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Abstract

Although microRNAs are being extensively studied for their involvement in cancer and development, little is known about
their roles in Alzheimer’s disease (AD). In this study, we used microarrays for the first joint profiling and analysis of miRNAs
and mRNAs expression in brain cortex from AD and age-matched control subjects. These data provided the unique
opportunity to study the relationship between miRNA and mRNA expression in normal and AD brains. Using a non-
parametric analysis, we showed that the levels of many miRNAs can be either positively or negatively correlated with those
of their target mRNAs. Comparative analysis with independent cancer datasets showed that such miRNA-mRNA expression
correlations are not static, but rather context-dependent. Subsequently, we identified a large set of miRNA-mRNA
associations that are changed in AD versus control, highlighting AD-specific changes in the miRNA regulatory system. Our
results demonstrate a robust relationship between the levels of miRNAs and those of their targets in the brain. This has
implications in the study of the molecular pathology of AD, as well as miRNA biology in general.
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Introduction

Neurodegeneration and dementia in Alzheimer’s disease (AD)

are associated with neurotoxicity of the amyloid-beta peptide,

which accumulates as amyloid fibrils in senile plaques character-

istic of AD, and as oligomers that directly bind to neurons [1–3].

The production and clearance of the amyloid-beta peptide is

therefore a major target of investigation on the pathogenesis of AD

and therapeutic interventions for prevention and treatment. With

the exception of the rare familial forms caused by dominant

mutations, the initiating factors in most cases of AD remain

unresolved. A major clue was given by Down’s syndrome, in which

trisomy of chromosome 21 results in early onset of AD, but not in

a case in which chromosome 21 had a mosaic deletion of the

amyloid precursor protein (APP) locus [4]. This evidence

highlighting the importance of gene dosage in AD is one of the

rationales for the study of gene expression in AD brain.

Many studies have therefore examined changes in mRNA

prevalence in the brain in later stages of AD (reviewed in [5]).

There is, however, surprisingly little agreement between the

differentially expressed gene lists of different studies. Furthermore,

among the few RNA changes that are shared among expression

studies, there is no clear functional relationship. A future challenge

is to integrate large amounts of data in a network context, for

which studies such as OSCAR [6] may be a useful model.

Besides mRNA populations, microRNAs (miRNAs) may also be

important in AD. MicroRNAs are short non-coding RNAs

(*22nt long) that bind complementary sequences in target

mRNAs and can thus cause their selective degradation, or

selective inhibition of translation [7,8]. Although miRNAs have

been intensely studied in the context of cancer progression, their

role in AD has received less attention [9–12]. The most detailed of

the existing studies [10] showed decreased levels of miR-29a/b in

AD, which was predicted to cause increased levels of beta-amyloid

cleaving enzyme 1 (BACE1), an essential protein in the generation

of beta-amyloid from APP, and this prediction was confirmed in

vitro. Using oligonucleotide arrays followed by targeted experi-

ments, Wang et al [12] showed decreased levels in AD of miR-107,

which also targets BACE1.

In the present study, we used microarrays to simultaneously

measure the levels of miRNA and mRNA in the parietal lobe (Pl)

cortex of AD patients and age-matched controls. Prior studies of

specific miRNAs suggested that some miRNAs directly decrease

the levels of target mRNAs on a genome-wide scale [13–16].

Starting from genome-wide miRNA and mRNA expression data,

we devised a novel permutation scheme to robustly determine the

significance of any correlation between levels of miRNAs and

their target mRNAs. Although the levels of around 20 miRNAs

showed a significant negative correlation with those of their

targets, we were surprised to find a much larger number, over 50,

positively correlated with their targets. We further showed that

mRNAs involved in specific processes, such as fatty acid

metabolism and protein refolding, are responsible for this

correlation signal, and confirmed that these processes are specific
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to the brain by comparison to a publicly available dataset of

cancer cell lines [17] and one of primary breast cancer cells [18].

Finally, using the permutation approach separately in the AD and

in the control samples, we were able to detect a large set of

changes in the miRNA-target correlations in AD brain. This

points to changes in the miRNA regulatory system in Alzheimer’s

disease.

Results

Differentially Expressed miRNAs and mRNAs
Total RNA was extracted from the parietal lobe cortex of 10

individuals (5 AD patients and 5 age-matched control subjects).

After RNA quality control, however, only 8 samples (4 from each

group) were used in the final study. Although these are too few to

draw any reliable conclusions about differential expression of

hundreds of miRNAs and mRNAs, we briefly present that analysis

for completeness and as a resource for future meta-analyses. We

used the empirical Bayes procedure [19] to determine the

statistical strength of possible changes in RNA prevalence, and

found 48 differentially expressed miRNAs and 11 differentially

expressed mRNAs at a False Discovery Rate [20] of 0.05 (see

Table S1 and Table S2).

