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Abstract. We present a probabilistic generative model of entity re-
lationships and textual attributes; the model simultaneously discovers
groups among the entities and topics among the corresponding text.
Block models of relationship data have been studied in social network
analysis for some time, however here we cluster in multiple modalities
at once. Significantly, joint inference allows the discovery of groups to
be guided by the emerging topics, and vice-versa. We present experi-
mental results on two large data sets: sixteen years of bills put before
the U.S. Senate, comprising their corresponding text and voting records,
and 43 years of similar data from the United Nations. We show that in
comparison with traditional, separate latent-variable models for words or
block structures for votes, our Group-Topic model’s joint inference im-
proves both the groups and topics discovered. Additionally, we present
a non-Markov continouous-time group model to capture shifting group
structure over time.

1 Introduction

Research in the field of social network analysis (SNA) has led to the development
of mathematical models that discover patterns in interaction between entities
[1, 2, 3]. One of the objectives of SNA is to detect salient groups of entities. Group
discovery has many applications, such as understanding the social structure of
organizations [4] or native tribes [5], uncovering criminal organizations [6], and
modeling large-scale social networks in Internet services such as Friendster.com
or LinkedIn.com.

Social scientists have conducted extensive research on group detection, es-
pecially in fields such as anthropology [5] and political science [7, 8]. Recently,
statisticians and computer scientists have begun to develop models that specifi-
cally discover group memberships [9, 10, 11, 12]. One such model is the stochas-
tic block structures model [11], which discovers the latent structure, groups or
classes based on pair-wise relation data. A particular relation holds between a
pair of entities (people, countries, organizations, etc.) with some probability that
depends only on the class (group) assignments of the entities. The relations be-
tween all the entities can be represented with a directed or undirected graph.
The class assignments can be inferred from a graph of observed relations or link
data using Gibbs sampling [11]. This model is extended in [12] to automatically



select an arbitrary number of groups by using a Chinese Restaurant Process
prior.

The aforementioned models discover latent groups only by examining whether
one or more relations exist between a pair of entities. The Group-Topic (GT)
model presented in this paper, on the other hand, considers not only the rela-
tions between objects but also the attributes of the relations (for example, the
text associated with the relations) when assigning group membership.

The GT model can be viewed as an extension of the stochastic block struc-
tures model [11, 12] with the key addition that group membership is conditioned
on a latent variable associated with the attributes of the relation. In our exper-
iments, the attributes of relations are words, and the latent variable represents
the topic responsible for generating those words. Unlike previous methods, our
model captures the (language) attributes associated with interactions between
entities, and uses distinctions based on these attributes to better assign group
memberships.

Consider a legislative body and imagine its members forging alliances (form-
ing groups), and voting accordingly. However, different alliances arise depending
on the topic of the resolution up for a vote. For example, one grouping of the
legislators may arise on the issue of taxation, while a quite different grouping
may occur for votes on foreign trade. Similar patterns of topic-based affiliations
would arise in other types of entities as well, e.g., research paper co-authorship
relations between people and citation relations between papers, with words as
attributes on these relations.

In the GT model, the discovery of groups is guided by the emerging topics,
and the discovery of topics is guided by emerging groups. Both modalities are
driven by the common goal of increasing data likelihood. Consider the voting
example again; resolutions that would have been assigned the same topic in
a model using words alone may be assigned to different topics if they exhibit
distinct voting patterns. Distinct word-based topics may be merged if the entities
vote very similarly on them. Likewise, multiple different divisions of entities into
groups are made possible by conditioning them on the topics.

The importance of modeling the language associated with interactions be-
tween people has recently been demonstrated in the Author-Recipient-Topic
(ART) model [13]. In ART the words in a message between people in a network
are generated conditioned on the author, recipients and a set of topics that de-
scribes the message. The model thus captures both the network structure within
which the people interact as well as the language associated with the interac-
tions. In experiments with Enron and academic email, the ART model is able to
discover role similarity of people better than SNA models that consider network
connectivity alone. However, the ART model does not explicitly capture groups
formed by entities in the network.

The GT model simultaneously clusters entities to groups and clusters words
into topics, unlike models that generate topics solely based on word distributions
such as Latent Dirichlet Allocation [14]. In this way the GT model discovers



SYMBOL DESCRIPTION

git entity i’s group assignment in topic t

tb topic of an event b

w
(b)
k the kth token in the event b

V
(b)

ij entity i and j’s groups behaved same (1)

or differently (2) on the event b

S number of entities
T number of topics
G number of groups
B number of events
V number of unique words
Nb number of word tokens in the event b

Sb number of entities who participated in the event b

Table 1. Notation used in this paper

salient topics relevant to relationships between entities in the social network—
topics which the models that only examine words are unable to detect.

