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Joint Frequency Offset and Channel Estimation for
OFDM Systems Using Pilot Symbols and Virtual Carriers

Tao Cui, Student Member, IEEE, and Chintha Tellambura, Senior Member, IEEE

Abstract— We consider joint estimation of carrier frequency
offset and channel impulse response (CIR) for orthogonal fre-
quency division multiplexing (OFDM) systems with pilot symbols
and virtual subcarriers (VCs). We derive the receive-signal cor-
relation structure due to the pilots and VCs, give the evidence of
joint multivariate Gaussian distribution of the received samples,
and derive an approximate maximum likelihood (ML) frequency
offset estimator. We also derive the asymptotic mean-square
error (MSE) and an approximate Cramér-Rao bound (CRB)
and establish the asymptotic unbiasedness. Without pilots, in
high signal-to-noise ratio, our estimator is equivalent to Liu
and Tureli’s estimator with Nv virtual carriers. When the pilot
number (Np) is greater than the channel length L, our estimator
acts as a subspace-based estimator with Nv + Np − L virtual
carriers. A decision-directed joint ML estimator is derived to
iteratively update the estimates of frequency offset, data symbols
and CIR. The optimal pilot and virtual carrier placement
strategies are also discussed. The resulting decision-directed joint
estimator performs within 0.8 dB of the ideal case even when the
frequency offset is as large as 20%.

Index Terms— Channel estimation, frequency offset, OFDM,
maximum likelihood.

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing
(OFDM) has been used in European digital audio

broadcasting (DAB), high performance radio local area
network (HIPERLAN) and 802.11a wireless LAN standards
[1]. Many existing OFDM systems use pilot symbols for
channel estimation. However, a carrier frequency offset
destroys subcarrier orthogonality, degrading the quality
of channel estimates. Although additional pilots may be
transmitted specifically for frequency offset estimation, there
are alternative blind techniques, which exploit the properties
of OFDM signalling: cyclic prefix, constant-modulus
signalling or virtual subcarriers (VCs).

Several frequency-offset estimators based on VCs have
thus been developed. A blind frequency-offset estimator that
exploits the VC subspace structure is developed by Liu and
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Tureli [2], [3], which requires the minimization of a polyno-
mial cost function and avoids the computational overhead of
typical subspace decomposition. Both the constant-modulus
property and the VC subspace are exploited in the semi-blind
frequency-offset estimator of [4], resulting in a generalization
of Liu and Tureli’s estimator. Their estimator is also extended
to multiantenna OFDM (receiver diversity) [5]. In [6], VCs
are exploited to derive a frequency offset estimator, which is
found to be identical to Liu and Tureli’s estimator [2], [3].
The estimator [2], [3], [6] is in fact a generalized likelihood
ratio test (GLRT) estimator, not a maximum likelihood (ML)
one [7]. Approximate ML frequency-offset estimators are
proposed in [8]–[10]. The intrinsic OFDM signal structure
induces a correlation structure among the received samples;
the frequency offset estimator [8] exploits this correlation. In
[9], the marginal likelihood function is averaged over data and
channel statistics, and the resulting estimator embodies several
approximations. An ML estimator is developed in [10]. A
nonlinear joint ML estimator for the channel impulse response
and frequency offset is derived in [11].

Although all the estimators [2], [3], [6], [8] exploit VCs,
they do not exploit pilot symbols reserved for channel estima-
tion. An estimator that uses both VCs and channel estimation
pilot symbols1 is expected to perform better (indeed the semi-
blind estimator [4] exploits both VCs and pilots). Motivated
by this fact, we derive the receive-signal correlation structure
due to the pilots and VCs, give the evidence of joint multi-
variate Gaussian-ness of the received samples, and derive an
approximate ML frequency offset estimator. The likelihood
function in this case is a function of pilot and VC locations,
noise variance and channel correlation. Since the resulting
frequency-offset estimator requires minimizing a polynomial
along the unit circle, we provide a discrete fourier transform
(DFT)-based algorithm. For OFDM systems employing VCs
only, our estimator reduces to that of [2] in high signal-
to-noise ratio (SNR). We also derive the relevant Cramér-
Rao bound (CRB) and establish the asymptotic unbiasedness.
Moreover, we investigate the impact of parameter mismatch
via simulation. The frequency-offset estimate can be used
to compensate the pre-DFT samples, and the channel is
initially estimated by standard least-squares or minimum mean
squares error (MMSE) estimators. A decision-directed joint
estimator is derived to enhance the estimation accuracy of
channel impulse response, frequency offset and data symbols
simultaneously. Optimal pilot and virtual carrier placement
strategies are also discussed. The resulting decision-directed
joint estimator performs within 0.8 dB of the ideal case even

1Note that we are not suggesting additional pilots for frequency offset
estimation.
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when the frequency offset is up to 20%.
This paper is organized as follows. Section II reviews the

OFDM model and conventional data detection for OFDM.
Section III introduces the approximate ML frequency-offset
estimator. Section IV derives the joint channel-impulse-
response and frequency-offset estimator and discusses the
placement strategies for pilot symbols and VCs. Simulation
results and conclusions are given in Sections V and VI,
respectively.

Notation: Operators (·)T , (·)H and (·)† denote transpose,
conjugate transpose and Moore-Penrose pseudo-inverse re-
spectively. The trace of matrix A is denoted by tr(A), and
j =

√−1. A circularly complex Gaussian random variable
(CGRV) with mean μ and variance σ2 is denoted by z ∼
CN (μ, σ2). The N × N discrete Fourier transform (DFT)
matrix is [F]i,j = 1√

N
e−j 2π

N (i−1)(j−1). The diagonal matrix
Γ(x) = diag[1, ξ, · · · , ξN−1] where ξ = exp(j2πx/N). The
cardinality of set A is |A|.