For the functional analysis of the differentially expressed

miRNAs, we predicted the functions of miRNAs to be the

functions overrepresented among their targets (hypergeometric p-

value ƒ0.01). The predicted functions can be found in Table S3

(biological process), Table S4 (molecular function), and Table S5

(cellular component). Overrepresented functions among signifi-

cantly upregulated miRNAs included plasma membrane (p-value:

3:2|10{5), cell adhesion (p-value: 9:1|10{5), transmembrane

receptors (0.0065), and transmembrane transporters (0.0086).

No overrepresented functions were found among the differen-

tially expressed mRNAs.

Correlation between Expression Levels of miRNAs and
Target mRNAs

Much evidence shows that mammalian miRNAs, like their plant

counterparts, can influence gene expression not only by inhibiting

protein translation, but also by causing the degradation of their

target mRNA [14–16]. We therefore looked for negative

correlation between the expression levels of miRNAs and their

predicted target mRNAs. For individual miRNA-target pairs, our

data did not support this hypothesis: after multiple-testing

correction, no pairs passed the 0.05 FDR level.

We then tried to detect potentially subtle correlations by

deriving global statistics about miRNA-target expression correla-

tions. If high levels of a miRNA were degrading some target

mRNAs, we would expect that, among all miRNA-target

expression correlations, there would be a measurable bias towards

negative correlations. To test this, we calculated the mean

expression correlation among all miRNA-target pairs, then

repeated the calculation after randomizing the miRNA targeting

predictions. Instead of a negative correlation bias, this permutation

analysis showed a significant bias towards positive correlations

(Figure 1A). The average correlation among 240,758 miRNA-

target pairs in our data (with a ddG threshold of {15 kcal/mol for

PITA) was 0.00328, compared to a mean correlation among

permuted pairs of 0.000836. This shift had a two-sided empirical

p-value of 0.002 among 1,000 permutations. (These results are

qualitatively identical over a range of ddG thresholds; see Figure

S2.)

We were initially surprised to find positive correlations between

levels of miRNAs and their target mRNAs. Because two recent

studies [13,21] found that, for some miRNAs, miRNA levels affect

target mRNA levels only for high-prevalence mRNAs, we

repeated the analysis, but using only mRNAs with relatively high

average expression values. Indeed we found a striking change from

a positive correlation shift over all miRNA-target pairs to a

Figure 1. Permutation of miRNA-mRNA target relationships reveals a positive correlation between miRNAs and their targets, or
negative for some high-prevalence mRNAs. (A) Histogram of permuted values of mean correlation between levels of miRNAs and those of their
target mRNAs. Red arrowhead indicates true value. (2-sided p-value: 0.002) (B), (C) Weighted correlation shift (W ) and sign(W )(1{p) for a range of
cutoffs of log (base 2) mRNA mean expression. (D), (E) Histogram of permuted values for mRNA log-expression cutoffs 4 and 11. (All plots were
generated using a ddG cutoff of {15 kcal/mol.)
doi:10.1371/journal.pone.0008898.g001

Joint miRNA, mRNA Expr. in AD
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negative correlation shift for miRNA-target pairs restricted to

mean mRNA expression levels of 11 or greater (log2 scale) (p-

value = 0.002 after 1000 permutations) (Figure 1) (log mRNA

expression levels range from 2 to 15; see Figure S1 for the full

distribution).

Individual RNAs Involved in the Correlation Shift
We detected an overall bias in miRNA-target correlations

towards positive correlations, relative to a permuted distribution.

We wished to determine whether the bias was due to a few

miRNAs having a strong correlation with their targets, or most

miRNAs having a weak correlation with their targets. In the first

case, we would expect an essentially uniform distribution of p-

values with a strong peak near zero. In the second case, we would

expect a skewed p-value distribution.

The observed distributions of empirical p-values for both

miRNAs and mRNAs are shown in Figure 2. (An equivalent

figure using the TargetScan miRNA target prediction method is

shown in Figure S3, which shows that this result is robust with

respect to the prediction method used.) These histograms reveal

that most miRNA-mRNA pairs are actually uncorrelated, with

only about 60 miRNAs and 400 mRNAs contributing to the

positive correlation bias detected among all pairs. Interestingly,

despite a positive correlation on average among all miRNA-target

pairs, we also found strong peak of about 20 negatively correlated

miRNAs and 300 negatively correlated mRNAs. Therefore, the

positive correlation average masks distinct populations of positively

and negatively correlated miRNA-target pairs, and it is the relative

abundance of positive and negative correlations that drives the

average.