We demonstrate the capabilities of the GT model by applying it to two large
sets of voting data: one from US Senate and the other from the General Assembly
of the UN. The model clusters voting entities into coalitions and simultaneously
discovers topics for word attributes describing the relations (bills or resolutions)
between entities. We find that the groups obtained from the GT model are
significantly more cohesive (p-value < .01) than those obtained from the block
structures model. The GT model also discovers new and more salient topics in
both the Senate and UN datasets—in comparison with topics discovered by only
examining the words of the resolutions, the GT topics are either split or joined
together as influenced by the voters’ patterns of behavior.

2 Group-Topic Model

The Group-Topic Model is a directed graphical model that clusters entities with
relations between them, as well as attributes of those relations. The relations may
be either directed or undirected and have multiple attributes. In this paper, we
focus on undirected relations and have words as the attributes on relations.

In the generative process for each event (an interaction between entities),
the model first picks the topic t of the event and then generates all the words
describing the event where each word is generated independently according to
a multinomial (discrete) distribution φt, specific to the topic t. To generate the
relational structure of the network, first the group assignment, gst for each entity
s is chosen conditionally from a particular multinomial (discrete) distribution θt

over groups for each topic t. Given the group assignments on an event b, the

matrix V (b) is generated where each cell V
(b)
ij represents if the groups of two

entities (i and j) behaved the same or not during the event b, (e.g., voted the
same or not on a bill). Each element of V is sampled from a binomial (Bernoulli)
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Fig. 1. The Group-Topic model

distribution γ
(b)
gigj . Our notation is summarized in Table 1, and the graphical

model representation of the model is shown in Figure 1.
Without considering the topic of an event, or by treating all events in a corpus

as reflecting a single topic, the simplified model (only the right part of Figure 1)
becomes equivalent to the stochastic block structures model [11]. To match the
block structures model, each event defines a relationship, e.g., whether in the
event two entities’ groups behave the same or not. On the other hand, in our
model a relation may have multiple attributes (which in our experiments are
the words describing the event, generated by a per-topic multinomial (discrete)
distribution).

When we consider the complete model, the dataset is dynamically divided
into T sub-blocks each of which corresponds to a topic. The complete GT model
is as follows,

tb ∼ Uniform(
1

T
)

wit|φt ∼ Multinomial(φt)

φt|η ∼ Dirichlet(η)

git|θt ∼ Multinomial(θt)

θt|α ∼ Dirichlet(α)

V
(b)
ij |γ(b)

gigj
∼ Binomial(γ(b)

gigj
)

γ
(b)
gh |β ∼ Beta(β).

We want to perform joint inference on (text) attributes and relations to ob-
tain topic-wise group memberships. Since inference can not be done exactly on
such complicated probabilistic graphical models, we employ Gibbs sampling to
conduct inference. Note that we adopt conjugate priors in our setting, and thus
we can easily integrate out θ, φ and γ to decrease the uncertainty associated
with them. This simplifies the sampling since we do not need to sample θ, φ



and γ at all, unlike in [11]. In our case we need to compute the conditional dis-
tribution P (gst|w,V,g−st, t, α, β, η) and P (tb|w,V,g, t−b, α, β, η), where g−st

denotes the group assignments for all entities except entity s in topic t, and t−b

represents the topic assignments for all events except event b. Beginning with
the joint probability of a dataset, and using the chain rule, we can obtain the
conditional probabilities conveniently. In our setting, the relationship we are in-
vestigating is always symmetric, so we do not distinguish Rij and Rji in our
derivations (only Rij(i ≤ j) remain). Thus

P (gst|V,g−st,w, t, α, β, η)

∝
αgst

+ntgst
−1

∑

G

g=1
(αg+ntg)−1

∏B

b=1

(

I(tb = t)
∏G

h=1

∏2

k=1

∏d
(b)

gsthk

x=1

(

βk+m
(b)

gsthk
−x
)

∏

∑2

k=1
d
(b)

gsthk

x=1

(

(
∑2

k=1
(βk+m

(b)

gsthk
)−x
)

)

