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Abstract
Visual sentiment analysis is attracting more and
more attention with the increasing tendency to
express emotions through visual contents. Re-
cent algorithms in Convolutional Neural Networks
(CNNs) considerably advance the emotion clas-
sification, which aims to distinguish differences
among emotional categories and assigns a single
dominant label to each image. However, the task
is inherently ambiguous since an image usually
evokes multiple emotions and its annotation varies
from person to person. In this work, we address the
problem via label distribution learning and develop
a multi-task deep framework by jointly optimizing
classification and distribution prediction. While the
proposed method prefers to the distribution datasets
with annotations of different voters, the majority
voting scheme is widely adopted as the ground
truth in this area, and few dataset has provided
multiple affective labels. Hence, we further exploit
two weak forms of prior knowledge, which are ex-
pressed as similarity information between labels, to
generate emotional distribution for each category.
The experiments conducted on both distribution
datasets, i.e. Emotion6, Flickr LDL, Twitter LDL,
and the largest single label dataset, i.e. Flickr and
Instagram, demonstrate the proposed method out-
performs the state-of-the-art approaches.

1 Introduction
Understanding the sentiment implied in images has attracted
many interests due to its various applications [Jia et al., 2012;
Borth et al., 2013]. Inspired by the psychology and prin-
ciples of art, a lot of work investigate the different groups
of manually crafted features [Machajdik and Hanbury, 2010;
Zhao et al., 2014], with the goal of automatically assigning a
single emotion to each image. In the last few years, with the
rapid popularity of CNNs, the researchers [You et al., 2016;
Sun et al., 2016] also apply CNNs to recognize image senti-
ment and illustrate the superior performance of the deep fea-
tures against the hand-tuned features [Rao et al., 2016].

However, compared to traditional vision tasks, analyzing
images at affective level is inherently challenging. The affec-

 Amuse
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Figure 1: Images from the Flickr LDL dataset are annotated
by 11 users on 8 emotions. The pie chart on the right of each
image demonstrates the label ambiguity. The dominant senti-
ment of each image is also shown.

tive image rarely expresses pure emotion, but often a mix-
ture of different emotions [Plutchik, 1980; Zhao et al., 2014].
In addition, people with diverse social and culture back-
ground may have different emotional reactions to the same
image. Figure 1 shows three samples from the newly pub-
lished Flickr LDL dataset [Yang et al., 2017], and the an-
notators do not reach an agreement on any image. As can
be seen, there exists label ambiguity among the emotions,
which refers to the uncertainty of the “ground-truth label”.
While most work assign the dominant votes as the ground-
truth [Machajdik and Hanbury, 2010; You et al., 2016], such
ambiguity characteristic is ignored, making it difficult to learn
robust emotional representations for predicting the image la-
bels.

We develop a deep multi-task framework to address the
problem, in which the softmax is employed as the classifica-
tion constraints, and the Kullback-Leibler (KL) loss is added
for distribution learning. For the distribution datasets which
have the detailed annotations from different users, we ex-
plicitly use the votes as the ground truth label distributions
in the training phase. During the joint optimization process,
the tasks of emotion classification and distribution predic-
tion boost each other with the help of the rich sentiment
relations. On the other hand, the majority voting scheme is
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widely adopted in this area, and most current datasets are
single label datasets. We exploit two weak prior knowledge
to generate the distributions on these datasets for training.
Inspired by [Zhao et al., 2016], pairwise emotion distance
can be defined according to Mikels’ wheel [Mikels et al.,
2005] (see Figure 2), and it is obvious that there exists hier-
archical structure among the sentiment labels. For example,
Amusement, Contentment, Awe, Excitement are positive emo-
tions, and Sadness, Anger, Fear, Disgust are negative ones.
In this work, based on the similarity of the pairwise senti-
ment, we generate the distributions with the Gaussian func-
tion following [Geng et al., 2013]. Different from the previ-
ous work which take the label ambiguity into account and
aim to predict the probability distribution of the categori-
cal image emotions [Zhao et al., 2015; Peng et al., 2015;
Yang et al., 2017], our proposed multi-task framework si-
multaneously optimizes the classification and the label dis-
tribution prediction, performing better on both distribution
datasets (Emotion6, Flickr LDL, Twitter LDL), and single
label dataset (Flickr and Instagram).