Having determined that only relatively few miRNAs actually

exhibit correlations with their targets (whether positive or

negative), we show the 10 most positive miRNA-target pairs in

Table 1 and the 10 most negative pairs in Table 2. Note that no

correspondence should be inferred between the miRNAs and

mRNAs in these two tables: the presence of an RNA in either table

is the result of summing over many correlations. Since miRNAs

can target hundreds or even thousands of mRNAs, no individual

correlations can by itself much affect the W -score, and conversely,

a high W -score does not imply high correlation across all a

miRNA’s targets. The full data of weighted correlation shifts can

be found in Tables S6 and S7. Additionally, we used miRNA-

mRNA concordance (see Methods, ‘‘MicroRNA-mRNA mutual

concordance score and differential mutual concordance score’’

below) to generate pairs of miRNA-targets in which both RNAs

had high W -scores and were highly correlated to each other (Table

S8).

To analyze the functions of those highly correlated (positively or

negatively) miRNAs and mRNAs, we generalized the idea of

weighted correlation shift from RNAs to groups of RNAs, in this

case defined by GO biological processes. We then asked whether

RNAs involved in some biological processes exhibit particularly

high or low correlations. Among the processes most positively

correlated with their regulating miRNAs, we found some very

specific processes, including metabolism of both carbohydrates

and fatty acids, as well as protein refolding, indicating the

particular importance of these processes in the brain. Among the

processes most negatively correlated are general regulatory

functions such as RNA splicing and translational elongation

(which could indicate an interesting self-regulatory loop in miRNA

function), but also more specific processes that could play a role in

AD brain, such as oxygen transport, cell adhesion, inflammatory

response, cytoskeletal organization and dendrite development (see

Table S9).

Comparison to Other miRNA/mRNA Datasets
To further validate these new methods, we examined the

correlation shift in two other miRNA/mRNA expression datasets:

the NCI-60 cell line panel [17], and a panel of primary breast

tumor cells [18].

The NCI-60 dataset displayed an overall negative correlation

bias throughout the range of expression values (Figure 3; see

Figure S4 for the distribution of expression values), and an entirely

different set of miRNAs and Gene Ontology biological processes

associated with the correlation bias. For example, the most highly

correlated processes in the NCI-60 panel are ‘‘hepatocyte growth

factor receptor signaling pathway’’, ‘‘myoblast proliferation’’,

‘‘regulation of cytokine-mediated signaling pathway’’, ‘‘immune

response-regulating signaling pathway’’, ‘‘chemokine receptor

transport within lipid bilayer’’, ‘‘regulation of transcription from

RNA polymerase II promoter by carbon catabolites’’, and ‘‘UV

protection’’ (Table S10). None of these are positively or negatively

correlated in the brain samples. Note that even in this case, there

are distinct miRNA-target populations that are either positively or

negatively correlated (Figure 3, panels C and D); the overall

average correlation is negative because the relative abundance of

positively and negatively correlated pairs is inverted compared to

that in our dataset. This result implies that our method can find

active miRNA-mRNA relationships in their specific context, and

that, as expected, these active relationships are different between

cancer cell lines and brain cells.

Figure 2. Histograms of miRNA- and mRNA-level p-values.
mRNA (RefSeq) (A) and miRNA (B) p-value histograms using mRNA log-
expression cutoff 4. The p-values are from 1,000 permutations. Here, r is
the observed mean correlation for that RNA, and r0 is the
corresponding permuted correlation.
doi:10.1371/journal.pone.0008898.g002

Joint miRNA, mRNA Expr. in AD
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In the primary breast tumor dataset, the average overall

correlation was not significantly shifted in either the positive or

negative direction (not shown). However, when we examined the

distribution of p-values for mRNA weighted correlation shifts, we

again found that a number of mRNAs were significantly positively

correlated with their regulating miRNAs, while a similar number

were significantly negatively correlated (Figure 4A). The histogram

of p-values for miRNAs (Figure 4B) is too noisy to draw any

conclusions from it, but this could be partly due to the low number

of represented miRNAs in this dataset (130 vs 889 in our brain

dataset and 189 in the NCI-60 dataset).

Taken together, these results suggest that miRNA-target

correlations would be detectable in most expression datasets using

our method, as we have found evidence of these correlations in

three completely independent datasets. The main difference

between datasets then seems to be whether positive or negative

correlations predominate, or neither.

