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Abstract

In the face of costs, cooperative interactions maintained over evolutionary time present a central question in biology. What
forces maintain this cooperation? Two potential ways to explain this problem are spatially structured environments (kin
selection) and kin-recognition (directed benefits). In a two-locus population genetic model, we investigated the relative
roles of spatial structure and kin recognition in the maintenance of cooperation among rhizobia within the rhizobia-legume
mutualism. In the case where the cooperative and kin recognition loci are independently inherited, spatial structure alone
maintains cooperation, while kin recognition decreases the equilibrium frequency of cooperators. In the case of co-
inheritance, spatial structure remains a stronger force, but kin recognition can transiently increase the frequency of
cooperators. Our results suggest that spatial structure can be a dominant force in maintaining cooperation in rhizobium
populations, providing a mechanism for maintaining the mutualistic nodulation trait. Further, our model generates unique
and testable predictions that could be evaluated empirically within the legume-rhizobium mutualism.
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Introduction

The evolution and maintenance of cooperative traits in nature is

a central question in evolutionary biology. Hamilton’s rule [1]

states that for an altruistic trait to evolve, the costs to the actor

must be outweighed by the benefits to recipients. However, this

benefit must be weighted by their genetic relatedness (C,rB). Two

ways that Hamilton’s rule can be satisfied are if the population is

structured [2,3] or if the actors can recognize and direct beneficial

behaviours to genetically similar individuals [4,5].

Population structure may play a major role in the evolution of

cooperation. In a population structured by local dispersal (e.g., in a

viscous environment), neighbouring individuals are more likely to

share a common ancestry than in a fully mixed environment. This

viscosity allows the kin of a cooperative individual to receive more

benefit than unrelated individuals. Conversely, in an unstructured

environment, the benefits of the cooperative behaviour are equally

likely to affect the fitness of any genotype. Experimental studies

have shown that cooperative traits are lost during extended

evolution in unstructured environments [6] and favoured in a

structured environment [7].

Kin recognition allows organisms to discriminate behaviour

towards kin and may enhance the likelihood of cooperative traits

evolving. If individuals can preferentially direct cooperative

behaviours toward kin, unrelated individuals will not receive the

benefit, resulting in lower fitness. The role of kin recognition in

nature is unclear and debated in the literature [8–10]. These kin

recognition mechanisms often entail a cost of expression [11].

Here, we present a model to investigate the joint effects of

spatial structure and kin recognition on the evolution of

cooperation, allowing us to disentangle the relative contribution

of each. To ground our study in a biological system, we modelled

intraspecific cooperation among rhizobia in the biological context

of the interspecific plant-microbe mutualism. Within this mutual-

ism, there is an important component of intraspecific cooperation

within the bacterial population, as the rewards of nitrogen fixation

are potentially available to many bacterial individuals [12–14].

Rhizobia are an ideal biological system for our study because: (i)

the rhizosphere is a spatially structured environment [15]; (ii)

rhizobia have a greenbeard-like recognition mechanism (rhizo-

pines) [16]; (iii) the nodule environment locally increases the

carrying capacity of rhizobium populations, assuaging concerns

regarding the strength of local competition [17,18].

Biological scenario: the rhizobium – legume
mutualism

Rhizobia are soil bacteria that engage in a mutualistic

interaction with leguminous plants, for which they can fix nitrogen

otherwise unavailable to the plant. In this resource exchange

mutualism, the bacteria receive carbon from the host plant.

Rhizobia cells infect plant root cells, where they differentiate into

bacteroids inside a tumor-like growth on the root called a nodule.