,

where ntg represents how many entities are assigned into group g in topic t,

ctv represents how many tokens of word v are assigned to topic t, m
(b)
ghk represents

how many times group g and h vote same (k = 1) and differently (k = 2) on event

b, I(tb = t) is an indicator function, and d
(b)
gsthk is the increase in m

(b)
gsthk if entity

s were assigned to group gst than without considering s at all (if I(tb = t) = 0,
we ignore the increase in event b). Furthermore,

P (tb|V,g,w, t−b, α, β, η)

∝
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∏

g=1

G
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∏2
k=1 Γ (βk +m

(b)
ghk)

Γ (
∑2

k=1(βk +m
(b)
ghk))

,

where e
(b)
v is the number of tokens of word v in event b. Note that m

(b)
ghk is not

a constant and changes with the assignment of tb since it influences the group
assignments of all entities that vote on event b. We use a weighting parameter λ
to rescale the likelihoods from different modalities, as is also common in speech
recognition when the acoustic and language models are combined. The GT model
uses information from two different modalities. In general, the likelihood of the
two modalities is not directly comparable, since the number of occurrences of
each type may vary greatly (e.g., there may be far more pairs of voting entities
than word occurrences).

3 Related Work

There has been a surge of interest in models that describe relational data, or
relations between entities viewed as links in a network, including recent work
in group discovery. One such algorithm, presented by Bhattacharya and Getoor
[10], is a bottom-up agglomerative clustering algorithm that partitions links in
a network into clusters by considering the change in likelihood that would occur
if two clusters were merged. Once the links have been grouped, the entities
connected by the links are assigned to groups.



Another model due to Kubica et al. [9] considers both link evidence and
attributes on entities to discover groups. The Group Detection Algorithm (GDA)
uses a Bayesian network to group entities from two datasets, demographic data
describing the entities and link data. Unlike our model, neither of these models
[10, 9] consider attributes associated with the links between the entities. The
model presented in [9] considers attributes of an entity rather than attributes of
relations between entities.

The central theme of GT is that it simultaneously clusters entities and at-
tributes on relations (words). There has been prior work in clustering differ-
ent entities simultaneously, such as information theoretic co-clustering [15], and
multi-way distributional clustering using pair-wise interactions [16]. However,
these models do not also cluster attributes based on interactions between enti-
ties in a network.

In our model, group membership defines pair-wise relations between nodes.
The GT model is an enhancement of the stochastic block structures model [11]
and the extended model of Kemp et al. [12] as it takes advantage of information
from different modalities by conditioning group membership on topics. In this
sense, the GT model draws inspiration from the Role-Author-Recipient-Topic
(RART) model [13]. As an extension of ART model, RART clusters together
entities with similar roles. In contrast, the GT model presented here clusters
entities into groups based on their relations to other entities.

Exploring the notion that the behavior of an entity can be explained by its
(hidden) group membership, Jakulin and Buntine [17] develop a discrete PCA
model for discovering groups. In the model each entity can belong to each of
the k groups with a certain probability, and each group has its own specific
pattern of behaviors. Therefore, an entity’s behavior depends on the probability
of belonging to a group and the probability that the group has that behavior.
They apply this model to voting data in the 108th US Senate where the behavior
of an entity is its vote on a resolution. A similar model is developed in [18] that
examines group cohesion and voting similarity in the Finnish Parliament. We
apply our GT model also to voting data. However, unlike [17, 18], since our goal
is to cluster entities based on the similarity of their voting patterns, we are only
interested in whether a pair of entities voted the same or differently, not their
actual yes/no votes. Two resolutions on the same topic may differ only in their
goal (e.g., increasing vs. decreasing budget), thus the actual votes on one could
be the converse of votes on the other. However, pairs of entities who vote the
same on one resolution would tend to vote same on the other resolution. To
capture this, we model relations as agreement between entities, not the yes/no
vote itself. This kind of ”content-ignorant” feature is similarly found in some
work on web log clustering [19].

There has been a considerable amount of previous work in understanding
voting patterns [20, 7, 8], including research on voting cohesion of countries in the
EU parliament [7] and partisanship in roll call voting [8]. In these models roll call
data are used to estimate ideal points of a legislator (which refers to a legislator’s
preferred policy in the Euclidean space of possible policies). The models assume



Datasets Avg. AI for GT Avg. AI for Baseline p-value Block Structures

Senate 0.8294 0.8198 < .01 0.7850

UN 0.8664 0.8548 < .01 0.7934

Table 2. Average AI for different models for both Senate and UN datasets. The group
cohesion in (joint) GT is significantly better than in (serial) baseline, as well as the
block structures model that does not use text at all.

that each vote in the roll call data is independent of the remaining votes, i.e.,
each individual is not connected to anyone else who is voting. However, in reality,
legislation is shaped by the coalitions formed by like-minded legislators. The GT
model attempts to capture this interaction.