Regulatory Changes between miRNAs and Target mRNAs
in Alzheimer’s Disease

The correlation shifts discussed so far are exhibited across all AD

and control samples. To identify specific correlations that may have

been gained or lost in AD brain, we repeated the permutation

analysis separately on the AD samples and the control samples, to

look for the largest changes in weighted correlation shifts. Note that

this analysis is independent of changes in expression between the

two sample groups; it instead detects changes between the groups in

correlations found within the groups, and can thus indicate changes

in miRNA function in the AD brain. To compensate for small

sample size, we exploited the many-to-many network of miRNA

targeting relationships to create a differential mutual concordance

score (see details in Methods) and thus identify the miRNA-target

mRNA pairs exhibiting the highest correlation change between AD

and control. We specifically searched for pairs that were concordant

(positively or negatively correlated with each other and with other

targets/regulators) in AD but not in control samples, and vice versa.

These pairs should indicate regulatory relationships being turned on

and off in AD brain.

A Mann-Whitney test comparing the ranks of pairs containing

AD-related genes (defined by GeneRIF [22]) to those containing

genes unrelated to AD gave a p-value of 3:503|10{6, indicating

that differential concordance analysis can recover miRNA-target

relationships that are functionally relevant to AD. The 40 most

changed regulatory pairs are represented as a network in Figure S5

(the full results can be found in Table S11).

Table 1. Most positively correlated mRNAs and miRNAs.

mRNAs

RefSeq ID Gene ID Gene Symbol mean n rand p W

NM_015723 50640 PNPLA8 0.174 33 {0:167 v10{3 6.35

NM_152487 148534 TMEM56 0.337 14 {0:115 v10{3 5.88

NM_007173 11098 PRSS23 0.138 28 {0:189 v10{3 5.85

NM_004849 9474 ATG5 0.088 51 {0:156 v10{3 5.71

NM_006500 4162 MCAM 0.349 80 0.103 v10{3 5.60

NM_006597 3312 HSPA8 0.841 4 {0:286 v10{3 5.55

NM_015235 23283 CSTF2T 0.034 50 {0:296 v10{3 5.50

NM_001017963 3320 HSP90AA1 0.439 12 {0:038 v10{3 5.22

NM_001199 649 BMP1 0.289 50 0.053 v10{3 5.01

NM_018710 55529 TMEM55A 0.408 8 {0:191 v10{3 5.01

MicroRNAs

miRNA ID mean n rand p W

hsa-miR-661 0.052 4037 0.022 v10{3 5.15

hsa-mir-44691 0.056 1032 {0:002 v10{3 4.85

hsa-miR-637 {0:009 6154 {0:027 v10{3 4.58

hsa-miR-657 0.081 386 0.024 v10{3 4.16

hsa-miR-34c 0.035 477 {0:036 v10{3 4.14

hsa-miR-629 0.067 206 {0:017 v10{3 4.03

hsa-mir-15903 0.086 206 0.002 v10{3 3.86

hsa-miR-615 0.057 433 {0:015 v10{3 3.73

hsa-mir-09369 0.065 324 {0:014 v10{3 3.61

hsa-miR-18b 0.138 86 0.003 v10{3 3.53

The ten mRNAs most positively correlated with their regulating miRNAs, and ten miRNAs most positively correlated with their target mRNAs, as measured by their
weighted correlation shift (W ). Repeated mRNAs (RefSeq IDs that map to the same UTR and therefore the same probesets and same expression) were removed from

the table. Data was limited to mRNAs with log-expression values greater than 4. Header legend: mean: mean correlation over all targets (in the case of miRNAs) or

regulators (in the case of mRNAs); n: number of correlations included in the mean. rand: average correlation after randomization.
doi:10.1371/journal.pone.0008898.t001

Joint miRNA, mRNA Expr. in AD
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Discussion

This is the first study of AD to measure mRNA and miRNA

levels in the same brain samples and supports the potential role of

miRNAs in AD pathogenesis. We found a substantial number of

new differentially expressed miRNAs at an FDR of 0.05. The

expression of 5.4% of sampled miRNAs was affected by AD at this

statistical significance level, suggesting a new approach to the

molecular analysis of AD. We found a strong concordance

between the miRNAs with differential expression in AD cortex as

found in our study and in that of Hébert et al [10]. Of the 16

miRNAs they reported, 5 were found in our set of 29 differentially

expressed (non-predicted) miRNAs, and all in the same direction

(p-value: 0.0084). Results on differentially expressed miRNAs in

AD [9,23,24] appear to be more robust and reproducible than

those of differentially expressed mRNAs [5].

Our joint miRNA-mRNA data and permutation analyses add

to the mounting evidence that miRNAs can regulate the

expression levels of target RNAs in humans. Recently, Vasudevan

et al [25] found that miRNAs can switch from repression to

activation of target translation, depending on the cell cycle state of

the cell. Based on our analysis of data in the brain (containing

predominantly cell cycle arrested cells) compared to the NCI-60

cell line data and primary breast tumor data (which consist of

actively replicating cells), we propose that this switch could occur

not only at the level of translation, but also at the level of mRNA

stability. Further, individual miRNAs appear to have different

mode of actions, since all three datasets present both positively and

negatively correlated miRNAs. Our data, however, cannot

distinguish between the regulation of mRNA levels by miRNAs

and the coregulation of both miRNAs and their targets by

upstream factors, as hypothesized by Tsang et al [26], who also

found both positive and negative correlations in their data.