In these nodules, bacteroids fix atmospheric nitrogen in exchange

for carbon, but also stimulate the plant to release nutrient rich

resources into the surrounding rhizosphere [19,20].
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Rhizobia carry a locus encoding the ability to nodulate plant

roots on extrachromosomal, symbiotic plasmids [21]. Cells with

functional alleles (Nod+) will infect plant roots, differentiate into

bacteroids, and fix nitrogen. These are mutualists. Nodulation not

only offers the plant benefit, but also offers an indirect intraspecific

benefit to other rhizobia because it increases local resources which

benefit both free-living cells in close proximity to the nodule and

undifferentiated cells within the nodule (henceforth called ‘adja-

cent’). Hence, Nod+ bacteria are also cooperators. We recognize

two potential costs of functional Nod+genes: energetic costs of

plasmid carriage and sterilization (as differentiation can be

terminal) or growth rate inhibition due to differentiation into

bacteroids. In this work, we focus on the energetic carriage cost of

the plasmid (See Text S1 for a brief discussion on costs of

nodulation). As Nod2 bacteria receive the exuded benefits of

nodulation, but do not pay the costs, they disproportionally benefit

from nodulation (i.e., ‘‘cheaters’’).

We follow the approach of Bever and Simms [14], and assume a

fixed cost of plasmid carriage, cN. The basal fitness of the Nod2 cells is

set to unity, while the basal fitness of mutualistic cells is (12cN) in

all environments. The fitness of rhizobia cells also depends on their

surrounding environment. Population densities of soil microbes

are highest in the immediate vicinity of plant roots, where exuded

nutrients are concentrated in the soil [19,20]. Nodulation

stimulates a local increase in these exudates from roots, allowing

for increased bacterial population densities around nodules

[17,18]. This increase in resources available to cells adjacent to

nodules is the benefit of nodulation, bN, to all rhizobia. The fitness of

undifferentiated cells adjacent to nodules is thus increased by a

factor of (1+bN); around un-nodulated roots, fitness is 1 (i.e., the

standing, background availability of resources in the soil). As local

population density increases, concerns have been raised regarding

the potential ability of kin competition to offset the benefits of

spatial structure [22]. However, these concerns are misplaced

given that carrying capacity locally increases within and around

nodules [23,24]. This biological system presents a situation with

elastic local carrying capacities, similar to that shown for opines in

Agrobacterium tumefaciens [18].

In addition to the mutualistic Nod+ locus, rhizobia can also carry

loci for the production and catabolism of rhizopines (Rhiz) [25,26].

Rhizopines are carbon-rich compounds produced by the plant

after stimulation by nodulating bacteroids [26,27]. Like the

benefits of nodulation, rhizopines are available as nutrients to

rhizobia within and in close proximity to the nodule. However,

non-rhizopine individuals (i.e., Rhiz2 individuals) are unable to

catabolize rhizopines [16], rendering rhizopines a private resource

for Rhiz+ individuals [27]. Effectively, this constitutes a kin

recognition system equivalent to a ‘‘greenbeard’’ trait [28–30],

where the production of rhizopines is the ‘‘greenbeard’’, and the

unique ability for rhizopine catabolism ensures directed benefits.

Like Nod, the Rhiz loci are also carried on an extrachromosomal

plasmid, and production is coupled with nodulation [26]. When a

Rhiz+ cell generates a nodule, we assume a proportion, d, of general root

exudates are diverted to rhizopine production, reducing the resources

available to Rhiz2 cells. In addition, the synthesis and catabolism

of rhizopines involve a carbon cost, c, that detracts from the total

exudate available to all bacteria. We note that rhizopines have the

characteristics of a ‘‘spiteful’’ trait [31] because it is costly for both

the cells expressing the trait (c) and the non-rhizopine individuals

(d). As with the Nod locus, we assume an energetic carriage cost of

the Rhiz+ allele, cr. Rhiz+ cells occur in the population at frequency

equal to e, while Rhiz2 have frequency equal to f ( = 12e).