Our contributions are summarized as follows. First, we ad-
dress the challenges of visual sentiment analysis by a multi-
task deep learning framework, which can learn the sentiment
representations among ambiguous emotional categories in an
end-to-end manner. Second, we also extend our method to
single label datasets using two strategies to transform the
dominant sentiment label into distribution and incorporate la-
bel ambiguity into the learning process, with which the clas-
sification performance is boosted. We will release the code,
models and results for accessible reproducible research.

2 Related Work
The general literature on visual sentiment analysis ranges
from still images [Machajdik and Hanbury, 2010] to videos
[Pang and Ngo, 2015]. In this section, we focus on review-
ing the related work on affective image prediction, especially
deep learning based methods, and label distribution learning
algorithms.

2.1 Image Emotion Classification
Previous work of image emotion classification can be roughly
divided into dimensional approaches [Nicolaou et al., 2011;
Lu et al., 2012] and categorical approaches [Machajdik and
Hanbury, 2010; Zhao et al., 2014]. The dimensional ap-
proaches represent sentiment in a two- or three-dimensional
space, and the categorical approaches map sentiment into one
of the representative categories, which is straightforward for
people to understand and thus have been widely applied in re-
cent studies. Most previous work on image emotion analysis
use the elements-of-the-art based low-level features. [Macha-
jdik and Hanbury, 2010] defines a combination of rich hand-
crafted features based on art and psychology theory, includ-
ing composition, color variance and image semantics. [Zhao
et al., 2014] introduces more robust and invariant visual fea-
tures designed according to art principles. These hand-crafted
visual features are proven to be effective on several small
datasets, whose images are selected from a few specific do-
mains, e.g. abstract paintings and art photos [Machajdik and
Hanbury, 2010].

More recently, considering the success of CNN-based ap-
proaches in many computer vision tasks, CNN has also been
employed for sentiment representation and achieves signifi-
cant advance. [Chen et al., 2014] constructs DeepSentiBank
as a visual sentiment concept (adjective-noun pairs, ANP)
classification model, which are useful as effective statis-
tical cues for detecting emotions depicted in the images.
Several work incorporate the model weights learned from
a large-scale general dataset [Deng et al., 2009] and fine-
tune the state-of-the-art CNNs for the task of visual emo-
tion prediction [Campos et al., 2015]. [You et al., 2015;
2016] propose a novel progressive CNN architecture, namely
PCNN, to make use of large noisy web data, and further
perform benchmarking analysis on the Flickr and Instagram
(FI) dataset, which is currently the largest single label dataset
containing 23,308 affective images. In [Rao et al., 2016], a
multi-level deep network (MldeNet) is proposed to unify both
low-level and high-level information of images. The existing
CNN frameworks on visual sentiment analysis can be viewed
as classification [You et al., 2016] and regression [Peng et
al., 2015] models, which employ the softmax loss to maxi-
mize the probability of the correct class or Euclidean loss to
minimize the squares difference between the prediction and
the ground truth. However, both of the optimization objective
functions fail to utilize sentiment ambiguity and similarity in-
formation among image categories.