II. SYSTEM MODEL

In an OFDM system, source data are grouped and mapped
into dk, which are selected from a complex signal constellation
Q with unit energy (E{|dk|2} = 1). Typically, Nd complex
constellation points are modulated by the inverse discrete
Fourier transform (IDFT) on to N parallel subcarriers, where
Nd ≤ N . The resulting N samples during the m-th frame
interval (for brevity we omit m) are given by

xn =
1√
N

N−1∑
k=0

Xkej(2πkn/N), n = 0, 1, · · · , N − 1, (1)

where

Xk =

⎧⎨
⎩

dk k ∈ Id

pk k ∈ Ip,
0 k ∈ Iv

(2)

Id is the index set of data subcarriers with |Id| = Nd elements,
Ip is the index set of subcarriers reserved for pilot symbols
with |Ip| = Np elements, and Iv is the index set of subcarriers
reserved for VCs with |Iv| = Nv elements. We have Nd +
Np + Nv = N . We refer to xn (n = 0, . . . , N − 1) as an
OFDM symbol or frame. The input symbol interval and frame
interval are Ts and NTs.

The time-domain signal is transmitted over a frequency
selective fading channel with frequency offset. The received
signal samples in this case may be given by

yn = ej2πε n
N

L−1∑
l=0

hlxn−l + wn, n = 0, . . . , N − 1, (3)

where wn ∼ CN (0, σ2
n) is an additive white Gaussian

noise (AWGN) sample. Channel taps hl ∼ CN (0, σ2
l ), l =

0, . . . , L − 1 represent the sampled overall channel impulse
response (which comprises the transmit/receive filters and the
physical channel h(τ)). The actual frequency offset normal-
ized by the subcarrier separation (1/(NTs)) is ε. In (3), we
assume that the channel remains constant within each OFDM
symbol, and that the channel taps are identically independently
distributed (iid). More generally, one should consider the
case of correlated channel taps; while our frequency-offset

estimator can be generalized to this case, we only treat the
independent case for brevity and clarity of exposition.

For convenience, the samples in (3) can be written in vector
form as

y = Γ(ε)FHXFLh + w, (4)

where y = [y0, · · · , yN−1]T , h = [hIh(0), · · · , hIh(L−1)]T ,
and w = [w0, · · · , wN−1]T denote received vector, channel
vector and additive noise respectively, cut where Ih is the
index set of each channel path. FL is the relevant N × L
submatrix of F corresponding to h. The diagonal matrix X =
diag[X0, · · · , XN−1]. Using Eq. (2), we write X as the sum
of two diagonal matrices:

X = Xd + Xp, (5)

where

Xd = diag[s1, s2, · · · , sN−1], sk =
{

dk k ∈ Id

0 otherwise
, (6)

and

Xp = diag[t1, t2, · · · , tN−1], tk =
{

pk k ∈ Ip

0 otherwise
. (7)

Symbol detection is possible when an estimate ε̂ of the
frequency offset ε and an estimate ĥ of the channel impulse
response h are available. These unknown parameters are
assumed to be constant for K OFDM frames2. Therefore,
estimates and pilot symbols may be required once every K
frames, which reduces bandwidth loss (in our simulations we
typically set K = 1). The frequency offset is compensated by
pre-multiplying y in (4) with Γ(ε̂)H , and DFT demodulation
yields Y = [Y0, . . . , YN−1]T = FΓ(ε̂)Hy which is given by

Y = FΓ(v)FHXFLh + n, (8)

where v = ε − ε̂ is the frequency-offset estimation error
or residual frequency offset. The additive noise is n =
FΓ(ε̂)Hw; n is statistically identical to w. If there is perfect
frequency offset estimation, (8) reduces to Y = XH + n,
where H = FLh = [H0, . . . , HN−1]T , and Hk, a CGRV, is
the frequency response of the channel at the k-th subcarrier.
Given estimated Ĥ = [Ĥ0, . . . , ĤN−1]T , the transmitted data
symbols Xk can be recovered using

X̂k =
Yk

Ĥk

, k ∈ Id. (9)

This operation is customarily known as one-tap equalization.

III. ROBUST CARRIER FREQUENCY OFFSET ESTIMATION

A. Impact of frequency offset on channel estimation

If v is the residual frequency offset between the transmitter
and the receiver, the received post-DFT samples are given by
[11]

Yk =
sin πv

N sin πv
N

XkHkeπ (N−1)v
N + ICIk + nk, (10)

2For example, at 200km/hr, the coherence time is more than 100 times
NTs. Therefore, K may be as large as 100 [12].
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Fig. 1. MSE of channel impulse response versus SNR of estimator (12)
with frequency offset =0, 0.05 0.1, 0.15, 0.2, in a QPSK OFDM system with
N = 64, Np = 6 and Nv = 12.

where the complex Gaussian noise nk ∼ CN (0, σ2
n). The

intercarrier interference (ICI) term is given by

ICIk =
1
N

N−1∑
i=0

∑
m �=i

XmHmej2π i(m−k+v)
N . (11)

The ICI term (11), which is nonzero unless v = 0, can
severely degrade the system performance. In particular, for
pilot-assisted channel estimation [13], the least-squares chan-
nel impulse response estimator becomes

ĥ =
(
FH

L XH
p XpFL

)−1
FH

L XH
p Y, (12)

where Xp is defined in (7). Substituting (8) into (12), we have

ĥ =
(
FH

L XH
p XpFL

)−1
FH

L XH
p FΓ(v)FHXFLh

+
(
FH

L XH
p XpFL

)−1
FH

L XH
p n.