Access to increased exudates from nodulation will depend on

the structure of the soil environment. The probability of a nodule

forming on a plant root at any given time is dependent on the

genotypic constitution of the rhizobium population present at the

infection site. In an environment with no spatial structure (i.e.,

complete mixing), every genotype of reproductive rhizobia is

equally likely to be adjacent (either within or in close proximity) to

the nodule, and thereby equally likely to receive the benefits of

nodulation. Conversely, in a spatially structured environment (i.e.,

limited mixing), reproductive cells receiving benefits of nodulation

will be more likely to be of the same genotype as the nodule-

founding bacteroid. We describe the level of environmental mixing

with a coefficient of relationship, w, between the bacteroid generating a

nodule and the rhizobia adjacent to the nodule. This coefficient of

relationship can take on values between zero and one, where w=0

represents the situation where there is complete mixing (i.e., no

spatial structure), and w=1 represents a completely viscous

environment (i.e., complete spatial structure). When w=1, the

benefits of nodulation go exclusively to Nod+ cells; when w=0

these benefits are randomly distributed with respect to genotype.

Model parameters are summarized in Table 1. Figure 1 displays

the distribution of exuded resources in the soil (a), and graphical

annotations of costs and benefits (b).

Spatial structure (w) has opposing influences on the evolution of

nodulation and rhizopines in rhizobium populations. Bever and

Simms [14] showed that in sufficiently structured environments,

the legume-rhizobia interspecific mutualism can be maintained

through the intraspecific cooperation. However, when mixing in

the population became too high, Nod2 cells are increasingly likely

to receive the benefits of nodulation, and the magnitude of the

relative benefit to Nod+ does not outweigh costs of being a

mutualist. Negative frequency-dependent dynamics at the Nod

locus result in a stable internal equilibrium, and introducing spatial

structure alters the location of this equilibrium, with increasing

spatial structure shifting it towards fixation of Nod+. Conversely,

Simms and Bever [32] found that the evolution of rhizopines is

facilitated in well-mixed populations fixed for Nod+ (i.e., in a

mutualistic population). When the environment is well mixed, the

advantage of kin recognition (i.e., rhizopines) is high because it

allows for private sharing of resources among Rhiz+ cells.

However, when the environment is highly spatially structured,

local groups of cells are likely to be related, thereby eroding the

advantage of the directed benefits of rhizopines, and magnifying

the cost. This is because increasing spatial structure raises the

likelihood of a cell being adjacent to kin, which makes paying a

cost to direct rhizopines to kin superfluous because benefits are

likely to reach kin with such a mechanism. This translates to

positive frequency-dependent dynamics at the Rhiz locus, with an

unstable internal equilibrium. Increasing spatial structure decreas-

es the equilibrium frequency of Rhiz+, thus widening the initial

conditions that lead to loss of rhizopines.

Model

We analyze a population genetic model with two di-allelic loci

(one for nodulation, Nod, and one for rhizopine, Rhiz) that are

either inherited independently (no linkage; Unlinked case) or

coinherited (complete linkage; Linked case). Prior research has

identified spatial structure as being a key determinant of the

dynamics at these loci. In this work, we focus on whether the kin

recognition system of rhizopines qualitatively alters the evolution-

ary fate of the mutualism. We focus on the spatial structure term Q

because we are primarily interested in how environmental

structure influences the evolutionary dynamics in the rhizobium

population, and its role in the legume-rhizobia mutualism.

Cooperation and Kin Recognition in Rhizobia
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Model I: Unlinked case

Independent inheritance of Nod and Rhiz
We analyze an unlinked model as a heuristic to understand the

dynamics of the two loci independently. This approach assumes

that dynamics of alleles of the two loci are unconstrained by

linkage. While this assumption is biologically unreasonable

because plasmids are not independently distributed among

bacterial cells and physical linkage likely alters the transitory

dynamics, analysis of the unlinked model allows application of

analytical tools to capture the qualitative dynamics of the system

around the equilibria. This gives us an analytical point of

comparison for the more biologically realistic linked model

discussed below, and in fact, the equilibria are unaffected by

linkage.

