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ABSTRACT

In low bit-rate coders, the near-sample and far-sample redundan-
cies of the speech signal are usually removed by a cascade of a short-
term and a long-term linear predictor. These two predictors are usu-
ally found in a sequential and therefore suboptimal approach. In this
paper we propose an analysis model that jointly finds the two pre-
dictors by adding a regularization term in the minimization process
to impose sparsity constraints on a high order predictor. The result
is a linear predictor that can be easily factorized into the short-term
and long-term predictors. This estimation method is then incorpo-
rated into an Algebraic Code Excited Linear Prediction scheme and
shows to have a better performance than traditional cascade methods
and other joint optimization methods, offering lower distortion and
higher perceptual speech quality.

Index Terms— Speech analysis, linear predictive coding.

1. INTRODUCTION

Traditionally, low bit-rate speech coders involve short-term linear
prediction (LP) in order to reduce the highly redundant speech sig-
nal into a sequence of i.i.d. samples that is easier to quantize. The
prediction coefficients are found by minimizing the 2-norm of the
prediction error signal (difference between original and predicted
signal) [1]; this corresponds to finding the prediction coefficients in
a maximum likelihood sense by fitting the error signal into a white
Gaussian model. Although this approach is used in almost all com-
mercial speech coder, the theoretical basis is fundamentally wrong
as this analysis is optimal only if the input to the AR synthesis model
is indeed spectrally white and Gaussian [1]: this is hardly the case
for voiced speech and a large set of unvoiced speech sounds. In or-
der to counter this model mismatch, the general approach is to add
a long-term predictor in the whitening process: the short-term pre-
dictor will first remove the redundancies due to the formants while
the long-term predictor will subsequently remove the redundancies
due to the presence of a pitch excitation. This scheme is inherently
suboptimal for the short-term analysis that will necessarily be biased
by the presence of the pitch excitation. The suboptimality of the first
short-term prediction step will subsequently corrupt the long-term
analysis: the minimum variance residual will not retain the structure
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of the original excitation but reflect something that has been atten-
uated and distorted making the analysis more difficult. The most
significant works that have pointed out the sub-optimality of the se-
quential approach were [2] and, more recently [3]. In [2], informa-
tion about the intermediate short-term residual is included in a new
minimization framework that determines jointly the formants and
pitch predictors. In [3] a correction factor based on a previous pitch
excitation is included in the short-term error minimization. Our main
objection to these two methods is that they do not take into consider-
ation the statistical properties of the analyzed signal as well as how
the cascade of the two predictors influences their own coefficients.

The objective of this paper is to define a new one-step mini-
mization framework corresponding to a new way of determining a
prediction vector that can then be used to find jointly a non-biased
short-term predictor and a more accurate pitch predictor, this also
results in a residual error that is spectrally whiter and therefore eas-
ier to quantize. This is done by increasing the prediction order and
by imposing in the 2-norm minimization of the prediction error sig-
nal a penalty term in order to keep the predictor sparse. This sparse
predictor can then easily be factorized into the short-term and long-
term predictor. The former will not be biased by the presence of a
pitch excitation because this is already taken into account by the pre-
dictor while the latter will have a higher accuracy than those found
through traditional methods. The residual is highly uncorrelated and
with very few outliers. Thus, the novelty introduced in this paper
is a minimization framework that better matches the statistical char-
acteristics of the speech in order to define, in a latter stage, a more
efficient quantization scheme.

The paper is organized as follow. A prologue will be given in
Section 2 that illustrates the general formulation for linear predic-
tors employed in speech coders. Section 2 and Section 3 will be
dedicated to introducing the mathematical framework in which the
joint estimator is developed and how this is formulated. In Section
5 we will show and discuss the performances of our estimator in an
Algebraic Code Excited Linear Prediction (ACELP) scheme.

2. GENERAL FORMULATION FOR LINEAR
PREDICTORS

The general approach in low bit-rate predictive coding is to employ a
cascade of a short-term linear predictorF (z) and a long-term linear
predictorP (z) in order to remove respectively near-sample redun-
dancies, due to the presence of formants, and distant-sample redun-
dancies, due to the presence of a pitch excitation in voiced speech.



The general form of the short-term linear predictor is:

F (z) = 1 −

Nf
∑

k=1

fkz
−k

. (1)

The coefficient vectorf = {fk} is determined by minimizing the
norm of the prediction error signal:

min
f

‖e‖p
p = min

f
‖x − Xf‖p

p (2)

where

x =







x(N1)
...

x(N2)






,X =


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x(N1 − 1) · · · x(N1 − Nf )
...

