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Abstract

Rapid developments in photon-counting and energy-discriminating detectors 

have the potential to provide an additional spectral dimension to conventional 

x-ray grayscale imaging. Reconstructed spectroscopic tomographic data can 

be used to distinguish individual materials by characteristic absorption peaks. 

The acquired energy-binned data, however, suffer from low signal-to-noise 

ratio, acquisition artifacts, and frequently angular undersampled conditions. 

New regularized iterative reconstruction methods have the potential to produce 

higher quality images and since energy channels are mutually correlated it 

can be advantageous to exploit this additional knowledge. In this paper, we 

propose a novel method which jointly reconstructs all energy channels while 

imposing a strong structural correlation. The core of the proposed algorithm 

is to employ a variational framework of parallel level sets to encourage joint 

smoothing directions. In particular, the method selects reference channels 
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from which to propagate structure in an adaptive and stochastic way while 

preferring channels with a high data signal-to-noise ratio. The method 

is compared with current state-of-the-art multi-channel reconstruction 

techniques including channel-wise total variation and correlative total nuclear 

variation regularization. Realistic simulation experiments demonstrate the 

performance improvements achievable by using correlative regularization 

methods.

Keywords: multi-spectral, image reconstruction, structural regularization, 

inverse problems, total variation, materials science, x-ray imaging

(Some �gures may appear in colour only in the online journal)

1. Introduction

1.1. New energy-discriminating detectors enabling spectral CT

Conventional x-ray imaging entails a polychromatic x-ray source (i.e. a beam having a wide 

spectrum of energies) utilizing detectors that count photons without any energy discrimi-

nation. This increases the intensity and photon count, but results in non-linear attenuation 

leading to ‘beam-hardening’ artifacts [1–5]. During propagation of a poly-energetic beam 

in matter, low-energy photons are absorbed more easily than high-energy photons resulting 

in a shift of the x-ray spectrum toward the higher energies. This affects the assumed linear-

ity of Beer’s law and biases the reconstructions with ‘beam hardening’ artifacts [4]. These 

artifacts can be avoided or reduced using a monochromator, which �lters the beam allowing 

only a very narrow wavelength band. However, it is only practical in synchrotrons due to the 

dramatically higher �ux, whereas current laboratory sources require a full spectrum (white-

beam) to produce suf�cient signal-to-noise ratio (SNR) in an acceptable time. At the image 

processing side one can apply a calibration procedure to raw projection data using polynomial 

�tting towards the approximate linear absorption model (linearization) [1–3]. With a larger 

number of mat erials involved, higher orders polynomials must be estimated leading to an ill-

posed multidimensional optimization problem. With recent developments in energy-discrimi-

nating detectors, one can now turn the presence of the polychromatic beam into an advantage, 

increasing the information that can be obtained by white-beam CT.

Energy-discriminating photon counting detectors (PCDs) [6] can enable 3D chemical 

imaging [7, 8], as x-ray attenuation of each material element depends on the energy, i.e. differ-

ent elements can be clearly distinguished when looking across the full energy spectrum (e.g. 

distinct K-edges [9]). K-edge imaging deals with the localization of a sudden increase in the 

attenuation coef�cient. The characteristic absorption peak is a unique footprint of a material 

and it happens when a photon energy just above the binding energy of the K shell electron of 

the atoms interacting with the photons.

Energy-discriminating detectors allow one to capture information about the chemical com-

position, vastly improving the ability to distinguish different materials within a sample. The 

new generation of spectral detectors (also called called hyper-spectral) can achieve energy 

resolution less than 1 keV resulting in hundreds of energy channels [10]. This is different to 

medical imaging spectral CT where much coarser spectral resolution is available (normally 

dual and up to �ve energy channels [11]). Such �ne spectral resolution is required when the 

K-edges of materials are closely spaced [8]. The signi�cant disadvantage of hyper-spectral 

detectors is that they normally operate at low count rates. To overcome this, longer exposure 
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times can be used, however, is not always possible and can result in underexposed (noisy) and 

angular under-sampled datasets. New effective reconstruction strategies are needed to address 

this challenge and ensure more accurate spatio-spectral K-edge identi�cation. To this end the 

present work proposes a new correlative reconstruction method which addresses the low data 

SNR by encouraging joint structures across the channels.