4 Experimental Results

We present experiments applying the GT model to the voting records of members
of two legislative bodies: the US Senate and the UN General Assembly. We set
α = 1, β = 5, and η = 1 in all experiments. To make sure of convergence, we run
the Markov chains for 10,000 iterations, (which by inspection are stable after
a few hundred iterations), and use the topic and group assignments in the last
Gibbs sample.

For comparison, we present the results of a baseline method that first uses a
mixture of unigrams to discover topics and associate a topic with each resolution,
and then runs the block structures model [11] separately on the resolutions
assigned to each topic. This baseline approach is similar to the GT model in
that it discovers both groups and topics, and has different group assignments
on different topics. However, whereas the GT model performs joint inference
simultaneously, the baseline performs inference serially. Note that our baseline
is still more powerful than the block structures models, since it models the
topic associated with each event, and allows the creation of distinct groupings
dependent on different topics.

In this paper, we are interested in the quality of both the groups and the
topics. In the political science literature, group cohesion is quantified by the
Agreement Index (AI) [17, 18], which measures the similarity of votes cast by
members of a group during a particular roll call. The AI for a particular group
on a given roll call i is based on the number of group members that vote Yes(yi),
No(ni) or Abstain(ai) in the roll call i. Higher AI index means better cohesion.

AIi =
max{yi, ni, ai} −

yi+ni+ai−max{yi,ni,ai}
2

yi + ni + ai

The block structures model assumes that members of a legislative body have
the same group affiliations irrespective of the topic of the resolution on vote.
However, it is likely that members form their groups based on the topic of the
resolution being voted on. We quantify the extent to which a member s switches



Economic Education Military Energy

Misc.

federal education government energy
labor school military power

insurance aid foreign water
aid children tax nuclear
tax drug congress gas

business students aid petrol
employee elementary law research

care prevention policy pollution

Table 3. Top words for topics generated with the mixture of unigrams model on the
Senate dataset. The headers are our own summary of the topics.

Economic Education Foreign Social Security

+ Domestic + Medicare

labor education foreign social
insurance school trade security

tax federal chemicals insurance
congress aid tariff medical
income government congress care

minimum tax drugs medicare
wage energy communicable disability

business research diseases assistance

Table 4. Top words for topics generated with the GT model on the Senate dataset.
The topics are influenced by both the words and votes on the bills.

groups with a Group Switch Index (GSI).

GSIs =
T
∑

i,j

abs(si − sj)

|G(s, i)| − 1 + |G(s, j)| − 1

where si and sj are bit vectors of the length of the size of the legislative body.
The kth bit of si is set if k is in the same group as s on topic i and similarly
sj corresponds to topic j. G(s, i) is the group of s on topic i which has a size
of |G(s, i)| and G(s, j) is the group of s on topic j. We present entities that
frequently change their group alliance according to the topics of resolutions.

Group cohesion from the GT model is found to be significantly greater than
the baseline group cohesion under a pairwise t-test, as shown in Table 2, which
indicates that the GT’s joint inference is better able to discover cohesive groups.
We find that nearly every document has a higher Agreement Index across groups
using the GT model as compared to the baseline. As expected, stochastic block
structures without text [11] is even worse than our baseline.

4.1 The US Senate Dataset

Our Senate dataset consists of the voting records of Senators in the 101st-
109th US Senate (1989-2005) obtained from the Library of Congress THOMAS



Group 1 Group 3 Group 4

73 Republicans Cohen(R-ME) Armstrong(R-CO)
Krueger(D-TX) Danforth(R-MO) Garn(R-UT)

Group 2 Durenberger(R-MN) Humphrey(R-NH)
90 Democrats Hatfield(R-OR) McCain(R-AZ)
Chafee(R-RI) Heinz(R-PA) McClure(R-ID)
Jeffords(I-VT) Kassebaum(R-KS) Roth(R-DE)

Packwood(R-OR) Symms(R-ID)
Specter(R-PA) Wallop(R-WY)
Snowe(R-ME) Brown(R-CO)
Collins(R-ME) DeWine(R-OH)

Thompson(R-TN)
Fitzgerald(R-IL)
Voinovich(R-OH)

Miller(D-GA)
Coleman(R-MN)

Table 5. Senators in the four groups corresponding to Topic Education + Domestic in
Table 4.