...
x(N2 − 1) · · · x(N2 − Nf )







and‖ · ‖p is thep-norm defined as‖x‖p = (
∑N

n=1 |x(n)|p)
1

p for
p ≥ 1. The starting and ending pointsN1 andN2 can be chosen
in various ways assuming thatx(n) = 0 for n < 1 andn > N .
For example, forp = 2, settingN1 = 1 andN2 = N + Nf will
lead to the autocorrelation method equivalent to solving the Yule-
Walker equations; settingN1 = Nf + 1 andN2 = N leads to the
covariance method [4]. The order of the short-term predictorNf

is usually chosen to be between 8 and 16 and the frame lengthN
between 5 to 20 ms (40 to 160 samples at 8 kHz).

The long-term predictor works in a similar way on the residual
of the short-term analysis but using a larger number of data samples
(2N to 4N ) in order to find values of the pitch lags that are higher
than the length of the short-term window and to better spot long-term
redundancies. The pitch predictor has a small number of tapsNp

(usually 1 to 3) and the corresponding delays associated are usually
clustered around a value which corresponds to the estimated pitch
periodTp, the general form is:

P (z) = 1 −

Np
∑

k=1

gkz
−(Tp+k)

. (3)

The parameters{gk} andTp are determined by minimizing the norm
of the residual error signal after the two predictors, just like in the
short-term prediction.P (z) often has only one tap and the analy-
sis is done by finding a firstopen-loopestimation of the long-term
parameters and successively aclosed-loopestimation where this is
refined and finalized.

The final step is to encode the residual error signal after the two
predictors that is hoped to be white and Gaussian. The encoding
of the residual signal uses very few bits: in ACELP coders usually
the residual is encoded with only 20-30% of non-zeros samples with
constrained values of±1 and a gaingac(n) [5].

3. FORMULATION OF THE JOINT ESTIMATOR

The cascade of the predictors in (1) and (3) corresponds the multi-
plication in thez-domain of the two transfer functions:

A(z) = F (z)P (z) = 1 −
K

∑

k=1

akz
−k

= (1 −

Nf
∑

k=1

fkz
−k)(1 −

Np
∑

k=1

gkz
−(Tp+k)).

(4)

The resulting coefficients vectora = {ak} of the high order polyno-
mial A(z) will therefore be highly sparse. We will then take this
sparsity into account in a minimization process similar to (2) by
adding a regularization term that imposes sparsity on the coefficient
vector:

min
a

‖x − Xa‖2
2 + γ‖a‖0, (5)

where‖ · ‖0 represents the so-called 0-norm, i.e. the cardinality
of the vector. A relaxation of this non-convex problem is done by
approximating the 0-norm with the more tractable 1-norm [6]:

min
a

‖x − Xa‖2
2 + γ‖a‖1. (6)

Note thatX has now been redefined as:

X =







x(N1 − 1) · · · x(N1 − K)
...

...
x(N2 − 1) · · · x(N2 − K)






,

whereK ≥ Nf + Np.
The optimization problem in (6) can be posed as a quadratic

programming problem and can also be solved in time equivalent to
solving a small number of 2-norm problems (like the one in (2)) us-
ing an interior-point algorithm [7]. The left term is strongly convex,
sufficient condition for the uniqueness of the solution [7] and also the
corresponding polynomialA(z) is minimum phase when the choice
of windowing is done as the autocorrelation method (see Section 2).

If we consider the problem in (6) from a Bayesian point of view,
we notice that this may be interpreted as themaximum a posteriori
(MAP) approach for finding{ak} under the assumption that the co-
efficients vector is an i.i.d. Laplacian set of variables and the error is
an i.i.d. Gaussian set of variables:

aMAP = arg max
a

f(x|a)g(a)

= arg max
a

{exp(−‖x − Xa‖2
2) exp(−γ‖a‖1)},

(7)

which can be considered to be true observing the coefficients of the
polynomial in (4). The regularization termγ is then intimately re-
lated to thea priori knowledge that we have on the coefficients vec-
tor {ak} or, in other terms, to how sparse{ak} is, considering (6)
as an approximation of (5). The problem of findingγ that offers the
best fitting of the model in (6) will be addressed in the next section.

Once the solution of (6) has been found, corresponding to the
estimated version of the coefficients ofA(z) in (4), the firstNstp

coefficients are used as the estimated coefficients of the short-term
predictorAstp(z). Then the polynomialALTP (z) is created by tak-
ing the quotient of the division betweenA(z) by Astp(z). In other
words:

A(z) = ALTP (z)Astp(z) + R(z); (8)

where the deconvolution residualR(z) can be considered negligi-
ble. Once we haveALTP (z) we can find the pitch gain and delay
by taking the minimum value and its position in the corresponding
coefficients vector:

gp = min{aLTP },

Tp = arg min{aLTP }.
(9)

where{aLTP } are the coefficients ofALTP (z). An example is
shown in Figure 1.