1.2. Spectral CT reconstruction approaches and the proposed method

Existing reconstruction techniques for spectral tomography can be classi�ed into two catego-

ries: material-decomposed reconstruction methods [12–15] and multi-channel reconstruction 

methods [16–18]. The former approach estimates material-decomposed sinograms or basis-

material maps from raw spectral measurements directly. Some recent material decomposi-

tion techniques seek statistical correlations in the data in order to increase the accuracy of 

the decomposition process [12, 13, 15]. The basis-material sinograms obtained are recon-

structed in order to obtain material-speci�c images. In this paper, we are interested in the latter 

approach, when data are reconstructed directly without any special rearranging steps.

For the case of spectral image reconstruction, we adopt the framework of parallel level sets 

which has been applied previously to vector-valued images [19] and bimodal imaging [20–

23]. In some cases, one modality image (so-called reference) is known and used to regularize 

the reconstruction process of another modality [21, 22]. Alternatively, one can try to solve a 

joint reconstruction problem where both modalities or channels are reconstructed simultane-

ously supporting each other during the process [20, 23–25].

In this paper we adopt the latter approach and generalize it to an arbitrary large number 

of channels. In our case, all channels are reconstructed jointly [23, 24] and the reference 

channel is selected from the previous iteration of the reconstruction algorithm. An additional 

contribution to this generalization is given with a novel probabilistic approach to select a 

suitable reference channel. Priority is given to a random channel with a higher SNR based 

on the geometric mean of the �ux. The reference channel is selected by a random draw from 

the data-speci�c probability mass function. This is motivated by the problem of non-uniform 

distribution of noise variances across the energy domain. The proposed approach is heuristic, 

however, by providing extensive numerical simulations we conclude that the stochastic selec-

tion of the reference channel is crucial to ensure stability of the method.

In order to demonstrate the advantages of the proposed technique we perform realistic 

numerical experiments with a variation of Rigie’s total nuclear variation (TNV) method [18] 

and also compare with the classical channel-wise total variation (TV) regularization. Our 

results show that the proposed method is a competitive correlative technique for multi-channel 

reconstruction.

The paper is organized as follows. In section 2 we discuss the forward reconstruction prob-

lem setting and existing reconstruction methods with correlative multi-channel regularization 

techniques. In section 3 we look into regularization using parallel level sets and propose novel 

methods. In section 4 we discuss the general reconstruction framework; details of veri�cation 

given in appendix. In section 5 we provide details on synthetic data generation process and all 

numerical results are introduced. Discussion and conclusions are given in section 6.

2. Forward problem setting and existing reconstruction methods

2.1. Poly-energetic x-ray CT measurement model

Given a poly-energetic x-ray source, the spectral version of Beer’s law can be expressed as [1, 2]

D Kazantsev et alInverse Problems 34 (2018) 064001
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Λi(E) = σi(E) exp

(

−

∫

Li

µ(r, E) dl

)

, i = 1, . . . , M, (1)

where M is the total number of rays/measurements, E is the energy, r ∈ R
3 de�nes the spatial 

position, µ is the energy-dependent attenuation coef�cient, σi is the energy-dependent inten-

sity �ux of the x-ray source associated with ray i, and Λi(E) is the spectrum of the x-ray beam 

incident on the detector. By introducing a parameterization µ(r, E) =
∑N

j=1
µj(E)χj(r), where 

N  denotes the number of pixels, and de�ning Aij =
∫

Li
χj(r) dl , we arrive at the model

Λi(E) = σi(E) exp





−

N
∑

j=1

Aijµj(E)



 , i = 1, . . . , M.

For basis functions χj(r) we use a pixel basis such that Aij is the length of the intersection of 

the ith ray and the jth pixel.

The measurement model depends on the detector. For hyper-spectral detectors with high 

energy resolution, it is common to consider a simple discretization of the energy into K  sepa-

rate channels [7, 8], corresponding to K  energies E1, . . . , EK, i.e. the x-ray intensity associated 

with the ith ray and the kth channel is given by

Λi(Ek) = σi(Ek) exp





−

N
∑

j=1

Aijµj(Ek)



 , i = 1, . . . , M, k = 1, . . . , K.

 

(2)

The model (2) is an approximation, and it tends to be more accurate with �ner spectral 

discretization.