2.2 Label Distribution Learning
[Geng, 2016] proposes a novel machine learning paradigm
for describing the exact role of each label, which contains
three strategies for the algorithms, i.e. problem transfer (PT),
algorithm adaption (AA), and specialized algorithms (SA).
To the best of our knowledge, few work has paid attention
to such detailed ambiguity information for visual sentiment
analysis. [Zhao et al., 2015] proposes to predict the probabil-
ity distribution with shared sparse learning model using low-
level features. [Peng et al., 2015] trains regressions utilizing
the deep CNN with the Euclidean loss for each emotion cate-
gory, whose outputs are then normalized to be the probabili-
ties of each class. Based on a state-of-the-art condition prob-
ability neural network (CPNN) [Geng et al., 2013], BCPNN
and ACPNN [Yang et al., 2017] are developed for predicting
sentiment distribution. However, CPNN-based methods are
only designed as a three layer neural network classifier, tak-
ing the off-the-shelf features as input. Such methods are sub-
optimal since the extracted features do not consider the corre-
lation between labels during leaning. More recently, DLDL is
proposed to learn the label distribution using the deep neural
network for tasks with continuous labels, e.g. age estimation
and head pose estimation [Gao et al., 2017]. Since DLDL
minimizes a Kullback-Leibler divergence between the pre-
dicted and the ground-truth distributions, the dominant label
may be confused in predicting.

3 Methodology
For an affective image x, the description degree l = {li}Ci=1
is assigned to each emotion label of C classes representing
the degree to which the emotion describes the image, where
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Figure 2: The illustration of our method. Given the affective images with distribution, our framework simultaneously optimize
the classification loss and distribution loss. In details, the softmax loss is employed as the classification constraints, while the
KL loss is added for distribution learning. For the single emotion dataset, we also propose to transform single label into label
distribution according to two weak prior knowledge.

∑C
i=1 li = 1 and li ∈ [0, 1]. For the distribution datasets,

we explicitly use the votes as the ground truth label distribu-
tion. As illustrated in Figure 2, we employ the proposed deep
multi-task framework to simultaneously optimize classifica-
tion and distribution prediction according to the label distri-
bution l ∈ RC . In addition, we also propose two strategies to
convert the single emotion to the distribution for training on
the single label datasets.

3.1 Converting Single Emotion Problem

The majority voting scheme is widely adopted to obtain the
single emotion ground truth in most datasets [Machajdik and
Hanbury, 2010; You et al., 2016]. Since few dataset provides
the manually annotated sentiment distribution, we propose
to generate l from the single label. Inspired by that there
are different similarities between the pairwise emotion cat-
egories [Plutchik, 2001], we fix the order of sentiment labels
according to Mikels’ wheel [Zhao et al., 2016] and thus the
distance can be defined by counting the number of steps from
one emotion to another. We let li > lj if the distance between
the i-th emotion and the ground-truth is smaller than the one
between the j-th emotion and the ground-truth.

In terms of logical relationships between labels, there are
two common forms in multi-label classification, i.e. implica-
tion and exclusion [Mirzazadeh et al., 2015]. For implication,
it would like to enforce relationships of the form Yi ⇒ Yj ,
which means that whenever the label Yi is set to 1 then the
label Yj must also be set to 1. For exclusion, it would like to
enforce relationships of the form ¬Yi ∨¬Yj , meaning that at
least one of the labels Yi and Yj must be set to 0. However,
these relationships can not be directly applied to the distribu-
tion problem. Thus, we propose two individual strategies to
generate the distribution from the single emotion dataset as
follows.

Constraint 1: Implication
For the single label dataset, we define the dominant label of
each image as its original label y. Considering the property of
implication, we assign the probability of all other sentiments
based on the distance to the dominant label, which indicates
that images may evoke kinds of emotional reactions for dif-
ferent people. We generate the distribution l with a univariate
Gaussian function, which is widely used in multiple applica-
tions [Geng et al., 2013; Geng, 2016]. Hence, the probability
density function can be written as follows:

f(x, µ, σconf) =
1√

2πσconf
exp

(
−|i− µ|

2

2σ2
conf

)
+
ε

C
, (1)

where µ represents the dominant sentiment and the σconf de-
notes the level of influence of each sentiment determined by
the confidence in the label annotations. And the fixed param-
eter ε ensures to take the overall sentiment into consideration
with probabilities, which is fixed to 0.1 in our work. There-
fore, the distribution can be denoted by { f(i,µ,σconf)∑

k f(k,µ,σconf)
}Ci=1 ,

the sum of which is normalization to 1.