(13)

If v = 0, the first term in (13) reduces to h. However, when
v �= 0, the phase and amplitude of the channel estimate is
distorted due to frequency offset. In high SNR, the channel
estimate is severely degraded by the ICI term (11), which
causes an error floor in the mean square error (MSE) of
the channel estimate. Fig. 1 shows the MSE of the channel
estimate defined as

MSEh =
E{‖h− ĥ‖2}

E{‖h‖2} , (14)

where a 6-ray TU channel is considered (see Section V). At a
5% frequency offset, the MSE performance degrades by 7.5 dB
at MSE= 0.1. As the frequency offset increases beyond 5%,
the MSE too increases notably, resulting in an error floor.

B. Approximate Maximum likelihood frequency offset estima-
tion

We now use the ML principle to derive a novel frequency-
offset estimator. When the number of subcarriers N is large,
transmit samples xn (n = 0, . . . , N−1) in (1) can be modelled
as complex Gaussian via the central limit theorem (CLT) [14].

When the number of paths is large, the received OFDM signal
y may also be modelled as a multivariate complex Gaussian
with zero-mean and correlation matrix (19). Note that this is a
much stronger claim than the standard univariate distribution
claim via the CLT. We justify this assumption in Appendix A.
A similar approach has previously been used in [8] (without
a rigorous justification) for an OFDM systems without pilots.

Consequently, we derive the autocorrelation of the received
signal as a function of frequency offset, pilots, VCs and
channel correlation. It can be readily verified that E{y} = 0.
The autocorrelation matrix of the received signal is given by

Ry =E{yyH} = E{Γ(ε)FHXFLhhHFH
L XHFΓH(ε)} + σ2

nI

= E{Γ(ε)FH(Xd + Xp)FLRhFH
L (Xd + Xp)

HFΓH(ε)} + σ2
nI,

(15)

where the expectation is taken over both h and X, and
Rh = E{hhH} is the autocorrelation matrix of h. The third
equality follows because h and X are statistically independent.
Specifically, if tap weights h(l) are statistically independent3,
Rh becomes

Rh = diag[σ2
0 , σ2

1 , . . . , σ2
L−1]. (16)

We can show that

E{Xd} = 0, E{XdFLRhFH
L XH

d } = rE{XdXH
d } = rD,

E{XdFLRhFH
L XH

p } = 0, E{XpFLRhFH
L XH

d } = 0,
(17)

where r =
∑L−1

l=0 σ2
l /N , and

D = diag[d0, d2, · · · , dN−1], dk =
{

1 k /∈ Ip, Iv

0 otherwise
. (18)

Hence, we have

Ry =E{Γ(ε)FH(XdFLRhFH
L XH

d + XpFLRhFH
L XH

p )

× FΓH(ε)} + σ2
nI

=Γ(ε)
[
FH(rD + XpFLRhFH

L XH
p )F + σ2

nI
]
ΓH(ε)

=Γ(ε)GΓH(ε),
(19)

where G = FH(rD + XpFLRhFH
L XH

p )F + σ2
nI and is

Hermitian. The probability density function (pdf) of y is
therefore

p(y|ε) = (πN det(Ry))−1 exp(−yHR−1
y y). (20)

det(Ry) = det(Γ(ε)GΓH (ε)) = det(GΓH(ε))Γ(ε) =
det(G). Therefore, the determinant of Ry is independent of
ε. We drop the terms in (20) that are independent of ε and
derive the log-likelihood function as

Λ(y|ε) = −yHR−1
y y = −yH

[
Γ(ε)GΓH(ε)

]−1
y

= −yHΓ(ε)G−1ΓH(ε)y = −γ(ε)T y∗
DG−1yT

Dγ(ε)∗,
(21)

where γ(ε) = [1, ξ, · · · , ξN−1]T , and yD =
diag[y0, y1, . . . , yN−1].

3Note that our estimator can also be used for correlated h(l).
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Fig. 2. The curve of function g(ε) averaged over 100 OFDM frames in
a QPSK system with Np = 8 and Nv = 12, the carrier frequency offset
normalized by subcarrier spacing.

Maximizing the log likelihood function is equivalent to

ε̂ = argmin
ε

g(ε), (22)

where g(ε) = yHΓ(ε)G−1ΓH(ε)y.
Fig. 2 shows g(ε) averaged over 100 OFDM frames in a

QPSK system with Np = 8 and Nv = 12. The curve is similar
to the characteristic function shown in [3, Fig. 3].

If the delay is tolerable, the received signals during the K
frames can be combined for frequency offset estimation. Let
yk denote the received signal in the kth frame. Since the yk’s
for k = 1, 2, . . . , K are independent, the probability density
function of (y1,y2, . . . ,yK) is

p(y1,y2, . . . ,yK |ε) =
K∏

k=1

p(yk|ε)

=
1

πKN
∏K

k=1 det(Ryk
)

exp

(
−

K∑
k=1

yH
k Γ(ε)G−1ΓH(ε)yk

)
.

(23)

The cost function (22) is therefore

ε̂ = argmin
ε

K∑
k=1

yH
k Γ(ε)G−1ΓH(ε)yk

= argmin
ε

K∑
k=1

γ(ε)T (yk)∗DG−1(yk)T
Dγ(ε)∗

= argmin
ε

γ(ε)T Bγ(ε)∗,

(24)

where and B =
∑K

k=1(yi)∗DG−1(yi)T
D .