Distinguishing between these two possibilities presents an exciting

avenue for future research.

In any case, it is clear that there are at least two distinct

populations of miRNA: one that positively correlates with its

targets, and another that negatively correlates with its targets.

Recent studies corroborate this finding [27,28]. The targets of the

latter population appear to include high-prevalence mRNAs that

function in general transcription and translation machinery. Few

other studies have jointly analyzed miRNA and mRNA array

data, especially in the field of AD. Notably, miR-34c, for which we

have strong evidence of positive correlation with its targets

(Table 1), was also found to be positively correlated with its targets

in mouse brain [26] and in rat oligodendrocytes [29]. miR-218,

Table 2. Most negatively correlated mRNAs and miRNAs.

mRNAs

RefSeq ID Gene ID Gene Symbol mean n rand p W

NM_014810 9857 CEP350 {0:146 84 0:073 v10{3 {6:60

NM_003012 6422 SFRP1 {0:067 68 0:189 v10{3 {6:28

NM_052854 90993 CREB3L1 {0:063 56 0:178 v10{3 {5:48

NM_006499 3964 LGALS8 {0:286 50 {0:058 v10{3 {5:40

NM_201543 {0:286 50 {0:058 v10{3 {5:40

NM_000517 3040 HBA2 {0:607 24 {0:182 v10{3 {5:10

NM_000558 3039 HBA1 {0:607 24 {0:182 v10{3 {5:10

NM_004305 274 BIN1 {0:271 40 0:016 v10{3 {4:97

NM_000873 3384 ICAM2 {0:801 4 0:107 v10{3 {4:96

NM_001008540 7852 CXCR4 {0:616 9 {0:095 v10{3 {4:88

MicroRNAs

miRNA ID mean n rand p W

hsa-miR-768-3p {0:147 113 0:005 v10{3 {4:78

hsa-miR-216 {0:426 11 0:004 v10{3 {4:21

hsa-miR-515-3p {0:320 51 {0:023 v10{3 {4:19

hsa-miR-612 {0:057 4706 {0:038 v10{3 {3:91

hsa-miR-211 {0:056 492 0:007 v10{3 {3:51

hsa-miR-325 {0:128 101 {0:014 v10{3 {3:46

hsa-mir-45496 {0:204 18 0:003 v10{3 {3:22

hsa-mir-32339 {0:203 20 0:018 v10{3 {3:18

hsa-miR-506 {0:219 56 {0:028 0:004 {2:99

hsa-mir-06164 {0:202 23 0:010 v10{3 {2:90

The ten mRNAs most negatively correlated with their regulating miRNAs, and ten miRNAs most negatively correlated with their target mRNAs, as measured by their
weighted correlation shift (W ). Repeated mRNAs (RefSeq IDs that map to the same UTR and therefore the same probesets and same expression) were removed from

the table. Data was limited to mRNAs with log-expression values greater than 4. Header legend: mean: mean correlation over all targets (in the case of miRNAs) or

regulators (in the case of mRNAs); n: number of correlations included in the mean. rand: average correlation after randomization.
doi:10.1371/journal.pone.0008898.t002

Joint miRNA, mRNA Expr. in AD
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also reported in the above two studies, was not among our most

highly positively correlated miRNAs, but did have a high positive

weighted correlation shift (W~2:07,p~0:034). These may

represent cases of miRNA and mRNA coregulation in the brain

that are conserved in mammalian species, and should therefore be

considered high priority targets for future studies.

Finally, our findings of miRNA-mRNA pairs differentially

correlated between normal and AD brains point to a fine grained

level of regulation of miRNA function. Just as transcription factor

binding to target promoters has turned out to be condition-

specific, the same could be true of miRNA-target UTR pairs. Our

results demonstrate that aggregating correlation values from many

different miRNA-target pairs, and calibrating these by permuta-

tion, is an effective scheme to computationally detect relationships

between the levels of miRNAs and those of their targets on a

genome-wide scale.

Materials and Methods

Tissue Samples and RNA Extraction
Ethics statement. Postmortem human brain samples were

obtained from the USC Alzheimer’s Disease Research Center

(ADRC), which assures written informed consent from all subjects.

The USC Institutional Review Board approved the use of the

samples for this study.