For photon counting detectors, it is common to assume that the measurements are Poisson 

distributed with a parameter Λ(E). This assumption leads to the measurement model

Yik ∼ Poiss{Λi(Ek)}, i = 1, . . . , M, k = 1, . . . , K. (3)

If we de�ne Xjk = µj(Ek) and Sik = σi(Ek), we arrive at the discrete linear model

Bik = − ln

(

Yik

Sik

)

≈

N
∑

j=1

AijXjk. (4)

To simplify notation, we now de�ne a matrix X ∈ R
N×K with elements Xjk , and 

x = vec(X) ∈ R
NK denotes the vectorized image (i.e. x is obtained by stacking the columns 

of X). Moreover, Xk  denotes the kth column of X. Similarly, Y ∈ R
M×K  is a matrix with mea-

surements Yik, B ∈ R
M×K  is the matrix with elements Bik , and y = vec(Y) and b = vec(B) 

denote vectorized versions of Y  and B, respectively.

Using this notation, (4) can be expressed as a system of linear equations

b ≈ Āx, (5)

where Ā = IK×K ⊗ A and A ∈ R
M×N  is a sparse projection matrix, ⊗ is the Kronecker prod-

uct, and IK×K  is the identity matrix of order K .

2.2. Objective function in the multi-channel reconstruction

Conventional direct image reconstruction methods are generally not suitable for spec-

tral data recovery as they rely on an oversimpli�ed data model. In contrast, iterative image 
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reconstruction (IIR) methods can be used which able to account for various noise models, 

angular under-sampled conditions, and other data irregularities [26]. Furthermore, the regular-

ity of the solutions sought can be imposed through a penalty or regularization term [27]. The 

regularization can abstractly exploit image sparsity or smoothness, or can be formulated in a 

way that it �ts the expectations directly.

We formulate all IIR methods considered in the present paper in a common framework 

with the generic objective function

x
⋆ = arg min

x

{F(x) + β G(x)} ,
 

(6)

where F : R
NK

→ R+ is the data mis�t term which can be based on the assumptions of the 

acquired data noise characteristics or account for more substantial data inconsistencies [26]. 

The penalty term G : R
NK → R+ de�nes a regularization penalty with β > 0 being the (sca-

lar) regularization parameter balancing the trade-off between the two terms.

We now consider the data mis�t term. From a Bayesian perspective, the function F  should 

be the negative log-likelihood function associated with the measurement model (3) [28–30]. 

Alternatively, by employing a quadratic approximation to the log-likelihood function [31], we 

arrive at the weighted least-squares objective function

F(x) =
1

2
‖b − Āx‖2

W =
1

2
(b − Āx)

⊤
W(b − Āx) (7)

where W = diag(y) is a diagonal matrix with the measurements on its diagonal (3). The data 

term in equation (7) is sometimes called the penalized weighted least squares (PWLS) model 

and is frequently used in image reconstruction applications [13, 17, 18, 32].

2.3. Existing multi-channel regularization methods

The total variation (TV) penalty has been successful as a �rst-choice regularizer due to its 

edge-preserving qualities [33, 34]. In this work we use the discrete (non-smoothed) isotropic 

TV de�ned for a (single-channel) image v ∈ R
N as:

TV(v) =

N∑

j=1

‖Djv‖2, (8)

where Dj  is a 2 × N  matrix such that Djv is a �nite-difference approximation of the gradient 

of v at pixel j. In our implementation we use forward differences with Neumann boundary 

conditions.

In application to the case of spectral CT, we use the channel-wise convex TV penalty 

de�ned as the sum of the TV norm of each channel:

GTV(x) =

K∑

k=1

TV(Xk). (9)

The disadvantage of the channel-wise TV (9) is its inability to employ high SNR channels to 

aid with the recovery of the problematic channels (e.g. high energy channels). Therefore, we 

seek an effective and ef�cient way to correlate channels and consequently provide an addi-

tional support to overcome higher levels of noise and a loss of resolution of the problematic 

channels.

Recently, the TNV penalty which enforces strong correlation between channels has been 

considered by Rigie et al [18]. It consists of using the nuclear norm of the Jacobian matrix 

D Kazantsev et alInverse Problems 34 (2018) 064001
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of a multi-channel image, therefore penalizing the singular values of the Jacobian [35–37]. 

The SVD decomposition of the Jacobian matrix results in eigenvalues and eigenvectors which 

are encouraged to be aligned favoring a low-rank Jacobian. The limiting case of the rank-one 

matrix means that all gradient vectors are linearly dependent and thus aligned in the same ori-

entation. Rigie et al [18] found that TNV performed well in medical spectral CT application 

with �ve energy channels. It is unclear whether the same holds when the number of spectral 

channels is much higher.