Remarks:

1) Due to the Gaussian approximation, our estimator is
not exactly ML. However, when the number of channel
taps L increases, the estimator approaches the exact ML
estimator, which is given in [9], [10]. In [9], [10], the
marginal likelihood function conditioned on the channel
and data symbols is averaged over the distribution of

h and X. Our approach in this paper carries out the
average implicitly.

2) From (22) and (24), ε̂ can be calculated and subse-
quently used for estimating h. This estimate ε̂ is used
to initialize the joint estimator in Section IV.

3) The inverse matrix G−1 in (22) and (24) can be pre-
computed. The main computational cost is to find ε̂ in
(22) and (24). Eq. (24) can be written as

g(ε) =
N−1∑
i=0

N−1∑
k=0

bi,kej2π(i−k)ε/N , (25)

which can viewed as a polynomial, where bi,k is the
(i, k)th entry of B. Many frequency-offset estimators
[2], [3], [5] can be simplified to (25). In the range
[−N/2, N/2], the cost function has many local minima,
which may be obtained by solving for the roots of the
polynomial. Alternatively, from [15], the cost function
can be minimized in two steps. The first step is coarse
search; the cost function g(ε) is computed over a grid of
ε̂ values, say {ε̂n}. ε̂∗n with the minimum cost g(ε̂∗n) is
selected. Since, in a small neighborhood around ε̂∗n, g(ε)
is convex, the traditional Newton-Raphson search or
bisection search can be applied. This approach can also
be used for single carrier transmission over frequency-
selective channels [16].
Since G is Hermitian, g(ε) can be written as

g(ε) = 2Re

{
N−1∑
i=0

aiz
i

}
, (26)

where z = exp(−j2πε/N), and

ai =

{ ∑N−1−k
j=0 bj,j+i i �= 0

1
2

∑N−1
j=0 bj,j i = 0

. (27)

We add (m − 1)N zeros to the end of sequence
[a0, a1, . . . , aN−1] and perform the mN -point DFT,
which yields

A(k) =
1

mN

N−1∑
i=0

aie
−j 2πi

N
k
m , k = 0, 1, . . . , mN − 1.

(28)
Let the index of the minimum Re{A(k)} denote k̃.
Hence, the ε that minimizes (25) can be approximated
as ε̂ = k̃/m. To further improve the estimation accuracy,
second order interpolation can be used around k̃. Details
are omitted for brevity.
Compared with the algorithm in [15], the complexity
of our frequency-offset estimator can be reduced by
properly choosing m. The larger the m, the better the
estimation but the higher the complexity. The complex-
ity of the FFT is 5βmN log2(mN)] in Flops, where
β = 1 − [log2 m + 2(1/m − 1)]/ log2(mN) is due
to computational saving by skipping the operations
on the zeros in the FFT. The complexity of search
for the minima is mN . Hence the total complexity
of this algorithm is roughly mN(5β log2(mN) + 1).
The complexity that of the initial estimator in [11] is
6NL + 4N − 2 + 5N log2 N . Hence with appropriate
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m, our estimator’s complexity may be less than that of
[11]. Moreover, the estimator in [4] can also use our fast
frequency offset estimator.

4) Since our frequency-offset estimator also makes use
of the pilot symbols and VCs, which will introduce a
special correlation structure into the pre-DFT samples,
knowledge of the constant pilot patterns is thus ex-
ploited. However, since channel correlation and channel
noise variance are not known perfectly in practice, mis-
match conditions arise. We later investigate the robust-
ness of our estimator against the parameter mismatch.

5) When no pilot symbols exist but VCs exist, G in (19)
can be rewritten as

G = FH(rD + σ2
nI)F. (29)

Correspondingly, g(ε) can be modified as

g(ε) = yHΓ(ε)FHBFΓH(ε)y, (30)

where B = (rD+σ2
nI)−1 = diag[b0, b1, . . . , bN−1] with

bk =

{
1

r+σ2
n

k /∈ Iv
1

σ2
n

k ∈ Iv
. (31)

In high SNR, 1/(r + σ2
n) � 1/σ2

n. Hence, we may let
bk = 0, k /∈ Iv . Let wk denote the kth column of the
IDFT matrix FH . Eq. (30) then becomes

g(ε) =yHΓ(ε)[w1,w2, . . . ,wN ]B[w1,w2, . . . ,wN ]HΓH(ε)y

=
1

σ2
n

�

k∈Iv

yHΓ(ε)wkw
H
k ΓH(ε)y.

(32)

Therefore, frequency offset can be estimated by

ε̂ =argmin
ε

∑
k∈Iv

yHΓ(ε)wkwH
k ΓH(ε)y

=argmin
ε

∑
k∈Iv

‖yHΓ(ε)wk‖2

=argmin
ε

∑
k∈Iv

wH
k Γ(ε)yyHΓH(ε)wk,

(33)

which is the same as the cost function given in [2].
Therefore, when no pilots exist, our proposed frequency-
offset estimator is equivalent to that in [2] in high
SNR. The frequency-offset estimator in [2] is in fact
asymptotically optimal as opposed to the optimal claim
using a GLRT detection in [6].