We calculate fitness at the Nod and Rhiz loci as the product of

two functions, G and E, that measure the constitutive growth and

environment specific growth, respectively. G is a function of the

constitutive costs and benefits (i.e., cN, cr) of a genotype. These

fitness effects are experienced across all environments. E is a

function of genotype frequency, environment-specific costs and

benefits (i.e., d, c, bN), and the level of environmental mixing (Q).

Together, these two functions measure the costs and benefits of

being in each nodule environment, and the probability of being in

each environment. Full exposition of the model can be found in

Text S2.

Fitness~G constitutive costs and benefitsð Þ

E(genotype freq:, env: costs and benefits, space)

Because the loci are segregating independently, the system of

equations can be reduced to two equations by noting that allele

frequencies at each locus sum to unity (e.g, x = (12y) (Nod locus)

and e = (12f) (Rhiz locus)). This reduction to two equations allows

us to visualize the dynamics on a standard phase plane, with a zero

net growth isocline for each locus. Changes in allele frequencies at

both loci can be derived from these fitness equations (Text S2),

Figure 1. Root exudates and local resource environments. (a) Schematic of root exudates in the model. Small open circles are general exudates
that are usable by any free-living cells. Blue circles are nodulation induced exudates (bN), also available to all free-living cells. Red triangles are
rhizopines, which are only available to Rhiz+ cells. (b) Resources in local environments. Black portions of the bars represent the general exudates that
are usable by all types. Red portions of bars show general use exudates induced by nodulation. Green portions of the bar represent the rhizopines. In
the Nod+Rhiz+ bar, the two costs of Rhiz (c and d) can be seen to decrease the induced benefits of nodulation.
doi:10.1371/journal.pone.0095141.g001
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allowing us to monitor the joint influence of spatial structure and

recognition (i.e., rhizopines) on cooperation (i.e., nodulation).

Results I: Unlinked case

First, increasing spatial structure in the population greatly

facilitates the evolution of mutualism (Figure 2). With elevated

spatial structure undifferentiated Nod+ individuals will tend to be

adjacent to nodules and able to receive the full benefits of the root

exudates (Figure 2f). Alternatively, as the environment becomes

increasingly mixed, nodulation is less likely to evolve (Figure 2a),

because the carriage cost associated with nodulation (cN) is not

recovered through the indirect benefits of root exudates because

Nod2 individuals are increasingly likely to receive the benefit

(Figure 2d). This retrieves the result of Bever and Simms [14]

modelling the evolution of nodulation in a population without

rhizopines.

Second, increasing spatial structure constrains the evolution of

rhizopines (Figure 2b). In well-mixed environments, benefits of

rhizopines are directed to other Rhiz+ individuals. However, as

spatial structure increases and Rhiz+ individuals tend to be

clustered, the relative benefits of kin recognition decrease because

of a decreasing need for preferential allocation. Without non-

rhizopine genotypes to compete with, rhizopines offer no

advantage, and Rhiz+ cells suffer the cost of rhizopine production.

Additionally, some level of mixing in the environment must occur

for the maintenance of the kin recognition system. These results

recover those of the Simms and Bever [32] modelling the

evolution of rhizopines in a population fixed for Nod+.

Finally, increasing frequencies of rhizopines decrease the

equilibrium frequency of Nod+ (illustrated by the negative slope

of the Nod isocline in Figure 2b; Figure S1). The dependence of the

evolution of cooperation on kin recognition can be derived as the

partial derivative of the Nod+ frequency with respect to Rhiz+

frequency:

Lx

Le
~

{c(1zbN )

(1{w)(bN{ce2(1zbN ))

This expression is always negative as long as costs of producing

rhizopines (c) are positive. (This expression is undefined when

w=1, a biologically unreal scenario). This indicates that, at

equilibrium, rhizopines (i.e., kin recognition) are not beneficial to

the maintenance of cooperation when not coinherited with the Nod

locus. This result emerges because costs of rhizopine production

act as an additional cost to the cooperative Nod trait, which leads to

a decrease in cooperation at equilibrium.