The Jacobian matrix is obtained by applying the �nite difference operator at pixel j to all 

channels simultaneously, i.e. DjX for j = 1, . . . , N. The TNV penalty is based on the Schatten 

matrix norm of order p  =  1, which corresponds to the ℓ1 norm of the vector that contains the 

singular values of the matrix [36]. We write the TNV penalty as:

GTNV(x) =
N∑

j=1

‖DjX‖∗, (10)

where ‖ · ‖∗ denotes the nuclear norm, i.e. the sum of the singular values.

There are other correlative methods which also require TNV to be applied. In a prior rank, 

intensity and sparsity model (PRISM) [16], the low-rank matrix (penalized by TNV) corre-

sponds to the stationary background of the spectral dimension and the sparse matrix (penal-

ized by TV or ℓ1 norm) represents dynamic features, e.g. channels closer to the K-edge. The 

PRISM model, although theoretically appealing, involves the singular value decomposition 

(SVD) of a large Casorati matrix, the size of which scales with the number of image pixels/

voxels and spectral channels. A similar method has been proposed to identify a low-rank back-

ground in the unfoldings of the multidimensional tensor [17]. The signi�cant advantage of 

the Rigie’s method [18] over PRISM-like models, is that the Jacobian matrix is substantially 

smaller than the Casorati matrix and the general problem can be decoupled pixelwise (note 

the sum in (10)).

3. Structural multi-channel regularization using parallel level sets

3.1. Directional TV regularization with known reference

Another group of correlative techniques is based on the structure-driven diffuson-based varia-

tional methods [20–22, 29, 30]. Here we introduce a multi-channel generalization of the par-

allel level sets approach [19] which has been successfully applied to bi-modal reconstruction 

[20–22].

One can consider a two-channel case where v is a channel to be regularized and a second 

reference channel z is either known (already estimated and �xed) or unknown (i.e. to be esti-

mated). In an image reconstruction framework, the former approach is usually convex and 

easier to solve [21, 22], while the latter approach can be non-convex [20] and more compli-

cated. Let us consider the case when the reference z is known.

Since the parallel level sets framework focuses on structural information, v and z channels 

may have completely different intensities and contrast. The channels, however, are assumed to 

share the majority of structural information such as edges due to being acquired for the same 

object. The so-called directional TV regularizer (dTV) is introduced as

dTV(v, z) =
N∑

j=1

‖PzDjv‖2, (11)

D Kazantsev et alInverse Problems 34 (2018) 064001
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where

Pz =

{

I2×2 −
Djzz

⊤
Dj

⊤

z⊤Dj
⊤Djz

Djz �= 0

I2×2 Djz = 0.

 (12)

The regularization function (11) is the directional diffusion of the channel v, given a known 

reference z. The measure of a structural similarity of v to z satis�es the following inequality 

[19]:

0 � ‖PzDjv‖
2

2
= ‖Djv‖

2

2
−

(

v
⊤Dj

⊤
Djz

‖Djz‖2

)2

� ‖Djv‖
2

2
. (13)

It follows that ‖PzDjv‖2 = ‖Djv‖2 when v
⊤Dj

⊤
Djz = 0 (i.e. when the gradient vectors 

Djv and Djz are orthogonal) and when either Djv = 0 or Djz = 0. Similarly, we have that 

‖PzDjv‖2 = 0 when Djv and Djz are parallel.

The natural convex extension of dTV to multi-channel case with K channels will be to min-

imize the sum: 
∑

K

k=1
dTV(Xk, Zk), assuming that all references Zk = z1, . . . , zK  are known 

a priori. Being a sum of convex dTV terms, this is still a convex functional and the recon-

struction problem would remain convex. The problem, however, is that the references Zk  are 

unknown.

3.2. Adaptation to multiple channels with unknown reference

Joint reconstruction methods, which update simultaneously two or more channels, can be a 

powerful tool enabling high-quality solutions for all channels. These methods use the unknown 

reference (normally estimated from the previous iteration) while updating the current channel. 

Following the recent research on joint reconstruction techniques [23, 24], we can generalize 

our multi-channel reconstruction problem.

Let us assume that for each channel k we have unknown reference channel z(k), which we 

can estimate during a joint reconstruction process. In this case, one can write the following 

expression for the multi-channel dTV penalty:

GdTV(x) =

K∑

k=1

dTV(Xk, z(k)). (14)

Here we propose an adaptive approach in which the reference channel is selected as a ‘good’ 

reconstructed channel from the previous iteration of the chosen iterative algorithm. Speci�cally, 

when updating the kth channel during iteration s, the reference is selected according to:

z
[s](k) =

1

|R[s](k)|

∑

ℓ∈R[s](k)

X
[s−1]
ℓ

, (15)

where X
[s−1]
ℓ

 is the ℓth channel from the previous iteration and R
[s](k) is a subset of channel 

indices over which to average.