6) When pilots exist, FLRhFH
L is a circulant matrix of

rank L, and any L columns or rows are independent.
If Np ≤ L, XpFLRhFH

L XH
p has Np nonzero columns

and rows, the Np columns are independent. Since rD is
a diagonal matrix, A = rD+XpFLRhFH

L XH
p has rank

Nd+Np. Let the singular value decomposition (SVD) of
A be denoted as A = UHΛU, where the first Nd +Np

diagonal entries of Λ are nonzero. We rewrite g(ε) as

g(ε) = yHΓ(ε)VHCVΓH(ε)y, (34)

where V = UF and C = (Λ + σ2
nI)−1 =

diag{c0, c1, . . . , cN−1} with

ck =

{
1

λk,k+σ2
n

k = 0, . . . , Nd + Np − 1
1

σ2
n

otherwise . (35)

Similar to (32), in high SNR 1/(λk,k + σ2
n) � 1/σ2

n.
Let vk denote the kth column of matrix VH . Eq. (34)
becomes

g(ε) =
1
σ2

n

N−1∑
k=Nd+Np

yHΓ(ε)vkvH
k ΓH(ε)y. (36)

Since there are N − Nd − Np = Nv terms in (36),
it acts as a subspace-based frequency-offset estimator
with Nv virtual carriers. Therefore, when Np ≤ L, the
pilots cannot improve the performance of the frequency-
offset estimator in high SNR. However, improvement is
possible in low SNR. When Np > L, following the same
approach as in (34)-(36), the frequency-offset estimator
reduces to the estimator in [2] with Nv + Np − L
virtual carriers. The pilots determine λk,k , vk and the
performance of the estimator; thus, the structure in y
and vk due to pilot symbols improves performance.
Pilots enable channel estimation, provided that Np ≥ L.
Therefore, the frequency-offset estimate is improved due
to the use of pilots available for channel estimation.

7) From (22) and (24), the cost function g(ε) is periodic
with a period of N , which means that the range of
frequency offset is wider and not limited to half of the
frequency separation between adjacent subcarriers, |ε| <
0.5. Our estimator does not divide the frequency offset
into an integer part and a fractional part, and it performs
coarse acquisition and fine acquisition separately, which
can reduce the system complexity.

8) Receiver diversity can improve the performance of
frequency offset estimation [5]. The extension of our
frequency-offset estimator to receiver with diversity is
straightforward by following (15)-(22). The resulting
estimator may be considered as an ML extension of the
GLRT estimator in [5].

C. Performance Quality Measures

We now assess the performance of our proposed frequency-
offset estimator. Reference [17] shows that the expectation and
MSE of the ML estimate in high SNR are approximated as

E{ε̂} .= ε−E{ġ(ε)}
E{g̈(ε)} , MSEε = E{‖ε− ε̂‖2} .=

E{[ġ(ε)]2}
[E{g̈(ε)}]2 ,

(37)
where g(ε) denotes the cost function of the estimator given
by (22) and (24), and ġ(ε) and g̈(ε) are the first and second
derivatives of g(ε). We prove in Appendix B that

E{ε̂} .= ε, MSEε =
N2

4π2

1
tr {MG−1MG− M2} . (38)

Therefore, our proposed frequency-offset estimator is asymp-
totically unbiased.
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Fig. 3. Comparison of MSE of frequency offset estimation for different Np

in a QPSK OFDM system with ε = 0.25, N = 64 and Nv = 12.

In Appendix B, we also derive the CRB [18] for the
estimation of ε using a single OFDM frame. The CRB is given
by

CRB =
N2

8π2

1
tr {MG−1MG− M2} . (39)

Moreover, assuming independent OFDM frames, the CRB for
(24) using K OFDM frames can be readily obtained as 1/K
times of (39). Similar results for the CRB have also been given
in [4], [5]. However, as commented in our frequency-offset
estimator, the received signal is only approximately Gaussian.
Therefore, the CRB (39) derived based on the pdf (20) is also
an approximation of the true CRB. The MSE (38) and the CRB
(39) differ by a factor of two, which violates the asymptotic
efficiency property of the ML estimator [19]. Our estimator,
together with other GLRT based frequency-offset estimators,
is thus not optimal. The ML frequency-offset estimator is
given in [10]. However, by increasing Np, the received signals
become “more Gaussian”, and hence, our frequency-offset
estimator performs closer to the CRB (see simulation results).

D. Comparative Performance

For quadrature phase shift keying (QPSK), and for the six
ray TU channel (Section V), Fig. 3 compares the CRB and the
MSE of our estimator (denoted as “MLE”) with those of Liu
and Tureli’s estimator [2], denoted as “LTE”. The total number
of subcarriers and VCs are N = 64 and Nv = 12, respectively.
Without pilots, our estimator performs similar to Liu and
Tureli’s estimator in all SNRs (Remark #5, Page 1197). At an
MSE of 2× 10−4, both estimators perform 1.6 dB and 4.6 dB
off from the asymptotic MSE and CRB, respectively. The true
MSE approaches the asymptotic MSE bound in high SNR.
For 4 pilot symbols (Np = 4), the true MSE, asymptotic MSE
and CRB all approach those of [2] without pilots in high SNR
(Remark #6, Page 1197). However, when Np increases to 8,
our estimator has a 4.5-dB gain over Liu and Tureli’s estimator
at an MSE of 2 × 10−4. The gap between the true MSE and
the CRB reduces to 2.5 dB, and the performance approaches
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Fig. 4. MSE of frequency offset versus SNR for Np = 4, 8, 16 in a QPSK
OFDM system with ε = 0.25, N = 64 and Nv = 12.

the asymptotic MSE in high SNR. The integration of pilot
symbols and VCs thus clearly improves the performance.