One of the main drawbacks is that even though the polynomial
corresponding to the solution of (6) is intrinsically stable, by select-
ing the firstNstp coefficients we can risk having the roots of the
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Fig. 1. (a) and (b) show a comparison between the polynomial ob-
tained with regularized minimizationA(z) and multiplication of the
two predictorsF (z)P (z) obtained in cascade;(c) and (d) a com-
parison of the two long-term predictorsALTP (z) andP (z).

corresponding short-term prediction polynomial outside the unit cir-
cle. This problem is not easy to solve and a deeper analysis has
to be done. However, we have observed that if the choice ofγ is
accurate, the coefficients of the short-term polynomialAstp(z) will
usually occupy the first 8 to 16 positions of the high order polyno-
mial A(z) and their absolute value usually decays rapidly. We can
reasonably assume that taking the firstNstp ≥ 10 coefficients and
ignoring the restAstp(z) will still be a stable filter. Our intuitive
analysis is corroborated by the results obtained: less than 0.01% of
short-term filters where unstable in a large set of frames analyzed.
As for the long-term predictor, if we choose a one tap filter, having
gp < 1 guarantees stabilty; an event in whichgp ≥ 1 has not been
observed in our analysis. It is important to notice that even if a pitch
periodicity is not present, the algorithm will still find a pitch gain
and delay. The delay values are usually in the same range as the esti-
mates in case of pitch presence, while the pitch gain usually is small
(gp < 0.01) not creating any artifacts in the reconstructed signal.

An interesting aspect of this algorithm is that the number of taps
is highly customizable. For example, we can choose fixed orders for
both predictors or we can adjust them iterating over several values in
an analysis-by-synthesis scheme without adding too much complex-
ity to the architecture of the coder, considering that the order of the
system of equations in (6) is fixed and we are just manipulating the
resulting prediction coefficients vector{ak}.

4. SELECTION OF THE REGULARIZATION TERM

In previous works on Tikhonov regularized minimization, notably
[8], the L-curve has been used in order to examine which value of
the regularization parameterγ offers the best trade-off between the
variance of the residual and the variance of the solution vector. In
our case, we will just substitute the variance of the solution vector
with the sum of absolute values. This is done by means of plotting
‖x−Xaγ‖2 versus‖aγ‖1 for several values ofγ, more precisely for
0 < γ < ‖XT

x‖∞ (where‖ · ‖∞ = ‖ · ‖∗1 denotes the dual norm)
the solution of (6) is a piecewise linear function ofγ. It is clear that
for values ofγ that are too close to the bounds the optimal solution
will be useless. In particular, forγ = 0 we will find a high order

polynomial that cannot be easily factorized and forγ ≥ ‖XT
x‖∞

the coefficients{ak} will be all zeros. TheL-curve is monotonically
decreasing and we can easily find the “corner” that characterizes the
L-curve [8] in which the best trade-off can be found. Analyzing
about 100.000 frames of speech coming from speakers with different
characteristics (gender, age, pitch, regional accent), we have found
that the interval of values ofγ in which (6) offers the best perfor-
mances in terms of mere optimization is0.02 ≤ γ ≤ 0.2. We will
concentrate further analysis, based on the magnitude of the differ-
ence between the encoded-decoded signal and the original signal, in
this range.

We investigate three approaches, one withγ chosen to be con-
stant, one withγ adaptively chosen based on the statistics of the
signal and one withγ found in an optimal sense:

• constantγ
The regularization parameter value that on average gave the
best results wasγ = 0.0631. This is the mean of the set of
optimalγ’s found for each frame.

• adaptiveγ
The probability density function ofγ shows to have a high
variance due to the change in statistics of the analyzed frames
of speech. Studying the behavior of the optimalγ we have
seen that this is strictly related to how “voiced” the speech
is in the analyzed frame, therefore it is intimately related to
the pitch gaingp. By observing the data of the values of the
optimal γ over gp at thenth frame, we have found this ap-
proximate relation:

γ(n) = −0.18g
2
p(n) + 0.2. (10)

Considering the slow change in value of the pitch gain from
a frame to another, starting withγ(n = 0) = 0.0631, we can
update the value ofγ using (10). A similar relation was used
in another regularized linear prediction scheme [9].

• optimal γ
An alternative approach is also investigated whereγ is tuned
for every frame analyzed in order to obtain the best result.
This part of the process is based on the magnitude of the dif-
ference between the encoded-decoded signal and the original
signal.

5. VALIDATION

In order to validate our results, we have analyzed about 100.000
frames of clean speech coming from several different speakers taken
from the TIMIT database [11], re-sampled at 8 kHz. The used set of
speakers is different from the one used in the analysis and training
phase. The three regularized methods with constant, adaptive and
optimal γ (Rc, Ra, Ro) are compared with the classical ACELP
(Ac) and the ACELP scheme with joint optimization of long-term
and short-term predictors (Aj) according to [3].