RNA extraction. RNA was extracted using TriReagent from

parietal lobes of postmortem brains of five subjects with

Alzheimer’s disease and five matched controls. The average age

of subjects with Alzheimer’s disease was 85 years (range 75 to 92

years) and 91.8 years (90 to 95 years) for controls. The postmortem

interval ranged from 3.75 to 10.1h with a mean of 5.87h. Per-

sample details can be found in Table S12, and in the Gene

Expression Omnibus (see ‘‘Data Availability’’ below). We treated

Figure 3. NCI-60 overall weighted correlation shift, significance, and p-value distributions. (A) Weighted correlation shift (W ) vs
minimum log (base 2) mRNA expression value. (B) Significance (sign(W ):(1-p)) vs minimum log (base 2) mRNA expression value for the NCI-60 cancer
cell line dataset. (C), (D) Distribution of p-values of mRNA and miRNA
doi:10.1371/journal.pone.0008898.g003

Figure 4. Primary breast tumor p-value distributions for mRNA
(A) and miRNA (B) correlations.
doi:10.1371/journal.pone.0008898.g004

Joint miRNA, mRNA Expr. in AD
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RNA samples with DNase and purified them with RNeasy mini

columns (QIAGEN).

mRNA Measurements
The mRNA array measurements were performed at the UCLA

microarray core (http:// microarray.genetics.ucla.edu) and used

Affymetrix HG-U133 Plus 2.0 arrays.

miRNA Measurements
MicroRNAs were assayed by LC Sciences (Houston, TX, USA,

http://www.lcsciences.com) using a custom m-Paraflo array

containing probes for 470 miRNAs from Sanger miRBase

[30–32] and 419 miRNAs predicted by miRNAMap [33]. (Our

entire analysis pipeline was repeated without the predicted

miRNAs, and the results are qualitatively identical — see

supplementary materials.)

As quality control, we verified our miRNA measurements with

smiRNAdb [34], a mammalian miRNA expression atlas generated

by library sequencing. There is a striking agreement between our

parietal lobe measurements and their frontal lobe measurements

(an exact tissue match was not available). Of the top 25 most

highly expressed miRNAs in our data, 15 were in the top 25 in the

atlas dataset, and 23 were in the top 50. The strong agreement

between our expression values and those generated by an entirely

different quantitation method gave us confidence in the quality of

our data. In addition, we manually investigated several ‘‘brain-

specific’’ and ‘‘brain-expressed’’ miRNAs reported in the litera-

ture, and consistently found them to show high expression levels in

our data. For example, miR-124a had a mean expression level of

14.4 (log2 scale), while the full range of expression values is {4 to

16 (see Figure S1). Other examples include miR-9 with a mean

expression level of 15.7, miR-146a with 9.62, miR-134 with 9.81,

and miR-195 with 13.2.

Normalization and Analysis
We used the affy package in Bioconductor [35] to read in and

normalize the microarray measurements for each RNA type. We

used the robust multi-array average (RMA) normalization method

[36], which consists of three steps: background correction, quantile

normalization (each performed at the individual probe level), and

robust linear model fit using log-transformed intensities (at the

probeset level). We statistically evaluated changes in RNA

prevalence by the empirical Bayes (eBayes) method [19] from

the limma Bioconductor package. In a survey of methods that

estimate differential expression, Smyth [37] showed that empirical

Bayes improves specificity while having very little effect on

sensitivity.

miRNA Target Prediction
We predicted targets of both miRBase and miRNAMap

miRNAs using the Probability of Interaction by Target Accessi-

bility (PITA) method [38] developed by the Eran Segal lab. We

used a ddG cutoff of {15 for most of the presented work, but also

verified our results using a wider range of cutoffs ({5 to {15). If

there were multiple sites in a mRNA UTR, we selected only the

one with the lowest free energy change. Following the original

publication, we used a 3 nucleotide upstream flank and a 15

nucleotide downstream flank.

Repeating our study with predictions by TargetScan (context

scorev{0:3), PicTar (scorew100) or Miranda (scorew60) did

not affect the general results of this paper, with the exception of

the shift to an overall negative average correlation for high-

prevalence mRNAs.

MicroRNA Target Permutation Analysis
Our strategy for permutation first discretized the miRNA-

mRNA target relationships by applying a ddG cutoff to the PITA

predictions. In most presented analyses the cutoff was {15 kcal/

mol, but we showed that our results hold for a range of thresholds

(see Figure S2). We converted miRNA-RefSeq pairs (as returned

by PITA) to miRNA-probeset_id by using the HGU133 Plus 2.0

NA-27 table provided by Affymetrix.