The proposed correlative regularizer is named as dTV-p (where ‘p’ stands for probabilis-

tic). The method takes R[s](k) to be a set containing a single random sample channel drawn 

according to the discrete probability distribution described below. In one s-iteration, recon-

struction of k-channels are likely to choose different references. Also, across iterations, a 

single channel is likely to choose different references. In �gure  1, we graphically explain 

the selection procedure which takes into account energy-variant noise characteristics. The 
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main idea is to update the kth channel by selecting a reference channel based on some global 

measure of goodness. In this paper, we present a measure of goodness which is formulated 

through a probability mass function (PMF). As a heuristic, we propose to de�ne a PMF based 

on the channel-wise geometric mean of the estimated SNR. Speci�cally, it follows from the 

quadratic model (7) that the SNR associated with ray i and channel k is

[AXk]i

Y
−1/2

ik

≈ Bik

√

Yik,

hence the channel-wise geometric mean of the approximate SNR is

ρk =

(

M
∏

i=1

Bik

√

Yik

)1/M

.

Based on this, we de�ne a PMF over the K  channels such that the probability of selecting 

channel k⋆ is given by

ρ̄k⋆ =
ρk⋆

K∑

k=1

ρk

.

 (16)

A channel with a high SNR is more likely to be chosen as a reference than a channel with a 

low SNR.

After the PMF has been obtained for the set of spectral measurements, it remains unchanged 

throughout the algorithm and is used to select reference images for all channels. Speci�cally, 

at s-iteration, new draws of reference channels are initiated from the previous iteration X[s−1]. 

If we denote a reference index by k⋆ it means that k⋆ depends both on the iteration s and a 

channel to be reconstructed k, i.e. k⋆ = k
⋆(s, k).

We write the dTV-p regularizer explicitly as:

GdTV-p(x
[s]) =

K
∑

k=1

dTV
(

X
[s]
k

, X
[s−1]
k⋆(s,k)

)

. (17)

Note that the regularizer has x[s] argument as it is inherently dependent on the previous iterate.

Figure 1. The reference-channel z
[s]
k

= X
[s−1]
k⋆

 is selected by randomly drawing a 

sample (index k⋆ ∈ {1, . . . , K} of a channel) from the given probability mass function 

(PMF). The PMF speci�c to our experiment is depicted in the right �gure.

D Kazantsev et alInverse Problems 34 (2018) 064001
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One can also select a single channel with the highest SNR as a reference for all channels, 

i.e. the 16th channel in our case (see �gure 1 (right)). From our numerical experiments (we 

omit producing them in the paper, see more discussion in section 6), this deterministic selec-

tion does not provide satisfactory results and the reconstruction quality is poor for all channels.

There is a conventional assumption that the adjacent channels may have a similar structure 

[28] and therefore selecting closer references to k might be a better choice rather than sto-

chastic drawing. In order to test this hypothesis we also introduce the deterministic version of 

dTV, dTV-d. It consists in taking a mean of several channels (from the previous iteration) in 

the neighborhood of k:

GdTV-d(x
[s]) =

K
∑

k=1

dTV

(

X
[s]
k

,
1

5

k+2
∑

ℓ=k−2

X
[s−1]
ℓ

)

. (18)

The number of averaged channels, here chosen to 5, could vary, however, we do not focus here 

on establishing the optimal number. In fact, we demonstrate later that the dTV-p can provide 

substantial improvements in terms of reconstruction quality compared to the more obvious 

deterministic choice of a reference channel used in dTV-d.

We emphasize that while the proposed regularizers are motivated from the general optim-

ization problem (6), they no longer �t strictly within this framework. This is due to the choice 

of a reference image from the previous algorithm iteration. One possible convex approach 

which also �ts (6), will be to reconstruct projection data mean over all energies as a �xed 

(known) reference (see more discussion in section 6).

While heuristic in nature, it is a natural and adaptive approach to generalize the dTV 

framework with a known channel (see section 3.1) to the more challenging case of multiple 

unknown channels. Our intention is to demonstrate empirically the reconstruction improve-

ments enabled hereby, while leaving further in-depth analysis for future work.