5.1. Experimental setup

In order to obtain comparable results, the regularized method are
also implemented in an ACELP scheme, the order of the optimiza-
tion scheme in (6) isK = 110 and the frame length isN = 160
(20 ms). The order of the short-term and long-term predictors are
respectivelyNstp = 12 andNLTP = 1, obtained with the proce-
dure of Section 3. The choice ofK = 110 means that we can cover
accurately pitch delays in the interval[Nstp + 1, K − Nstp − 1]



METHOD ∆DIST ∆MOS

Ro 2.05±0.06 dB 0.11±0.00
Ra 1.65±0.11 dB 0.07±0.00
Rc 1.04±0.27 dB 0.03±0.03
Aj 0.32±0.13 dB 0.00±0.02

Table 1. Improvements over conventional ACELPAc in the de-
coded speech signal in terms of reduction of log magnitude distortion
(∆DIST) and Mean Opinion Score (∆MOS). A 95% confidence in-
tervals is given for each value.

or equivalently pitch frequency in the interval[82Hz, 571Hz]. The
prediction residual vector is encoded according to [5] using 40 non-
zero samples constrained with±1 values and a gain. In the classical
and optimized ACELP scheme, the order of the short-term and long-
term analysis are the same (Nf = 12 andNp = 1). The coefficients
of the short-term filter are found using the autocorrelation method on
a subframe basis of 80 samples. The pitch delay and gain are found
on the residual error signal according to traditional ACELP encod-
ing [5]. The final residual error signal is also encoded according to
[5] but on the subsamples frame basis with 20 non-zero samples and
a gain that is averaged with the next one. In order to obtain the same
number of parameters for both regularized and traditional ACELP,
the values obtained with regularized ACELP are being interpolated
(the short-term filter interpolation is done in the LSF domain [5]), so
that for eachn-th subframe of each method, the transfer function is:

Hn(z) =
gac(n)

(

1 − gp(n)z−Tp(n)
) (

1 −
∑12

k=1 ak(n)z−k
) , (11)

and the excitation is a 80 samples vector with 20 non-zero as seen
above. It should be noted that the interpolation can be performed in
the decoder with an important decrease in the number of parameters
that have to be transmitted.

5.2. Results

For each method, the signals coming out of the encoding-decoding
scheme are compared to the original speech. The results have shown
that the regularized methods offer a higher accuracy compared to
traditional ACELP as shown in table 1, both in reducing objective as
well as subjective distortion using PESQ evaluation [10]. The per-
formances have shown what could have been reasonably assumed in
the preliminary studies.Ro clearly shows the highest performances
having the minimization process tuned to the optimal value ofγ.
Ra, by taking into consideration the statistics of the signal, performs
at a comparable level to the optimal procedure confirming the good
adaptive criterion used in (10).Rc has the drawback of perform-
ing poorly when the statistics of the analyzed frame fail to fit into
the fixed minimization framework. The jointly optimized method
Aj gives in general higher performances compared toAc but the
method does not perform well in the unvoiced case where the cor-
rection term used in the autocorrelation method has been observed
to perturb the minimization process.

There are two main reasons for the increase in accuracy in our
methods. First, the spectrally white residual coming out of the opti-
mization process in (6) that shows fewer outliers and therefore does
not bias the search of an algebraic codeword as much as the tradi-
tional ACELP does. Also, the search of the pitch parameters done
with the open-loop estimation on the autocorrelation can fail due to
the presence of multiples of the pitch delay, this does not happen in

our scheme that outperforms the traditional open-loop and closed-
loop procedure for pitch estimation. Furthermore, we have observed
that the sensitivity of the short-term prediction vectors in our method
is generally lower than with traditional LP. This is due to the lower
emphasis on peaks that this kind of analysis makes by intrinsically
taking into consideration that the signal has outliers due to the pitch
excitation. In the traditional short-term linear predictive analysis (1)
this is not taken into consideration and the minimum-variance ap-
proach in finding the residual causes the polynomial to have zeros
very close to the unit circle in order to try to cancel the pitch exci-
tation: the result is a transfer function that suffers greatly from this
bias and presents a spikier frequency response. This does not hap-
pen in our approach. Thus, we have found another meaning for the
regularization termγ as related to the bandwidth expansion that is
usually operated on the LP filter [9].

6. CONCLUSION

The analysis method presented in this paper has shown to have at-
tractive performances for the coding of speech signals offering both
higher accuracy and lower number of parameters needed. This was
done by presenting a new formulation for the minimization process
involved in the linear prediction that offers a better statistical fitting
for the model of speech making coding more straightforward and
accurate.
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