Constraint 2: Exclusion
Considering the property of exclusion, we can also assume
that each affective image only evokes sentiment with the same
valence in the label distribution, either positive or negative.
So the possibility pi is changed to:

f(x, µ, σconf) =

{
1√

2πσconf
exp

(
− |i−µ|

2

2σ2
conf

)
, i ∈ Yµ

0, i /∈ Yµ
(2)

where Yµ denotes all the sentiment of the same valence with
the dominant label µ.

With these two weak forms of prior knowledge, we gener-
ate sentiment distribution for the single emotion dataset and
employ the multi-task framework for emotion classification.
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Here, “weak” means that such a-priori information can be ob-
tained from auxiliary sources, e.g. psychological research or
statistical result. For the predicted distributions of test images,
we choose the label with maximum probability as the single
emotion for classification.

3.2 Visual Sentiment Multi-task Learning
Given the ground truth distributions (or generated from the
single emotional label), we explicitly train the deep model
in CNN to minimize the distance between the predicted and
prefered distributions. Our loss function is integrated with
two types of losses through a weighted combination:

L = (1− λ)Lcls(x, y) + λLsdl(x, l), (3)

where Lcls and Lsdl denote the classification loss and sen-
timent distribution loss, respectively. The λ is the weight to
control the trade-off between two types of losses.

In the standard training process, softmax loss is optimized
to maximize the probability of the correct class [Krizhevsky
et al., 2012]. Given a training set {(x(i), y(i))}Ni=1, where x(i)

is the i-th affective image and y(i) ∈ {1, 2...C} is the single
class label. Let {a(i)j |j = 1, 2...C} be the activation values of
unit j in the last fully connected layer for x(i), then the fine-
tuning of the last layer is done by minimizing the softmax
loss function:

Lcls(x, y) = −
1

N

 N∑
i=1

C∑
j=1

1(y(i) = j) ln p
(i)
j

 , (4)

where the indicator function 1(δ) = 1 if δ is true, otherwise 0.
p
(i)
j indicates the probability that the label of x(i) is j, which

is given by

p
(i)
j =

exp(a
(i)
j )∑C

k=1 exp(a
(i)
k )

(5)

The loss of softmax can be seen as the sum of the negative
log-likehood over all training images {xi}Ni=1, which penal-
izes the classification error for each class equally. Therefore,
the intra-class variance is not preserved, while such variance
is essential to discover visual sentiment similar instances.

For the distribution learning, we employ the KL loss fol-
lowing [Gao et al., 2017], which is one of the measurement
of the similarity between the ground-truth and the predicted
label distribution. The sentiment distribution learning loss is
defined as following:

Lsdl(x, l) = −
1

N

N∑
i=1

C∑
j=1

l
(i)
j ln p

(i)
j , (6)

where the optimization of Lsdl(x, l) can group the training
images considering the similarity with different emotion dis-
tribution.

For our loss function, we apply the stochastic gradient de-
scent (SGD) to optimize (3). According to the chain rule, the

gradient of can be computed by

∂L

∂a
(i)
j

= (1− λ)
∑
k

∂Lcls

∂p
(i)
k

∂p
(i)
k

∂a
(i)
j

+ λ
∑
k

∂Lsdl

∂p
(i)
k

∂p
(i)
k

∂a
(i)
j

= (1− λ)

[
p
(i)
j

∑
k

y
(i)
k − y

(i)
j

]
+ λ

[
p
(i)
j

∑
k

l
(i)
k − l

(i)
j

]
= p

(i)
j − (1− λ)y

(i)
j − λl

(i)
j

(7)

In the forward propagation stage, the sentiment distribution
of the given images can be predicted, where the label with the
highest probability is considered as the dominate sentiment.

4 Experiment
To evaluate the effectiveness of the proposed method for vi-
sual sentiment analysis, we carry out experiments for both
emotion classification and distribution prediction tasks.