Model II: Linked case

Coinheritance of Nod and Rhiz
We now consider a more realistic linked model, where the Nod

and Rhiz loci are coinherited on the same plasmid; this is

equivalent to complete linkage between the two loci. This is more

biologically realistic than the unlinked case because these loci are

often located on the same symbiotic plasmid in rhizobium species

[33,26]. We now follow four distinct two-locus genotypes:

Nod+Rhiz+, Nod+Rhiz2, Nod2Rhiz+, and Nod2Rhiz2. The

fitnesses of these genotypes are calculated in the same way as in

the unlinked case, as the product of the functions G and E, with x,

y, q, and z denoting the frequencies of the four genotypes,

respectively. A key distinction between the unlinked and linked

models is that in the linked case, the costs and benefits of rhizopine

production are coinherited with the costs and benefits of the

nodulation. This makes it possible for rhizopines to more directly

influence the evolution of nodulation, thus altering the transient

genotype dynamics.

Unlike the unlinked, this linked model does not lend itself to

analytical tractability. However, we use several approaches to

understand the qualitative behaviour of the model in relation to

the results from the unlinked model. First, we analyze the invasion

conditions for each genotype. By assuming fixation of one

genotype, we can determine which (if any) of the three remaining

genotypes can invade by comparing fitnesses. While this approach

allows us to qualitatively determine which genotypes are stable at

fixation, it does not reveal any information regarding internal

dynamics. We use numerical iterations of the full model to map

genotype dynamics over time. Finally, we turn to a weak-selection

approximation of the model that allows us to plot internal

Table 1. Description of model parameters.

Parameter Biological meaning Model

x Nod+ frequency unlinked

y ( = 12x) Nod2 frequency unlinked

e Rhiz+ frequency unlinked

f ( = 12e) Rhiz2 frequency unlinked

x Nod+Rhiz+ frequency linked

y Nod+Rhiz2 frequency linked

q Nod2Rhiz+ frequency linked

z Nod2Rhiz2 frequency linked

Q Spatial structure; probability that bacteroids are identical to vegetative cells exterior of nodule both

bN Benefit of nodulation to surrounding cells both

cN Cost of carrying Nod+ allele both

cr Cost of carrying Rhiz+ allele both

c Cost of rhizopine production/synthesis; decreased general exudate output both

d Amount of exudate produced not usable by Rhiz2 (i.e., rhizopines) both

doi:10.1371/journal.pone.0095141.t001
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dynamics. From these three approaches, we are able to achieve a

qualitative understanding of the linked model.

Results II: Linked case

The invasibility of genotypes in the linked model changes with

spatial structure (Figure 3). At low spatial structure (Figure 3a), the

non-interacting genotype (Nod2Rhiz2) is globally stable. All other

genotypes are invaded by this genotype because it is able to reap

benefits of general exudates, yet suffers none of the costs. As spatial

structure increases (Figure 3b), we see that no genotype is globally

stable; rather, the equilibrium is a polymorphic population. This

matches the results of the unlinked model, where an increase in

spatial structure leads to the evolution of nodulation. When the

environment is highly structured (Figure 3c), the system moves

towards the Nod+Rhiz2 genotype, as in the unlinked model. These

invasion results echo the qualitative dynamics of the unlinked case,

and the quantitative conditions for the stable corner equilibria

(Nod+Rhiz2 and Nod2Rhiz2) are identical. Invasion criteria for

each of the genotypes are presented in terms of w in Text S3.

At intermediate values of w, the invasion analysis cannot

determine the stability of internal equilibria. There are potential

internal equilbria (Figure 3c; gray circles) at three locations in the

genotype-space: (i) between the Nod+Rhiz+ and Nod2Rhiz+

genotypes; (ii) between the Nod2Rhiz+ and Nod+Rhiz2 genotypes;

and (iii) between the Nod+Rhiz2 and Nod2Rhiz2 genotypes. To

investigate the stability of these points, we turn towards numerical

simulation and analytical approximations.