Senator Group Switch Index

Shelby(D-AL) 0.6182
Heflin(D-AL) 0.6049

Voinovich(R-OH) 0.6012
Johnston(D-LA) 0.5878

Armstrong(R-CO) 0.5747

Table 6. Senators that switch groups the most across topics for the 101st-109th Senates

database. During a roll call for a particular bill, a Senator may respond Yea or
Nay to the question that has been put to vote, else the vote will be recorded as
Not Voting. We do not consider Not Voting as a unique vote since most of the
time it is a result of a Senator being absent from the session of the US Senate.
The text associated with each resolution is composed of its index terms provided
in the database. There are 3423 resolutions in our experiments (we excluded roll
calls that were not associated with resolutions). Each bill may come up for vote
many times in the U.S. Senate, each time with an attached amendment, and
thus many relations may have the same attributes (index terms). Since there
are far fewer words than pairs of votes, we adjust the text likelihood to the 5th
power (weighting factor 5) in the experiments with this dataset so as to balance
its influence during inference.

We cluster the data into 4 topics and 4 groups (cluster sizes are suggested by
a political science professor) and compare the results of GT with the baseline.
The most likely words for each topic from the traditional mixture of unigrams
model is shown in Table 3, whereas the topics obtained using GT are shown
in Table 4. The GT model collapses the topics Education and Energy together
into Education and Domestic, since the voting patterns on those topics are quite
similar. The new topic Social Security + Medicare did not have strong enough
word coherence to appear in the baseline model, but it has a very distinct voting



Everything Nuclear Human Rights Security

in Middle East

nuclear rights occupied
weapons human israel

use palestine syria
implementation situation security

countries israel calls

Table 7. Top words for topics generated from mixture of unigrams model with the UN
dataset (1990-2003). Only text information is utilized to form the topics, as opposed
to Table 8 where our GT model takes advantage of both text and voting information.

G Nuclear Arsenal Human Rights Nuclear Arms Race

R nuclear rights nuclear
O states human arms
U united palestine prevention
P weapons occupied race
↓ nations israel space

Brazil Brazil UK
Columbia Mexico France

1 Chile Columbia Spain
Peru Chile Monaco

Venezuela Peru East-Timor

USA Nicaragua India
Japan Papua Russia

2 Germany Rwanda Micronesia
UK... Swaziland
Russia Fiji

China USA Japan
India Japan Germany

3 Mexico Germany Italy...
Iran UK... Poland

Pakistan Russia Hungary

Kazakhstan China China
Belarus India Brazil

4 Yugoslavia Indonesia Mexico
Azerbaijan Thailand Indonesia

Cyprus Philippines Iran

Thailand Belarus USA
Philippines Turkmenistan Israel

5 Malaysia Azerbaijan Palau
Nigeria Uruguay
Tunisia Kyrgyzstan

Table 8. Top words for topics generated from the GT model with the UN dataset
(1990-2003) as well as the corresponding groups for each topic (column). The countries
listed for each group are ordered by their 2005 GDP (PPP) and only the top 5 countries
are shown in groups that have more than 5 members.



pattern, and thus is clearly found by the GT model. Thus GT discovers topics
that are salient in that they correlate with people’s behavior and relations, not
simply word co-occurrences.

Examining the group distribution across topics in the GT model, we find
that on the topic Economic the Republicans form a single group whereas the
Democrats split into 3 groups indicating that Democrats have been somewhat
divided on this topic. With regard to Education + Domestic and Social Security

+ Medicare, Democrats are more unified whereas the Republicans split into 3
groups. The group membership of Senators on Education + Domestic issues is
shown in Table 5. We see that the first group of Republicans include a Democratic
Senator from Texas, a state that usually votes Republican. Group 2 (majority
Democrats) includes Sen. Chafee who is known to be pro-environment and is
involved in initiatives to improve education, as well as Sen. Jeffords who left the
Republican Party to become an Independent and has championed legislation to
strengthen education and environmental protection.

Nearly all the Senators in Group 4 (in Table 5) are advocates for education
and many of them have been awarded for their efforts (e.g., Sen. Fitzgerald has
been honored by the NACCP for his active role in Early Care and Education,
and Sen. McCain has been added to the ASEE list as a True Hero in Amer-
ican Education). Sen. Armstrong was a member of the Education committee;
Sen. Voinovich and Sen. Symms are strong supporters of early education and
vocational education, respectively; and Sen. Roth has constantly voted for tax
deductions for education. It is also interesting to see that Sen. Miller (D-GA)
appears in a Republican group; although he is in favor of educational reforms, he
is a conservative Democrat and frequently criticizes his own party—even backing
Republican George W. Bush over Democrat John Kerry in the 2004 Presidential
election.