4.1 Datasets
We execute our experiments on three distribution datasets
which have multiple annotations, including Emotion6 [Peng
et al., 2015], Flickr LDL and Twitter LDL [Yang et al.,
2017]. Emotion6 is assembled from Flickr for a sentiment
prediction benchmark, which is annotated with the votes
for seven emotional categories (i.e. anger, disgust, joy, fear,
sadness, surprise and neutral), containing a total of 1,980
images. Flickr LDL and Twitter LDL contain 11,150 and
10,045 images respectively, whose labels fall in the typical
eight-emotional space (i.e. anger, amusement, awe, content-
ment, disgust, excitement, fear and sadness). In the above
datasets, the detailed votes from all the workers are available
and used as the ground truth label distributions. In addition,
the largest single label dataset FI [You et al., 2016] is also
employed in our experiment, which is collected from social
websites by querying with the eight emotion categories as
keywords. Then 225 Amazon Mechanical Turk workers are
hired to label the images and end up with 23,308 images re-
ceiving at least three agrees1. Note for each image in FI, only
the dominant emotion label is available for training and test-
ing.

4.2 Implementation Details
We build our framework based on the popular deep model
VGGNet [Simonyan and Zisserman, 2014] containing 16 lay-
ers. First, the network is initialized with the weights trained
for the image classification task [Krizhevsky et al., 2012].
Since the class number of affective datasets is not equal to
that of ImageNet, the fc8 layer is changed to the category
number required by our datasets, which can produce a proba-
bility distribution over the emotional labels. We also replace
the original loss layer with the multi-task loss developed in
Section 3. For the single label dataset FI, we generate the
sentiment distributions from the dominant labels for training.
Then the datasets are split randomly into 80% training, 5%
validation and 15% testing sets except those with specified

1We have 22,713 manually labeled images as some images no
longer exist in the Internet.
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Table 1: Experimental Results on three distribution datasets, i.e. Emotion6 (E), Flickr LDL (F), and Twitter LDL (T), are
shown as mean(rank). Since each measure reflects a certain aspect of an algorithm, “Avg Rank” is used to indicate the overall
performance of distribution prediction. “Acc” indicates the classification result of the single dominant emotional category.

Criterion PT-Bayes PT-SVM AA-kNN AA-BP SA-IIS SA-BFGS SA-CPNN BCPNN ACPNN CNNR DLDL Ours

E

Cheb ↓ 0.35(10) 0.39(12) 0.29(6) 0.30(7) 0.32(9) 0.38(11) 0.30(7) 0.28(5) 0.27(4) 0.26(3) 0.25(2) 0.24(1)
Clark ↓ 1.94(11) 1.82(10) 1.63(3) 1.69(9) 1.67(7) 1.96(12) 1.68(8) 1.66(6) 1.66(5) 1.61(1) 1.64(4) 1.62(2)
Canber ↓ 4.59(11) 4.31(10) 3.60(3) 3.79(8) 3.83(9) 4.68(12) 3.78(7) 3.73(6) 3.68(5) 3.46(1) 3.63(4) 3.58(2)
KLdiv ↓ 2.32(12) 1.07(10) 0.85(9) 0.63(7) 0.61(6) 1.16(11) 0.56(5) 0.52(4) 0.50(3) 0.67(8) 0.43(2) 0.42(1)
Cosine↑ 0.69(8) 0.48(12) 0.75(4) 0.68(9) 0.69(7) 0.63(11) 0.66(10) 0.75(5) 0.76(3) 0.74(6) 0.79(2) 0.80(1)
Intersec ↑ 0.56(10) 0.42(12) 0.62(4) 0.59(9) 0.61(6) 0.52(11) 0.60(8) 0.62(5) 0.63(3) 0.60(7) 0.65(2) 0.65(1)
Avg Rank 10.3(10) 11.0(11) 4.83(5) 8.17(9) 7.33(7) 11.3(12) 7.50(8) 5.17(6) 3.83(3) 4.33(4) 2.67(2) 1.33(1)
Acc.(%) 39.2(10) 36.7(11) 44.1(6) 39.5(9) 41.1(8) 34.6(12) 42.2(7) 45.4(4) 46.9(2) 45.2(4) 46.1(3) 52.4(1)