Numerical simulations show that increasing the spatial structure

greatly facilitates the evolution of cooperation (Figure 4). In

structured environments, Nod+Rhiz2 quickly sweeps to fixation

(Figure 4c,f). In less structured populations, the Rhiz+ allele

facilitates a transient increase in the frequency of cooperation. At

this intermediate level of mixing, we see that stable equilibrium is a

population polymorphic for the Nod+Rhiz2 and Nod2Rhiz2

genotypes (Figure 4b,e), as in the unlinked model. In unstructured

populations, the non-interacting, saprophytic genotype (Nod2R-

hiz2) invariably fixes (Figure 4a,d). In Text S4, we discuss a weak

selection approximation that enables model simplification. With

these functions, it is possible to visualize isoplanes for each of the

genotypes (Figure S2).

The transient increase seen in the frequency of the Nod+Rhiz+ at

intermediate and low spatial structure is a striking result of the

linked model (Figure 4b,e). The magnitude of the transient gain in

nodulation – quantified as the area under the curve of the

Nod+Rhiz+ frequency dynamics that is greater than the equilibrium

frequency reached by the Nod+Rhiz2 genotype – measures the

increase in frequency of mutualism that would not be realized in

Figure 2. Dynamics and fitness of the unlinked model. (a–c) Isoclines and dynamics. Zero growth net growth isoclines for the unlinked model
for three different levels of spatial structure (Q= 0, 0.5, 1). The blue, curved isocline represents the equilibrium for the Rhiz locus and is unstable. The
linear isocline is the equilibrium for the Nod locus and is stable. Vectors on the phase plane represent the evolutionary dynamics towards the
equilibria. (d–f) Fitness of genotypes in each nodule environment. These panels of display the fitness of each cell type in each environment (i.e.,
nodule adjacency). Width of bars is proportional the probability of being found in that environment, as altered by degree of spatial structure (Q= 0,
0.5, 1). Black, red, green and blue bars (left to right within each cluster of bars) represent Nod+Rhiz+, Nod+Rhiz2, Nod2Rhiz+ and Nod2Rhiz2,
respectively.
doi:10.1371/journal.pone.0095141.g002
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the absence of rhizopines. Though this transient gain in frequency

of cooperation is not sustained over evolutionary time, the

magnitude of increase is highest in mixed environments (where

the evolution of cooperation is otherwise restricted), but disappears

as spatial structure increases (Figure S3).

The Nod+Rhiz+ genotype is not stable; it is invaded by the

Nod2Rhiz+ genotype (Figure 4a,b,d,e) as it approaches fixation,

leading to the pattern of transience. The Nod2Rhiz+ genotype is a

non-cooperative ‘cheating’ genotype. However, this genotype is in

turn unstable (Figure 3). Where the population moves in genotypic

space after this invasion is determined by the level of spatial

structure: in more structured environments, the population will

move to a stable polymorphism of Nod+Rhiz2 and Nod2Rhiz2

(Figure 4b,e); in mixed environments, the non-interacting geno-

type (Nod2Rhiz2) will sweep to fixation (Figure 4a,d).

Discussion

The evolution and maintenance of cooperative traits in the face

of countervailing forces is a longstanding question in population

biology. Here, we have shown that spatial structure plays a

dominant role relative to that of kin recognition in the evolution of

cooperation. Spatial structure both promotes the evolution of

cooperative traits, as well as maintains them over evolutionary

time. When environments become increasingly mixed, non-

cooperative individuals easily invade cooperative populations.

We used the analytical results from the unlinked model as a basis

for comparison to the more intractable linked model, which

recovered many of the qualitative results.

