponding entropy of entanglement is 0.425. The search is performed for

a phase diffusion amplitude D¼0.25 rad (E14�). The details of the search

are presented in the Methods section and Supplementary Methods.
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optimizing the set of values
H � 1

1;1

MVar fð Þ ;
H � 1

2;2

M Var Dð Þ

n o
. The trade-off

bounds observed in the results of the search depend on the
amplitude of the phase diffusion. While for D¼ 0, the linear
trade-off expressed by Equation (11) is observed, for larger phase
diffusion, we obtain limits higher than this (results are presented
in Fig. 5). In Supplementary Fig. 4, we show how a photon
number resolving measurement12 can beat the limit in
Equation (11) when applied to HB states, however not reaching
the bounds depicted in Fig. 5.

It is recognized that the precision of any measurement making
use of entangled states is affected by loss. Here we illustrate a
different effect of loss, that is, how it affects the performance of
simultaneous estimation. We focus on a practical scenario where
the double homodyne measurement is used to analyse HB and
N00N states with six photons; the results are shown in Fig. 6.
They illustrate the fact that HB states are more robust to loss than
N00Nstates not only in terms of QFI scaling, but also for
attaining a satisfactory joint estimation precision.

We demonstrate in Supplementary Note 4 that for all path-
symmetric probe states (of which HB states are an example), with
D¼ 0 and no loss, the double homodyne measurement estimates
phase optimally39,40. In our results (presented in Fig. 6), the
decrease in sensitivity due to loss is partly contained in the
decreasing value of the QFI. In addition, the classical FI
corresponding to double homodyne detection degrades with
respect to the QFI due to the effect of the incoherent part of the
loss-affected probe signal, which introduces noise in the
measurement outcomes (this is detailed in Supplementary Fig. 5).

Discussion
Figure 3 shows the variances that can be obtained in our

experimental set-up with a probe state that has a phase shift of 1�
with respect to the optimal probe state. We highlight a somewhat
overlooked aspect of parameter estimation: the sensitivity of the
measurements to experimental imperfections in the alignment of
the phase of the probe state. For a large extent of the settings of
our tunable measurement, the precision of the estimates is robust
to this small variation in phase. This is because the four-outcome
POVM is capable of distinguishing between the rotation and the
shrinking of the Bloch vector corresponding to the probe state. As
we tune the measurement close to either of the extremal points,
corresponding to {sx,sy}, this ability is compromised. While with
a projective measurement (sx or sy for our set-up), when there is
no prior information on the amplitude of the phase diffusion,
phase estimation is not possible, with a balanced setting of the
weights given to pairs of projectors, our set-up is tolerant to phase
alignment (this is illustrated in Supplementary Fig. 6 and the
Supplementary Methods). Notably, the performance of the
double homodyne set-up described in this work is completely
independent of the phase of the probe state.

We have applied our study to quantum correlated states that
offer enhanced sensitivity for phase estimation. We have also
shown that collective measurements can offer an advantage for
joint estimation. However, entangled measurements in optics
require either probabilistic schemes, which have limited applic-
ability in metrology, or strong nonlinearities, which may be
challenging and at the edge of current technology.

We have found that states with correlations over multiple Fock
layers, such as HB states, can perform better than N00N states in
terms of joint estimation.

Methods
Experimental set-up. The source is a mode-locked Ti:sapphire laser, working in
the pulsed regime, with central wavelength of 830 nm, bandwidth of 32 nm and a
repetition rate of 256 kHz. The preparation stage consists of a polarizing beam

splitter (PBS1) that transmits only horizontally polarized light, followed by a
half-wave plate (HWP1) and a quarter-waveplate (QWP1), used for the prepara-
tion of polarization states for detector tomography. QWP2 is set at 45�, rotating
|RS to |VS and |LS to |HS. The displaced Sagnac interferometer consists of two
slightly displaced counter-propagating modes of equal length. The input state is
split by PBS2 into its |HS and |VS components, corresponding to the two paths of
the interferometer. After being acted upon by HWP2, the two paths recombine on
PBS2. Depending on the orientation of HW2, the input beam is split and directed
towards outputs 1 and 2. The polarization state at output 1 is approximately that of
the input with a phase shift due to a path difference in the arms of the inter-
ferometer. QWP3 is a multiorder waveplate, with axis vertical, which is twisted in
order to correct for this phase shift. The displaced Sagnac interferometer acts as a
tunable non-polarizing beam splitter, with the added effect of switching |HS and
|VS polarizations in output 2. The detectors situated after HWP3 and PBS3
measure polarizations |DS and |AS, respectively. The detectors situated after PBS4
measure {|HS, |VS} in output 2, effectively measure part of the input polarization
state in the basis {|RS, |LS}. Single-mode fibres are used to couple light into the
detectors and alignment of the interferometer is performed by coupling the
horizontal and vertical modes independently into single-mode fibres. The
interferometer phase is set so that a minimum of interference is measured in output
1a when the input polarization state is |DS. The measured visibility of the
interference was B97%.

We characterized the tunable measurement by performing detector
tomography, with different settings of HWP3, and measuring intensities with a
photodiode.

Estimation and errors. The experimental errors affecting our set-up are the
following: statistical errors intrinsic to quantum measurement, which are the object
of our study; loss and distinguishability of photons, which are accounted for in the
description of the set-up, and technical (systematic) errors. The latter dominate
statistical errors in our characterization of the set-up. One of the two easy-to-
identify error sources consists of intensity fluctuations on a timescale longer than
the detection time, which can be dealt with by recording traces of the intensity
readings and using the measured distributions when fitting data to the POVM
model. The second consists of imperfections in the manufacturing and calibration
of the waveplates used for preparation of the input polarization state.

The POVMs are estimated by using a maximum likelihood algorithm
comparing the collected data with the predictions from the reconstruction. We
verify that the outcomes predicted by the reconstructed POVMs differ from those
measured by values accountable for by observed fluctuations. The error bars for the
estimated FI are computed using a Monte Carlo simulation, starting with the
variance of the measured values of light intensities. More detailed information on
how Fig. 3 was obtained is present in the Supplementary Methods.

Searches over projective measurements. All elements of the set of projective
measurements in a d-dimensional Hilbert space can be produced by acting on an
orthonormal basis of this space with a unitary transformation. We perform
simulated annealing41 over the set of projective measurements by using random
unitary transformations to perform a random walk. The algorithm decides whether
a step is made in a randomly generated direction according to a tunable

distribution that favours increasing values of
H � 1

1;1

MVarðfÞ and
H � 1

2;2

MVar Dð Þ and, for the search

presented in Fig. 4, decreasing values of the total entropy of entanglement of the
projectors. We modify the step size, as well as the distribution controlling the
random walk in order to reach the extreme values of the parameters that we are
interested in, while ensuring that local minima are avoided. Details of this method,
as well as arguments to restrict our search to projective measurements are
presented in the Supplementary Methods.
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