The performance of our frequency-offset estimator in rela-
tion to those of Liu and Tureli’s estimator and Ghogho and
Swami’s estimator [4] as a function of the number of pilot
symbols and SNR is of interest. Fig. 4 plots the MSE as a
function of SNR for different Np. The performance of Liu
and Tureli’s estimtor with the same subspace rank and the
performance of the semiblind estimator (“GSE”) in [4] are
also shown. For increasing Np, the MSE is greatly reduced
for both our estimator and Ghogho and Swami’s estimator;
the former performs better than the latter in low SNR, but
both perform identically in high SNR. At an MSE of 10−4,
the performance of our estimator increases by 5.4 dB when
Np increases from 8 to 16. With the increase of Np, the gap
between MLE and CRB decreases from 4.6 dB to 1.6 dB at
an MSE of 2 × 10−4. For Np = 8, the equivalent Liu and
Tureli estimator has Nv + Np −L = 14 VCs. But it performs
only marginally better when Nv increases from 12 to 14. Our
estimator with Np = 8 performs much better than Liu and
Tureli’s with Nv = 12. Similar observations also hold for
Np = 16. Increasing Np improves the performance of our
estimator, but increasing Nv alone does not.

Fig. 5 shows the effect of the number of blocks on the MSE
with Np = 6 and Nv = 12. The use of K = 8 blocks yields a
8-dB gain over the use of K = 2 blocks and a 4-dB gain over
the use of K = 4 blocks at an MSE of 10−4. This agrees with
that the CRB (39) decreases inversely with the increase of K .
The gap between the MSE and the CRB also decreases with
the increase of K . The gap is 2 dB when K = 2 and 1 dB
when K = 4 but 0.5 dB when K = 8. However, a regime of
diminishing returns sets in when the number of blocks gets
large (K > 10). The complexity and delay also increase with
K . Fig. 6 shows the S-curves [20] of the MLE and GSE for
an SNR of 10 dB as a function of the actual CFO (ε).

E. Parameter Mismatch

Our proposed estimator requires the knowledge of the noise
power, power delay profile (PDP), and pilot and VC locations.
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Since pilots and VCs are predefined, they are completely
known to the receiver. However, the noise power and PDP
must be estimated. The channel correlation matrix and the
noise variance may be estimated as R̂h =

∑K
k=1 ĥkĥH

k /K

and σ2
n =

∑K
k=1 ‖Yk−X̂kFLĥk‖2/(KN), where ĥk and X̂k

are the estimated channel impulse response and data symbols
in the k-th frame respectively.

We now test the robustness of our estimator against para-
meter mismatch for the six ray TU channel (Section V). We
randomly generate 50 instances of PDP (all with normalized
unity power). In each PDP realization, 1000 simulations are
performed. The receiver, however, does not know the exact
PDP or the noise variance, so in the estimator (22) we set
Rh according to a uniform PDP, and σ2

n is selected for an
SNR of 30 dB. This choice can be intuitively explained by
the fact that a frequency-offset error is concealed in AWGN at
low SNR, whereas it tends to dominate AWGN at high SNR
where the noise is low. Hence, it is important to keep the
frequency offset error low at the high SNR. The system uses
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Fig. 7. MSE of frequency offset under parameters mismatch in a QPSK
OFDM system with ε = 0.25, N = 64 and Nv = 12. The PDP is randomly
generated 50 times with normalized unity power. In each PDP realization,
1000 simulations are performed. Rh is chosen for a uniform PDP and σ2

n is
selected for an SNR of 30 dB.

N = 64 subcarriers and Nv = 12 VCs [1]. The performance
degradation due to the mismatch is negligible, especially in
high SNR (Fig. 7). This would confirm the robustness of the
frequency-offset estimator.

IV. JOINT ML ESTIMATION ALGORITHM

A. Iterative joint ML estimation

Given the estimate ε̂, the frequency offset can be com-
pensated by using (8). The channel impulse response ĥ can
be obtained using the least-squares estimator (13). Using the
channel estimate and frequency offset estimate as the initial
values, we derive a decision-directed joint ML estimator (DD-
JMLE), following a similar idea from [11]. The joint ML
estimator for [h, ε,Xd] is given by

[ĥ, ε̂, X̂d] = arg min
h,ε,Xd

∥∥y − Γ(ε)FH (Xd + Xp)FLh
∥∥2

.

(40)

The DD-JMLE is iterative and uses feedback. For example, in
the i-th iteration, the estimates are denoted by ĥi, ε̂i and X̂i

d,
respectively, and h0 and ε0 are the initial estimates. Fixing ε̂i

and X̂i
d, we get the least-squares channel estimate as

ĥi =
[
(Xi−1FL)HXi−1FL

]−1
(Xi−1FL)HFΓH(ε̂i−1)y,

(41)
where Xi−1 = Xi−1

d + XP . Data symbols are detected by
simply using division and hard decisions as

X̂i
d = diag

{
FΓH(ε̂i−1)y./FLĥi

}
, (42)

where ./ denotes component-wise division of two vectors.
Finally, εi can be obtained as

ε̂i = argmin
ε

∥∥∥y − Γ(ε)FHXiFLĥi
∥∥∥2

. (43)

This iterative procedure is repeated until convergence is
achieved. Simulation results attest that few iterations are
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often sufficient. Note that the initialization is not restricted
to any particular offset estimator; for example, the semi-blind
frequency-offset estimator [4] can also be used.