We show that while kin recognition can favour the evolution of

cooperation, it is a transient effect. As recognition-enabled

cooperation becomes common, it becomes vulnerable to invasion

Figure 3. Invasibility at different levels of spatial structures. (a–c) Increasing levels of spatial structure (Q=0, 0.5, 1). Black filled circles
represent stable equilibria, grey filled circles represent unstable internal equilibria, while open circles are unstable. Arrows represent the movement of
the population along the edges of this genotype space.
doi:10.1371/journal.pone.0095141.g003

Figure 4. Linked genotype frequency dynamics. (a–c) Genotype frequency dynamics of the linked model for Q= {0, 0.5, 1}. Nod+Rhiz+,
Nod+Rhiz2, Nod2Rhiz+ and Nod2Rhiz2 are represented by red, blue, purple, and green lines, respectively. At low spatial structure, there is a
transient increase in Nod+Rhiz+ frequency (red line). At higher spatial structures, this increase disappears, and Nod+Rhiz2 goes to fixation. Genotype
frequency is plotted on the y-axis, and time in generations is on the x-axis. (d–f) Evolutionary dynamics in the genotype space simplex. Blue arrows
represents evolutionary trajectory, and black point represents the evolutionary endpoints. Open circles show initial condition.
doi:10.1371/journal.pone.0095141.g004
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by non-cooperative kin recognition ‘cheaters’. Moreover, we show

that in some cases, kin recognition – because of additional costs –

actually constrains the evolution of cooperation. This instability

suggests that cooperation founded solely upon kin recognition

mechanisms is unlikely. The evolutionary stability of kin recogni-

tion in the population is reliant on the sustained association

between kin recognition and the cooperative trait. If these can be

uncoupled from each other, genotypes that do not suffer the cost of

expression will be able to invade the system. Additional instability

of kin recognition stems from the fact that effective kin recognition

requires fidelity between two elements: the production of a signal

and the ability to recognize that signal [29,30,34]. The potential

disentanglement of these elements can further destabilize cooper-

ation reliant on kin recognition mechanisms. In rhizobia, the

different genes underlying rhizopine synthesis and catabolism

could independently mutate, generating destabilizing genotypes

(i.e. genotypes that can catabolize rhizopines but do not bear the

costs of rhizopine synthesis genes). By contrast, cooperation based

on spatial structure does not share the same vulnerabilities to

cheating as kin recognition. The analogous destabilization of

cooperation based on spatial structure requires evolution of

increased dispersal in non-cooperators [35]. However, constraints

on the evolution of genotype-specific dispersal phenotypes are

more severe than the simple loss of function mutation required in

kin recognition systems. Bacteria, for example, can swim through

the soil via flagella or cooperative swarming [36,37], but even

these local scale mobilities can be curtailed by drying of the soil

[38]. As a result, spatial structure is a more resilient mechanism for

increasing the frequency of contact between cooperators.

Though our study strengthens the view that population

structure is the dominant factor in the evolution of cooperation,

it does not exclude the possibility that kin recognition mechanisms

are important in social evolution. In fact, the transient increase we

find occurs in relatively unstructured environments, where

cooperation is otherwise unlikely to evolve. Indeed, the presence

of rhizopine genotypes in rhizobium populations [26,39,40]

suggests an evolutionary force is maintaining rhizopines. One

potential mechanism for this maintenance of polymorphism is

broader meta-population dynamics, with migration among patch-

es. The scale of a rhizobium-plant mutualism meta-population is

not easy to identify. Due to overlap of root systems of individual

plants in a local area, individual plants are unlikely to be the limit

of a patch in a meta-population model. Rather, the root systems of

a local cluster of plants may be more meaningful patches, and

populations of bacterial cells could disperse among groups of

plants. The transient increase in Nod+Rhiz+ cells in populations

will increase opportunity for migration of Nod+Rhiz+ cells to other

subpopulations, thereby maintaining rhizopines in nature. In this

framework, the variation in local carrying capacities among groups

could be explicitly incorporated. This meta-population model for

the maintenance of rhizopines should be a focus of future study.