F

Cheb ↓ 0.44(11) 0.55(12) 0.28(6) 0.36(9) 0.31(8) 0.37(10) 0.30(7) 0.28(5) 0.25(4) 0.25(3) 0.25(2) 0.24(1)
Clark ↓ 2.51(12) 2.45(11) 1.62(1) 2.33(8) 2.33(9) 2.44(10) 2.31(7) 2.21(4) 2.19(3) 2.29(6) 2.22(5) 2.19(2)
Canber ↓ 6.76(12) 6.61(11) 3.30(1) 5.98(8) 6.00(9) 6.44(10) 5.91(7) 5.63(5) 5.57(3) 5.82(6) 5.59(4) 5.55(2)
KLdiv ↓ 1.88(11) 1.69(10) 3.28(12) 0.82(8) 0.66(5) 1.06(9) 0.71(7) 0.62(4) 0.61(3) 0.70(6) 0.54(2) 0.53(1)
Cosine↑ 0.63(11) 0.32(12) 0.79(5) 0.72(8) 0.78(6) 0.70(10) 0.70(9) 0.80(4) 0.81(3) 0.72(7) 0.81(2) 0.82(1)
Intersec ↑ 0.49(11) 0.29(12) 0.64(3) 0.53(9) 0.60(7) 0.56(8) 0.60(6) 0.62(5) 0.63(4) 0.62(10) 0.64(2) 0.65(1)
Avg Rank 11.3(11) 11.3(11) 4.67(5) 8.33(9) 7.33(8) 9.50(10) 7.17(7) 4.50(4) 3.33(3) 6.33(6) 2.83(2) 1.33(1)
Acc.(%) 46.9(11) 37.3(12) 61.4(2) 52.0(9) 57.9(7) 50.1(10) 57.7(8) 59.7(6) 60.0(5) 60.7(4) 60.9(3) 64.2(1)

T

Cheb ↓ 0.53(11) 0.63(12) 0.28(5) 0.31(8) 0.28(6) 0.37(10) 0.36(9) 0.31(7) 0.27(3) 0.28(4) 0.26(2) 0.25(1)
Clark ↓ 2.39(6) 2.56(12) 1.65(1) 2.40(8) 2.42(10) 2.51(11) 2.41(9) 2.38(4) 2.40(7) 2.37(3) 2.38(5) 2.36(2)
Canber ↓ 6.17(6) 7.05(12) 3.30(1) 6.26(9) 6.32(10) 6.70(11) 6.22(8) 6.15(4) 6.22(7) 6.11(3) 6.17(5) 6.05(2)
KLdiv ↓ 1.31(10) 1.65(11) 3.89(12) 0.68(7) 0.64(5) 1.19(9) 0.85(8) 0.61(4) 0.58(3) 0.67(6) 0.54(2) 0.53(1)
Cosine↑ 0.53(11) 0.25(12) 0.82(5) 0.81(8) 0.82(6) 0.71(10) 0.75(9) 0.83(4) 0.84(2) 0.82(7) 0.83(3) 0.85(1)
Intersec ↑ 0.40(11) 0.21(12) 0.66(2) 0.59(7) 0.63(5) 0.57(9) 0.56(10) 0.60(6) 0.64(4) 0.58(8) 0.65(3) 0.68(1)
Avg Rank 9.17(10) 11.8(12) 4.33(3) 7.83(8) 7.00(7) 10.0(11) 8.83(9) 4.83(5) 4.33(3) 5.17(6) 3.33(2) 1.33(1)
Acc.(%) 45.1(11) 40.4(12) 72.6(5) 72.4(7) 70.3(8) 57.0(10) 70.0(9) 73.0(4) 74.2(2) 73.6(3) 72.6(5) 76.3(1)

training/testing split [Peng et al., 2015]. The learning rates
of the convolutional layers and the last fully-connected layer
are initialized as 0.001 and 0.01, respectively. We fine-tune
all layers by stochastic gradient descent through the whole
net using batches of 32. A total of 100,000 iterations is run
to update the parameters to extract more precise emotion-
related information. All our experiments are carried out on
four NVIDIA GTX TITAN X GPUs with 32 GB CPU mem-
ory.