Many of the Senators in Group 3 have also focused on education and other do-
mestic issues such as energy, however, they often have a more liberal stance than
those in Group 4, and come from states that are historically less conservative.
Senators Hatfield, Heinz, Snowe, Collins, Cohen and others have constantly pro-
moted pro-environment energy options with a focus on renewable energy, while
Sen. Danforth has presented bills for a more fair distribution of energy resources.
Sen. Kassebaum is known to be uncomfortable with many Republican views on
domestic issues such as education, and has voted against voluntary prayer in
school. Thus, both Groups 3 and 4 differ from the Republican core (Group 2)
on domestic issues, and also differ from each other.

The Senators that switch groups the most across topics in the GT model
are shown in Table 6 based on their GSIs. Sen. Shelby(D-AL) votes with the
Republicans on Economic, with the Democrats on Education + Domestic and with
a small group of maverick Republicans on Foreign and Social Security + Medicare.
Both Sen. Shelby and Sen. Heflin are Democrats from a fairly conservative state
(Alabama) and are found to side with the Republicans on many issues.



4.2 The United Nations Dataset

The second dataset involves the voting record of the UN General Assembly
[21]. We focus first on the resolutions discussed from 1990-2003, which contain
votes of 192 countries on 931 resolutions. If a country is present during the roll
call, it may choose to vote Yes, No or Abstain. Unlike the Senate dataset, a
country’s vote can have one of three possible values instead of two. Because we
parameterize agreement and not the votes themselves, this 3-value setting does
not require any change to our model. In experiments with this dataset, we use
a weighting factor 500 for text (adjusting the likelihood of text by a power of
500 so as to make it comparable with the likelihood of pairs of votes for each
resolution). We cluster this dataset into 3 topics and 5 groups (again, numbers
are suggested by a political science professor).

The most probable words in each topic from the mixture of unigrams model
is shown in Table 7. For example, Everything Nuclear constitutes all resolutions
that have anything to do with the use of nuclear technology, including nuclear
weapons. Comparing these with topics generated from the GT model shown in
Table 8, we see that the GT model splits the discussion about nuclear technol-
ogy into two separate topics, Nuclear Arsenal which is generally about countries
obtaining nuclear weapons and management of nuclear waste, and Nuclear Arms

Race which focuses on the arms race between Russia and the US and preventing
a nuclear arms race in outer space. These two issues had drastically different
voting patterns in the U.N., as can be seen in the contrasting group structure
for those topics in Table 8. The countries in Table 8 are ranked by their GDP in
2005.1 Thus, again the GT model is able to discover salient topics—topics that
reflect the voting patterns and coalitions, not simply word co-occurrence alone.

As seen in Table 8, groups formed in Nuclear Arms Race are unlike the groups
formed in the remaining topics. These groups map well to the global political
situation of that time when, despite the end of the Cold War, there was mutual
distrust between Russia and the US with regard to the continued manufacture
of nuclear weapons. For missions to outer space and nuclear arms, India was a
staunch ally of Russia, while Israel was an ally of the US.

Overlapping Time Intervals In order to understand changes and trends in
topics and groups over time, we run the GT model on resolutions that were
discussed during overlapping time windows of 15 years, from 1960-2000, each
shifted by a period of 5 years. We consider 3823 unique resolutions in this way.
The topics as well as the group distribution for the most dominant topic during
each time period are shown in Table 9.

Over the years there is a shift in the topics discussed in the UN, which corre-
sponds well to the events and issues in history. During 1960-1975 the resolutions
focused on countries having the right to self-determination, especially countries

1 http://en.wikipedia.org/wiki/List of countries by GDP %28PPP%29. In Table 8,
we omit some countries (represented by ...) in order to incorporate other interesting
but relatively low ranked countries (for example, Russia) in the GDP list.