Our work does not consider an active role of the plant in the

interaction with rhizobia. Rather, we model the evolutionary

dynamics within rhizobia populations and treat the plant host as a

static interactor through which cooperative benefits are delivered

(i.e., exudates). This approach complements research seeking to

understand the influence of plant ‘sanctions’ – the plants

physiological ability to discontinue or restrict carbon allotment

to nodules infected by relatively ineffective rhizobium strains – on

the system dynamics [41]. These studies focus on the interspecific

dynamics of this interaction, and specifically how the plant can

alter the bacterial populations. If plants can ‘‘choose’’ among

genotypes of rhizobia partners, this process can stabilize the

mutualistic interaction [42,43]. Alternatively, if plants ‘sanction’ or

preferentially allocate resources among nodules, these interspecific

forces can maintain the mutualism as well [41,44]. Both of these

interspecific processes presume that plant resources are reliably

delivered to kin of nodulating rhizobia. Rather than address these

interspecific processes, we have focused on the mechanisms

underlying this reliable delivery of resources. As a result, our

modeling approach is complementary to research efforts to

understand the importance of partner choice, sanctions and

preferential allocation in maintaining interspecific mutualisms.

By focusing our attention on how intraspecific rhizobia

dynamics can maintain the legume-rhizobia mutualism, our work

offers a unique perspective on this ecologically important

interaction. The qualitative results from our model generate

predictions for the changes in rhizobia genotype frequencies over

time. Experimental tests of these predictions would be valuable

contributions to understanding the evolution of the legume-

rhizobia mutualism. By empirically evaluating these within-

rhizobia predictions, we can move towards a more complete view

of the ecology and evolution of the mutualism.

Our model suggests that spatial structure can be a dominant

contributor to the maintenance of mutualistic genotypes in

rhizobium populations relative to the directed benefits of rhizopines.

Rhizopines (kin recognition) are removed from the population

because they are vulnerable to invasion by non-cooperating ‘cheater’

genotypes (Nod2Rhiz+), which in turn are unstable. That the non-

interacting genotype invariably goes to fixation in unstructured

populations is indicative of the necessity of spatial structure of

cooperation, and thus the maintenance of the plant-rhizobium

mutualism. This disintegration of the mutualism is analogous to the

experimental work where cooperative traits are lost during evolution

in unstructured environments (interspecific: [45,46]; intraspecific: [6]).

Supporting Information

Figure S1 Equilibrium frequency of nodulation is

limited by rhizopines. The equilibrium Nod+ frequency is

shown as function of spatial structure. The solid curve shows the

equilibrium level of cooperation in the absence of rhizopines, while

the dashed curve represents the equilibrium frequency of Nod+

when Rhiz+ is initially fixed in the population. In well-mixed

environments and in structured environments, rhizopines have no

influence of the evolution of cooperation. At intermediate levels of

mixing, rhizopines substantially limit nodulation.

(PDF)

Figure S2 Isoplanes and evolutionary trajectory of

approximate linked model. The blue, green, and yellow

represent the zero-growth isoplanes of the Nod+Rhiz+, Nod+Rhiz2,

and Nod2Rhiz2 genotypes, respectively. The first two isoplanes

are overlapping. The red trace represents an evolutionary

trajectory. Note the transient increase towards the Nod+Rhiz+

genotype, and eventual fixation at Nod+Rhiz2.

(PDF)

Figure S3 Gain in frequency of nodulation from the

presence of rhizopines. In lower spatial structure environ-

ments, the transient increase in cooperation is more substantial

that in highly structured environments. This figure represents the

space between the red (Nod+Rhiz+) and blue (Nod+Rhiz2) curves in

the Figure 4a–c. It is interpreted as the increase in frequency of

mutualism that would not be realized in the absence of rhizopines.

(PDF)

Text S1 Costs of nodulation. A brief discussion of multiple

potential costs of nodulation.

(PDF)
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Text S2 Model. Full exposition of the unlinked and linked

models.

(PDF)

Text S3 Invasion conditions in the linked model.

Identification of the invasion conditions for mutant genotypes in

the linked model.

(PDF)

Text S4 Weak-selection approximation. Used for visualiz-

ing linked model isoplanes.

(PDF)
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