The data can then be considered a bipartite graph, with nodes

representing miRNAs on one side and probesets on the other, and

edges representing PITA target prediction relationships. Nodes

have associated expression measurements. We then computed

statistics both globally (the mean correlation over all edges) and for

specific subsets of nodes (for example, the mean correlation over

all edges incident on one miRNA, or all edges incident on any

probe set annotated with a particular GO function). Finally, we

permuted the network by shuffling the edges, maintaining source

and target node degrees, but without disallowing double edges,

and recomputed statistics after shuffling. From these we can obtain

an empirical p-value and a ‘‘weighted correlation shift’’, W , which

we define as the difference between the true value and the mean

permuted value, divided by the standard deviation of the

permuted values:

W~
r{r0

s0

The weighted shift is identical to a Z-score, but using permuted

rather than known/parametric mean and standard deviation.

MicroRNA-mRNA Mutual Concordance Score and
Differential Mutual Concordance Score

To focus on the most specific regulatory changes in AD, we

searched for miRNA-target mRNA pairs exhibiting a high scoring

correlation shift by combining the weighted correlation shifts (W )

of miRNAs with those of their targets. We define the mutual

concordance score of a miRNA-mRNA pair as the sum of their

weighted correlation shifts, divided by
ffiffiffi

2
p

. (This is the expected

standard deviation of the sum of two independent Gaussian

random variables.) We then identified miRNA-target mRNA pairs

showing the highest difference in mutual concordance score

between AD and control (which, again normalized by
ffiffiffi

2
p

, we

called differential mutual concordance score). To maximize

specificity, we only reported pairs with high differential mutual

concordance scores that met two additional conditions. First, the

miRNA and mRNA should both individually have high W -scores

in either AD or control samples, to prevent a single RNA with an

exceptionally high W from appearing concordant with any target/

regulator. And second, the correlation between an miRNA and

target mRNA should be in the top 30% of correlations involving

each of the RNAs, since, in an uncorrelated miRNA-target mRNA

pair, the miRNA could be correlated with other targets, and the

mRNA could be correlated with other regulating miRNAs,

resulting in a high mutual concordance score when in fact the

pair is discordant.

Note that this approach is more robust than merely calculating

the correlations between miRNAs and their targets, because those

are sensitive to biases in the samples, especially when the number

of samples is limited. In contrast, our W -score is calibrated by

permutation, eliminating many potential sources of bias in the

expression data. Our mutual concordance score is also more

powerful, since it pools information from many miRNA-target

pairs to find highly correlated individual pairs. To illustrate this, a

previous study of correlations in the NCI-60 dataset was unable to
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find any correlations reaching significance [17], while our

permutation method did (see ‘‘Analysis of a cancer cell line

dataset’’, in Results).

The differential concordance network (Figure S5) was visualized

using Cytoscape [39].

Data Availability
The expression data generated by this study are available in the

NCBI Gene Expression Omnibus (GEO) as accession GSE16759.

Supporting Information

Figure S1 Histograms of log (base 2) expression values for

mRNA and miRNA microarray data.

Found at: doi:10.1371/journal.pone.0008898.s001 (0.42 MB EPS)

Figure S2 Significance of the correlation shift (sign(W)?(1-p)) as a

function of the ddG cutoff and the mean mRNA expression cutoff

(log-base-2 scale).

Found at: doi:10.1371/journal.pone.0008898.s002 (0.52 MB EPS)

Figure S3 Histograms of miRNA- and mRNA-level p-values

using TargetScan as the miRNA target prediction method. mRNA

(RefSeq) (A) and miRNA (B) p-value histograms using mRNA log-

expression cutoff of 4. The p-values are from 1,000 permutations.

Here, r is the observed mean correlation for that RNA, and r_0 is

the corresponding permuted correlation.

Found at: doi:10.1371/journal.pone.0008898.s003 (0.46 MB EPS)

Figure S4 Histograms of log (base 2) expression values for

mRNA and miRNA microarray data in the NCI-60 dataset.

Found at: doi:10.1371/journal.pone.0008898.s004 (0.44 MB EPS)

Figure S5 MicroRNA-mRNA regulatory changes changed be-

tween normal and AD brain. The edge color represents the normalized

difference between the mutual concordance scores in control and AD

samples. Red means the concordance was more positive in AD than

control, and green indicates it was more negative in AD. The edge

shape is determined by the state in AD: an arrowhead indicates a

positively correlated concordant pair in AD, a dashed line indicates a

non-concordant (uncorrelated) pair in AD, and a flat arrowhead

indicates a negatively correlated concordant pair in AD.

Found at: doi:10.1371/journal.pone.0008898.s005 (0.55 MB EPS)

Table S1 MicroRNAs differentially expressed at the 0.05 FDR

level.