4.3 Baseline
For the distribution datasets, we compare the proposed
method against the state-of-the-art LDL approaches, includ-
ing PT-Bayes, PT-SVM, AA-kNN, AA-BP, SA-IIS, SA-
BFGA, SA-CPNN [Geng et al., 2013]. Following [Yang et
al., 2017], we use the penultimate fully connected layer out-
put from VGGNet as the sentiment representation for these
classifiers, which is also reduced to 280 dimensions em-
ploying principle component analysis (PCA). There are also
three methods proposed for visual sentiment analysis includ-
ing BCPNN, ACPNN [Yang et al., 2017], CNNR [Peng et
al., 2015]. BCPNN encodes image label into a binary repre-
sentation to replace the signless integers used in CPNN, and
ACPNN further augments sentient labels by adding noises to
the ground truth. CNNR trains CNN regression for each emo-
tion category, which changes the last fully connected layer to
1 and employs Euclidean loss. In the predicting phase, the
probabilities of all emotion categories are normalized to sum
to 1. Moreover, the recent CNN-based algorithm DLDL [Gao
et al., 2017] is also performed in our experiments.

We evaluate the performance of distribution prediction
with six commonly used measurements (i.e. Chebyshev dis-
tance, Clark distance, Canberra metric, Kullback-Leibler
divergence, cosine coefficient, and intersection similarity),

Figure 3: Effect of λ on the Emotion6 dataset, which indicates
the weight of the distribution term in the optimization objec-
tive function. Note that λ = 0 represents that only softmax
loss for classification is employed.

which compute the similarity or distance between the pre-
dicted label distribution and the ground truth. Since Kullback-
Leibler divergence is not well defined when a value is 0, we
use a small value ε = 10−10 to approximate the values. The
first four measurements are the distance measurements and
lower is better (↓). For the last two similarity measurements,
higher is better (↑). We also evaluate the performance of emo-
tion classification with the accuracy of the most possible emo-
tion in the images.

For the single label dataset, only the accuracy is exam-
ined as no ground truth distribution is available for testing.
Zhao’s [Zhao et al., 2014] propose the principle of art fea-
tures (PAEF) for sentiment analysis. We use a simplified ver-
sion provided by the author to extract 27 dimension features.
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Table 2: Classification performance on the FI dataset.

Methods Accuracy

Baseline
Zhao’s 46.13%
DeepSentiBank 51.54%
PCNN (VGGNet) 55.24%

CNNs

AlexNet 41.28%
VGGNet 46.22%
ResNet 49.76%
Fine-tuned AlexNet 58.13%
Fine-tuned VGGNet 63.75%
Fine-tuned ResNet 64.67%

Ours

ours (AlexNet) 60.63%
ours (VGGNet) 66.21%
ours (ResNet) 66.79%
ours (Ensemble) 67.48%

Table 3: Comparison of different methods for emotion classi-
fication on the FI dataset.