Time Group distributions for Topic 3
Period Topic 1 Topic 2 Topic 3 Group 1 Group2 Group3 Group4 Group5

Nuclear Procedure Africa Indep. India USA Argentina USSR Turkey
operative committee calling Indonesia Japan Colombia Poland

60-75 general amendment right Iran UK Chile Hungary
nuclear assembly africa Thailand France Venezuela Bulgaria
power deciding self Philippines Italy Dominican Belarus

Independence Finance Weapons Cuba India Algeria USSR USA
territories budget nuclear Albania Indonesia Iraq Poland Japan

65-80 independence appropriation UN Pakistan Syria Hungary UK
self contribution international Saudi Libya Bulgaria France

colonial income weapons Egypt Afghanistan Belarus Italy

N. Weapons Israel Rights Mexico China USA Brazil India
nuclear israel africa Indonesia Japan Turkey USSR

70-85 international measures territories Iran UK Argentina Poland
UN hebron south Thailand France Colombia Vietnam

human expelling right Philippines Italy Chile Hungary

Rights Israel/Pal. Disarmament Mexico USA Algeria China India
south israel UN Indonesia Japan Vietnam Brazil

75-90 africa arab international Iran UK Iraq Argentina
israel occupied nuclear Thailand France Syria Colombia
rights palestine disarmament Philippines USSR Libya Chile

Disarmament Conflict Pal. Rights USA China Japan Guatemala Malawi
nuclear need rights Israel India UK St Vincent

80-95 US israel palestine Russia France Dominican
disarmament palestine israel Spain Italy
international secretary occupied Hungary Canada

Weapons Rights Israel/Pal. Poland China USA Russia Cameroon
nuclear rights israeli Czech R. India Japan Argentina Congo

85-00 weapons human palestine Hungary Brazil UK Ukraine Ivory C.
use fundamental occupied Bulgaria Mexico France Belarus Liberia

international freedoms disarmament Albania Indonesia Italy Malta

Table 9. Results for 15-year-span slices of the UN dataset (1960-2000). The top proba-
ble words are listed for all topics, but only the groups corresponding the most dominant
topic are shown (Topic 3). We list the countries for each group ordered by their 2005
GDP (PPP)and only show the top 5 countries in groups that have more than 5 mem-
bers. We do not repeat the results in Table 8 for the most recent window (1990-2003).

in Africa which started to gain their freedom during this time. Although this
topic continued to be discussed in the subsequent time period, the focus of the
resolutions shifted to the role of the UN in controlling nuclear weapons as the
Cold War conflict gained momentum in the late 70s. While there were few resolu-
tions condemning the racist regime in South Africa between 1965-1980, this was
the topic of many resolutions during 1970-1985—culminating in the UN censure
of South Africa for its discriminatory practices.

Other topics discussed during the 70s and early 80s were Israel’s occupa-
tion of neighboring countries and nuclear issues. The reduction of arms was
primarily discussed during 1975-1990, the time period during which the US and
Soviet Union had talks about disarmament. During 1980-1995 the central topic
of discussion was the Israeli-Palestinian conflict; this time period includes the
beginning of the Intifada revolt in Palestine and the Gulf War. This topic con-
tinued to be important in the next time period (1985-2000), but in the most
recent slice (1990-2003, Table 8) it has become a part of a broader topic on
human rights by combining other human rights related resolutions that appear
as a separate topic during 1985-2000. The human rights issue continues to be
the primary topic of discussion during 1990-2003.

Throughout the history of the UN, the US is usually in the same group as
Europe and Japan. However, as we can see in Table 9 during 1985-2000, when the
Israeli-Palestinian conflict was the most dominant topic, US and Israel form a
group of their own separating themselves from Europe. In other topics discussed



during 1985-2000, US and Israel are found to be in the same group as Europe
and Japan.

Another interesting result of considering the groups formed over the years is
that, except for the last time period (1990-2003), countries in eastern Europe
such as Poland, Hungary, Bulgaria, etc., form a group along with USSR (Russia).
However, in the last time window on most topics they become a part of the group
that consists of the western Europe, Japan and the US. This shift corresponds to
the end of the communist regimes in these countries that were supported by the
Soviet Union. It is also worth mentioning that before 1990, our model assigned
East Germany to the same group as other eastern European countries and USSR
(Russia), while it assigned West Germany to the same group as western European
countries.2

5 Groups over Time

In Table 9 in the previous section, we show that group formation changes over
time by simply pre-dividing the dataset into disjoint subsets based on times-
tamps. In this section, by contrast, we investigate the dynamic changes of groups
using a model that explicitly incorporates time—jointly discovering groups and
their continuous time profiles.