Found at: doi:10.1371/journal.pone.0008898.s006 (0.00 MB

TXT)

Table S2 Messenger RNAs differentially expressed at the 0.05

FDR threshold. (Tab-delimited table.)

Found at: doi:10.1371/journal.pone.0008898.s007 (0.00 MB

TXT)

Table S3 Predicted miRNA GO Biological Processes. (Tab-

delimited table. Col1: miRNA, Col2: GO Term ID, Col3: GO

Term name. The ddG cutoff for PITA miRNA target prediction

was 215kcal/mol, and the p-value cutoff for functional enrich-

ment with the hypergeometric test was 0.01.)

Found at: doi:10.1371/journal.pone.0008898.s008 (0.03 MB

TXT)

Table S4 Predicted miRNA GO Molecular Functions. (Tab-

delimited table. Col1: miRNA, Col2: GO Term ID, Col3: GO

Term name. The ddG cutoff for PITA miRNA target prediction

was 215kcal/mol, and the p-value cutoff for functional enrich-

ment with the hypergeometric test was 0.01.)

Found at: doi:10.1371/journal.pone.0008898.s009 (0.13 MB

TXT)

Table S5 Predicted miRNA GO Cellular Components. (Tab-

delimited table. Col1: miRNA, Col2: GO Term ID, Col3: GO

Term name. The ddG cutoff for PITA miRNA target prediction

was 215kcal/mol, and the p-value cutoff for functional enrich-

ment with the hypergeometric test was 0.01.)

Found at: doi:10.1371/journal.pone.0008898.s010 (0.08 MB

TXT)

Table S6 RefSeq-level permutation results. (Tab-delimited

table. Permutation used only mRNAs with mean log-expression

greater than 4.)

Found at: doi:10.1371/journal.pone.0008898.s011 (1.51 MB

TXT)

Table S7 MicroRNA-level premutation results. (Tab-delimited

table. Permutation used only mRNAs with mean log-expression

greater than 4.)

Found at: doi:10.1371/journal.pone.0008898.s012 (0.07 MB

TXT)

Table S8 MicroRNA-mRNA highly concordant pairs.

Found at: doi:10.1371/journal.pone.0008898.s013 (7.10 MB

TXT)

Table S9 Permutation results for Gene Ontology biological

processes. (Tab-delimited table. Permutation used only mRNAs

with mean log-expression greater than 4.)

Found at: doi:10.1371/journal.pone.0008898.s014 (0.61 MB

TXT)

Table S10 Permutation results for Gene Ontology biological

processes in the NCI-60 dataset. (Tab-delimited table. Permuta-

tion used only mRNAs with mean log-expression greater than 0.)

Found at: doi:10.1371/journal.pone.0008898.s015 (0.90 MB

TXT)

Table S11 Differential concordance analysis table, including

edge ID and differential concordance scores. (Tab-delimited

table.)

Found at: doi:10.1371/journal.pone.0008898.s016 (5.49 MB

TXT)

Table S12 Information about the biological samples used in the

study.

Found at: doi:10.1371/journal.pone.0008898.s017 (0.00 MB

TXT)
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10. Hébert SS, Horré K, Nicolaı̈ L, Papadopoulou AS, Mandemakers W, et al.
(2008) Loss of microRNA cluster mir-29a/b-1 in sporadic Alzheimer’s disease

correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci

USA 105: 6415–20.
11. Lukiw WJ (2007) Micro-RNA speciation in fetal, adult and Alzheimer’s disease

hippocampus. Neuroreport 18: 297–300.
12. Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, et al. (2008) The

expression of microRNA miR-107 decreases early in Alzheimer’s disease and
may accelerate disease progression through regulation of beta-site amyloid

precursor protein-cleaving enzyme 1. J Neurosci 28: 1213–23.

13. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, et al. (2008) The impact of
microRNAs on protein output. Nature 455: 64–71.

14. Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, et al. (2005) Regulation by let-
7 and lin-4 miRNAs results in target mRNA degradation. Cell 122: 553–63.

15. Cheng C, Li LM (2008) Inferring microRNA activities by combining gene

expression with microRNA target prediction. PLoS ONE 3: e1989.
16. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, et al. (2005)

Microarray analysis shows that some microRNAs downregulate large numbers
of target mRNAs. Nature 433: 769–73.

17. Blower PE, Verducci JS, Lin S, Zhou J, Chung JH, et al. (2007) MicroRNA
expression profiles for the NCI-60 cancer cell panel. Mol Cancer Ther 6:

1483–91.

18. Blenkiron C, Goldstein L, Thorne N, Spiteri I, Chin S, et al. (2007) MicroRNA
expression profiling of human breast cancer identifies new markers of tumour

subtype. Genome Biol 8: R214.
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