Methods Accuracy
VGG (softmax, λ = 0) 63.75%
VGG + Constraint1 (λ = 0.6) 66.00%
VGG + Constraint2 (λ = 0.6) 65.18%
VGG + Constraint1 (λ = 0.8) 66.21%
VGG + Constraint2 (λ = 0.8) 65.27%
VGG + Constraint1 (KL-div, λ = 1) 64.95%
VGG + Constraint2 (KL-div, λ = 1) 64.28%
VGG + LS (λ = 0.8) 64.15%

We use the DeepSentiBank [Chen et al., 2014] to extract the
2,089-dimension features from the last fc as a mid-level rep-
resentation and employ LIBSVM for classification. We em-
ploy the same training strategy in [You et al., 2015] for train-
ing a PCNN model on the large Flickr dataset [Borth et al.,
2013], which is weakly-labeled with two categories. We also
show the performance of deep visual features of CNNs-based
models pre-trained on the ImageNet and fine-tuned on the af-
fective datasets. Various architectures, i.e. AlexNet, VGGNet
and ResNet are evaluated in our experiments. We show the re-
sults of using LIBSVM [Chang and Lin, 2011] trained on fea-
tures extracted from the second to the last layer of the model
and reduce the dimension employing PCA. In practice, we
find that different cost values (parameterC in LIBSVM) pro-
duce similar accuracies, so we just use the default value and
employ the one v.s. all strategy following the same routine in
the previous work [Machajdik and Hanbury, 2010].

4.4 Results on Distribution Datasets
Distribution prediction. Table 1 shows the distribution per-
formance of our method and eleven contrastive methods. The
ranks are given in the parentheses right after the measure val-
ues. Since six measurements are utilized in the experiments,
the penultimate row of each subtable shows the average ranks.
Classification. We also show the accuracies of all the meth-
ods in the last row of Table 1. For testing, the label with the

maximum probability in the distribution is selected as the sin-
gle emotion. As can been seen, our proposed method shows
superiority in accuracy on all three datasets.
Parameter λ. The effect of parameter λ in (3) is shown in
Figure 3. We use Kullbacj-Leibler divergence and cosine co-
efficient to demonstrate how λ influences distribution predic-
tion. As can be seen, with the increases of λ, our multi-task
framework (λ = 0.8) improves the accuracy compared with
the fine-tuned VGGNet (λ = 0), which achieve 4% improve-
ment on Emotion6. When increases from 0 to 0.6, the per-
formance of the classification and distribution is boosted dra-
matically. Experiment shows the performance is stable when
increases from 0.6 to 0.8, and our framework can reach a bal-
ance between the classification loss and the distribution loss
in this range. Moreover, further increasing the leads to the
decreasing of the accuracy since that the overusingLsdl intro-
duces too much ambiguity. Therefore, we set the λ = 0.8 in
all our experiments for a trade-off considering, which shows
that label ambiguity plays an important role in sentiment fea-
ture learning and performs well on both tasks.

4.5 Results on Single Label Dataset
Classification. We compare the proposed method with the
state-of-the-art work on FI, which is the largest single la-
bel dataset in the area. The contrastive approaches include
hand-crafted features based (Zhao’s) and deep features based
methods. Some observations can be drawn from Table 2. As
expected, deep models perform better against the method
employing hand-tuned features. We report the results in
three popular deep architectures, i.e. AlexNet, VGGNet, and
ResNet. It is consistent that when fine-tuned on the training
set of FI, the performance is improved, and the proposed al-
gorithm outperforms the state-of-the-art work in all frame-
works. Since different deep architectures can capture differ-
ent kinds of interests from affective images, we also ensemble
the results of three models by concatenating the second fully
connected layer outputs and reduce the dimension employing
PCA. The results of using LIBSVM trained on the concate-
nated features reaches 67.48%.
λ and constraints. As summarized in Table 3, compared
with the model using traditional classification loss (63.75%),
our method achieves higher performance with the increasing
of the weight of distribution loss. The combination of both
losses (λ = 0.8, 66.21%) is also better than using distribu-
tion loss only (64.95%). Moreover, Line 4, 5, and 8 show that
when generating distribution from single label, both of the
proposed constraints outperform the LS method [Szegedy et
al., 2016], and Constraint1 is better than the other.

5 Conclusion
In this work, we develop a multi-task deep framework to
leverage the ambiguity and relationship between emotional
categories for visual sentiment prediction. Extensive exper-
iments show that our proposed method performs favorably
against the state-of-the-art approaches on both distribution
datasets and single label dataset.
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