B. Pilot symbols and virtual carriers placement

Pilot symbols should be optimized for joint estimation
of frequency offset and channel impulse response. For a
system with no frequency offset, the placement and power
allocation may be optimized by minimizing the symbol error
probability with channel estimation error [21]. If we assume
that the frequency offset estimation is perfect, the optimal pilot
symbols for least-squares channel estimation are equispaced
when J = N/Np is an integer. If J is not integeral, the pilot
symbols are placed with two spacings S, S + 1, and S =

N/Np� or quasi-equispaced. N1 = N − NpS pilot spacings
are equal to S and N2 = Np −N1 pilot spacings are equal to
S + 1, where 
x� denotes the largest integer less than x.

For frequency offset estimation, the pilot symbols may be
optimally designed to minimize the MSE (38), which is to
maximize tr

{
MG−1MG

}
. Since G depends on Rh and

σ2
n, an explicit design criterion is elusive. Since the pilot

symbols must also be optimized for channel estimation, we
suggest they be equispaced or quasi-equispaced. To simplify
the system design, they are also chosen from Q (the data
symbol constellation) by maximizing tr

{
MG−1MG

}
. For

example, for the 6-ray COST 207 TU model and an SNR
of 20 dB, the OFDM system with Np = 4 and QPSK
has the optimal pilots

√
2/2 + j

√
2/2, −√

2/2 + j
√

2/2,
−√

2/2 − j
√

2/2,
√

2/2 − j
√

2/2.
When there are only VCs, our proposed estimator is equiv-

alent to that in [2] in high SNR. In practical systems, low and
high frequency subcarriers are VCs, since they are often used
for transmit filtering. We thus use the same VC placement
strategy regardless of the placement of pilot symbols. Since
the performance improvement due to large Nv is small [2],
the number of VCs in standards as IEEE 802.11a is small [1].

V. NUMERICAL RESULTS

We now present numerical results to illustrate the effective-
ness of the proposed joint estimator for a practical OFDM
system. We assume the following system specifications:

1) Both the data and pilot symbols are chosen from the
QPSK constellation, Q.

2) The carrier frequency of the OFDM system is 5 GHz
and the data bandwidth is 2 MHz. The guard interval is
Ng = 16.

3) We consider the 6-ray COST 207 TU model with the
PDP [0.189, 0.379, 0.239, 0.095, 0.061, 0.037] and delay
profile [0.0, 0.2, 0.5, 1.6, 2.3, 5.0]μs [22]. The channel
remains constant for each OFDM frame but varies from
one to another. The PDP is known at the receiver.

4) We consider a normalized frequency offset of 0.2 and
the number of frames K = 1.

5) The number of subcarriers is N = 64, the number of
VCs is Nv = 12, and the number of pilot symbols is
Np = 8. The pilot symbols are equispaced and randomly
chosen.
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Fig. 8. Comparison of frequency offset MSE for different joint estimators
in a QPSK OFDM system with ε = 0.2, N = 64, Np = 8 and Nv = 12.

0 5 10 15 20 25 30
10−4

10−3

10−2

10−1

100

101

SNR (dB)

M
S

E
 o

f C
IR

DD−JMLE, i=0
MKS, i=0
GSE, i=0
DD−JMLE, i=1
MKS, i=1
GSE, i=1
DD−JMLE, i=2
MKS, i=2
GSE, i=2
DD−JMLE, i=3
MKS, i=3
GSE, i=3
DD−JMLE, i= 4
MKS, i=4
GSE, i=4
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We compare the complexity and performance of DD-JMLE
with that of the joint estimator [11] (denoted by “MKS”) and
that of the semi-blind frequency-offset estimator [4] (denoted
by “GSE”). The iteration number is denoted by i.

Table I compares the complexity of DD-JMLE, MKS and
GSE, where β = 1− [log2 m+2(1/m−1)]/ log2(mN). GSE
uses the FFT frequency offset estimation algorithm in Section
III B., and the iterative algorithm in Section IV A. Therefore,
the complexity of DD-JMLE and GSE are same. In general,
the complexity of DD-JMLE and GSE are higher than that of
MKS. But the former two achieve better performance than the
latter as shown below.

Figs. 8 and 9 show the MSE of frequency offset and channel
impulse response, respectively. The performance of all the
estimators improves with the number of iterations (Fig. 8).
Although the DD-JMLE performs better than GSE in low
SNR, they both perform identically in high SNR. However,
MKS exhibits a large error floor, possibly caused by the poor
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TABLE I

COMPLEXITY COMPARISION OF DD-JMLE, MKS AND GSE.

Algorithm Real products Real additions

DD-JMLE 2N [2N + 2 + mβ log2(mN)] N [3N + 1 + 3mβ log 2(mN)]

+i[2N log2 N + 4N(2N + L + 5) + 4L] +i[3N log2 N + 4.5N2 + (3L + 10.5)N + 3L − 3]

+2iβ(mN) log2(mN) +3iβ(mN) log2(mN)

MKS 2N(2L + 2 + log2 N) 2L(N − 1) + 3N log2 N

+i [3(4L + 5)(N − 1) + 2 log2 N + 8L + 9] +i [(6L + 7)(N − 1) + 3 log2 N + 4L]

GSE 2N [2N + 2 + mβ log2(mN)] N [3N + 1 + 3mβ log 2(mN)]

+i[2N log2 N + 4N(2N + L + 5) + 4L] +i[3N log2 N + 4.5N2 + (3L + 10.5)N + 3L − 3]

+2iβ(mN) log2(mN) +3iβ(mN) log2(mN)

quality of the initial estimate. Interestingly, MKS performs
better than both DD-JMLE and GSE in low SNR. For DD-
JMLE, the second iteration has about a 2-dB gain over the first
iteration at an MSE of 10−4, while the gain increases to 2.8 dB
and 2.4 dB for the third and fourth iterations, respectively.
Similarly, for channel estimation, (Fig. 9), MKS still exhibits
an error floor caused by the residual frequency offset. The
DD-JMLE again performs better than GSE in low SNR. The
first iteration offers the largest improvement. At an MSE of
3× 10−3, the performance gain after the first iteration is 4 dB
due to the use of all the transmitted symbols. The second iter-
ation has another 1.5-dB gain. In the third iteration, the gain
reduces to 1.2 dB. Therefore, the performance improvement
by increasing the number of iterations diminishes with the
increase of i.