Traditional transition-based Markov models have played a major role in mod-
eling various dynamic systems including social networks. For example, recent
work by Sarkar and Moore [22] proposes a latent space model that accounts for
friendships drifting over time. Blei and Lafferty propose dynamic topic models
(DTMs) in which the alignment among topics across time steps is captured by
a Kalman filter [23].

Instead we propose here a new model that does not make the Markov as-
sumption, rather, we treat timestamps as observed random variables, as in [24].
In comparison to more complex alternatives, the relative simplicity of our model
is a great advantage—not only for the relative ease of understanding and im-
plementing it, but also because this approach can in the future be naturally
applied into other more richly structured models. In our model, which we call
Groups over Time (GOT), group discovery is influenced not only by relational
co-occurrences, but also by temporal information. Rather than modeling a se-
quence of state changes with a Markov assumption on the dynamics, GOT mod-
els (normalized) absolute timestamp values. This allows GOT to see long-range
dependencies in time, and to predict group distributions given a timestamp. It
also helps avoid a Markov model’s risk of inappropriately dividing a group in
two when there is a brief gap in its appearance.

The graphical model representation of our model is shown in Figure 2.
For comparison, the stochastic block structures model is shown in Figure 2(a).
Groups over Time is a generative model of timestamps and the relational struc-
tures of a social network. There are two ways of describing its generative process.

2 This is not shown in Table 9 because they are missing from the 2005 GDP data.
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Fig. 2. Three group models: stochastic block structures and two perspectives on GOT

The first, which corresponds to the process used in Gibbs sampling for parameter
estimation (Figure 2(c)), is as follows:

1. Draw G2 binomials φgh from a Dirichlet prior β, one for each group pair
(g, h);

2. For each relation r in total R relations, draw a multinomial θr from a Dirich-
let prior α;
(a) For each entity eri of Er entities in relation r, draw a group gri from

multinomial θr and draw a timestamp tri from Beta ψgri
. ;

(b) For each entity pair (i, j), draw their agreement vij from binomial φgigj
;

Although, in the above generative process, a timestamp is generated for each
entity, all the timestamps of the entities in a relation are observed as the same,
because there is typically only one timestamp associated with a relation. When
fitting our model from typical data, each training relation’s timestamp is copied
to all the entities appearing in the relation. However, after fitting, if actually run
as a generative model, this process would generate different time stamps for the
entities appearing in the same relation. An alternative generative process de-
scription of GOT, (better suited to generate an unseen relation), is one in which
a single timestamp is associated with each relation, generated by rejection or
importance sampling, from a mixture of per-group Beta distributions over time
with mixtures weight as the per-relation θr over groups. As before, this distribu-
tion over time would be parameterized by the set of timestamp-generating Beta
distributions, one per group. The graphical model for this alternative generative
process is shown in Figure 2(b).

5.1 Dynamic Group Discovery in UN

We apply the Group over Time (GOT) model to the UN data set described in
Section 4.2, and compare it with the stochastic block structures model. Because
of space limitation, we do not show example group distributions from the two



models. However, when we calculate the Agreement Index (AI, defined in Section
4) of the groups discovered by the two models on the UN data set; we find
that the average AI for the stochastic block structures model is 0.7934, and
0.8169 for GOT. We conclude that the groups obtained from the GOT model
are significantly more cohesive (p-value < .01) than those obtained from the
block structures model. Note that the average AI from GOT (0.8169) is also
lower than the one from GT (0.8664) due to the lack of textual attributes.

6 Conclusions

We present the Group-Topic model that jointly discovers latent groups in a
network as well as clusters of attributes (or topics) of events that influence the
interaction between entities in the network. The model extends prior work on
latent group discovery by capturing not only pair-wise relations between entities
but also multiple attributes of the relations (in particular, the model considers
words describing the relations). In this way the GT model obtains more cohesive
groups as well as fresh topics that influence the interaction between groups. The
model could be applied to variables of other data types in addition to voting
data. We are now using the model to analyze the citations in academic papers
to capture the topics of research papers and discover research groups. It would
also apply to a much larger network of entities (people, organizations, etc.) that
frequently appear in newswire articles.

The model can be altered suitably to consider other attributes characterizing
relations between entities in a network. In ongoing work we are extending the
Group-Topic model to capture a richer notion of topic, where the attributes
describing the relations between entities are represented by a mixture of topics.

The Group over Time model provides a simple and novel way to take ad-
vantage of the temporal information as continuous observations, in contrast to
the traditional transition-based Markov models. We believe that the simplicity
of this approach is an advantage in certain applications.
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