The BER of different data detectors is shown in Fig. 10. A
reference receiver with perfect knowledge of channel impulse
response and frequency offset is used as the benchmark. As
before, the MKS exhibits an error floor in high SNR, which
can be reduced by increasing the number of iterations. As with
the frequency offset and channel impulse response results,
DD-JMLE performs better than GSE in low SNR, but both
perform similarly in high SNR. After the first iteration, DD-
JMLE has a 2.1-dB gain over that with initial estimates at a
BER of 10−3. The performance gain by further increasing i
is in the order of 0.1 dB. At a BER of 10−1, one iteration of
DD-JMLE has a 2.5-dB loss over the benchmark, while this
gap reduces to 0.8 dB at a BER of 10−3. However, this gap
seems to remain constant with the increase in SNR and i.

VI. CONCLUSION

We have investigated joint estimation of channel impulse
response and frequency offset for OFDM systems. A high res-
olution frequency-offset estimator that uses both pilot symbols
and VCs has been derived. Our estimator reduces to Liu and
Tureli’s estimator [2] in high SNR for systems that do not
employ pilot symbols. When Np ≤ L, we find our frequency-
offset estimator cannot improve the estimator performance in
high SNR. If Np > L, our estimator acts as a subspace-based
estimator with Nv + Np − L virtual carriers, but it performs
channel estimation simultaneously. We have established the
asymptotic unbiasedness and derived the asymptotic MSE and
the approximate CRB. A decision-directed joint ML estimator
has been derived to improve the estimates of frequency offset,
data symbols and channel impulse response iteratively, and is
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Fig. 10. Comparison of BER for different joint estimators in a QPSK OFDM
system with ε = 0.2, N = 64, Np = 8 and Nv = 12.

initialized using the frequency-offset estimator (22) and the
least-squares channel estimator. Pilots and VCs design rules
have also been discussed. The results show that our proposed
joint estimator performs within 0.8 dB of the ideal case, even
when the frequency offset is as large as 20%.

APPENDIX A

We would like to test the hypothesis that y in (4) is
multivariate Gaussian with zero mean and correlation (19).
Many approaches to testing multivariate normality have been
proposed in the literature. Mardia [23] has developed two tests
based on multivariate generalization of kurtosis and skewness.
Using these tests, despite extensive trials, we find the rejection
rate is less than 1%. Thus, the evidence of non-normality is
quite weak.

APPENDIX B

In this appendix, we derive the MSE and the unbiasedness
of the proposed frequency-offset estimator. We also derive
the Cramér-Rao bound for the estimation of ε. Taking the
derivatives of g(ε) in (22) and (24), we have

ġ(ε) = j
2π

N
yHΓ(ε)BΓH(ε)y,

g̈(ε) =
(

2π

N

)2

yHΓ(ε)DΓH(ε)y,

(44)
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where B = MG−1 −G−1M, D = 2MG−1M−M2G−1 −
G−1M2, M = diag{0, 1, 2, · · · , N − 1}, and G is defined in
(19).

If x is a complex Gaussian vector with mean m and
covariance matrix S, and A is a matrix, we have [24]
E(xHAx) = tr(AS) + mHAm and

E(xHAxxHAx) =tr(AS(A + AH)S)

+ mH(A + AH)S(A + AH)m

+ [tr(AS) + mHAm]2.

(45)

From (19), Ry = Γ(ε)GΓH(ε) and E(y) = 0. We thus have

E{ġ(ε)} = E

{
j
2π

N
yHΓ(ε)BΓH(ε)y

}

= j
2π

N
tr
[
Γ(ε)BΓH(ε)Ry

]
= j

2π

N
tr
[
Γ(ε)BGΓH(ε)

]
.

(46)

Using the trace property tr(BC) = tr(CB) (B and C are
matrices), we have

tr
[
Γ(ε)BGΓH(ε)

]
= tr

[
(MG−1 − G−1M)G

]
= tr(M) − tr(G−1MG) = 0.

(47)

Therefore, we have E{ε̂} .= ε. Hence, our proposed
frequency-offset estimator is unbiased.

Next, we derive the MSE of the frequency offset estimate.
From (37), we need to compute E{[ġ(ε)]2} and E{g̈(ε)}. We
can show that

E{g̈(ε)} =
8π2

N2
tr
(
MG−1MG− M2

)
. (48)

Considering (44) and (45), we can obtain

E{[ġ(ε)]2} = −2
(

2π

N

)2 {
tr(BGBG) + [tr(BG)]2

}
.

(49)

From (47), we have tr(BG) = 0. We thus get

E{[ġ(ε)]2} =
16π2

N2
tr
(
MG−1MG− M2

)
. (50)

Substituting (49) and (50) into (37) yields (38).
The Cramér-Rao bound for the estimation of ε is

CRB = − 1

E

{
∂2Λ(y|ε)

∂ε2

} =
1

E{g̈(ε)} , (51)

where the log-likelihood function is defined in (21). Using
(48) and (51), we obtain (39).
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