4. Implementation aspects

4.1. Proximal operators framework and the reconstruction algorithm

In order to ef�ciently solve the general reconstruction problem (6) we will apply the proximal 

operator methodology to decompose our cost function on simpler problems [38, 39]. The 

general form we consider allows us to use the FISTA (fast iterative shrinkage-thresholding 

algorithm) [40] as a general method for solving all problems, only using different proximal 

operators to implement different regularizations.

For the data �delity step in FISTA method we use the gradient of the PWLS function in 

equation (7), which can be written as

∇F(v) = Ā
⊤

W(Āv − b).
 (19)

With this data mis�t, the smallest Lipschitz parameter L ensuring convergence can be found as

L = ‖Ā
⊤

WĀ‖2.
 (20)

We compute this value without forming the matrix product by using the power method.

The proximal operator step in FISTA is given generally as

proxβ/L
[G](v) = arg min

u

{

β

L
G(u) +

1

2
‖u − v‖2

2

}

.

 (21)
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This can be interpreted as a denoising problem with the respective choices of regularization 

function GTV of equation (9), GTNV of equation (10), GdTV-p of equation (17) and GdTV-d of 

equation (18), all with regularization parameter β/L.

All inner proximal operator steps are solved using �rst-order primal-dual algorithms  

[38, 39]. The TV and dTV-related proximal steps are solved using the fast gradient projection 

(FGP) method [41], more details can be found in [21, 42]. The TNV proximal step is solved 

using the primal-dual hybrid gradient (PDHG) method [43], more details on the implementa-

tion are given in [37].

The general FISTA algorithm has been implemented in MATLAB with the time-consum-

ing proximal operators to specify TV, TNV and dTV regularizers respectively implemented in 

OpenMP/CUDA to accelerate computations.

We note that in every evaluation of the dTV proximal operator for channel k in iteration 

s we select a reference channel as described in the previous section from the reconstructed 

channels of the previous iteration.

While channelwise TV and TNV are convex regularizers for which the described FISTA 

method converges to the global minimizer, the dTV methods do not necessarily share this 

behavior due to the adaptive choice of a reference channel.

5. Numerical results

5.1. Synthetic multi-material phantom and data generation process

To test our reconstruction algorithms we design a synthetic phantom consisting of four mat-

erials: quartz, pyrite, galena, and gold (see table 1). This particular selection of materials has 

been inspired by an actual geological study of a rock sample [7].

The concentration of chemical elements in the composite phantom approximates the real 

sample composition (see �gure 2). Speci�cally, the presence of larger amounts of quartz and 

pyrite and much smaller amounts of highly attenuating galena and gold (see the mass density 

values in table 1). The geometrical shapes of materials in the phantom have been chosen to 

complement properties of the proposed piecewise-constant (TV-based) penalties. To build the 

phantom in �gure 2 we use the TomoPhantom software [44], which allows composing vari-

ous modular 2D–4D phantoms analytically.

Now we explain how multi-spectral tomographic projection data are generated from the 

phantom in �gure 2. To obtain realistic spectral projection data we use the following three soft-

ware packages: Spektr [45], PhotonAttenuation [46], and ASTRA-toolbox [47]. 

The Spektr package is used to generate an x-ray spectrum q(E) according to the given tube 

potential (E  =  120 kVp in our case) with a tungsten anode target [45]. The obtained source 

spectrum has been normalized ̃q(E) and multiplied by the photon �ux chosen as I0 = 4 × 10
4 . 

See the full 1–120 keV spectrum in �gure 3(a). Skipping the lowest and highest energies we 

Table 1. Phantom materials, their chemical material proportions and mass densities.

Material No. Title Base material
Mass density 
(g cm−3)

1 (a) Quartz SiO2 2.65

2 (b) Pyrite Fe(46.6%)  +  S(53.4%) 5.01

3 (c) Galena Pb(86.6%)  +  S(13.4%) 7.6

4 (d) Gold Au 19.25
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select the energy range of 45–114 keV which corresponds to the real multi-spectral scanner 

settings [7]. We discretize the spectrum I0q̃(E) into 70 energy bins (see the selected region in 

�gure 3(a)).

In �gure 3(b), we present a plot of mass attenuation coef�cients (MACs) for each of the 

investigated materials. Since we have 70 energy bins in the energy range of 45–114 keV 

the step equals 1 keV. Two distinct K-edges are visible for gold (80.725 keV) and galena 

(88.005 keV) materials. Notably, the K-edges are less than 8 keV apart, so cruder energy bin-

ning can lead to the loss of spectral resolution and an ambiguity in the identi�cation of unique 

K-edges. Therefore for some cases, �ne energy discretization is crucial to ensure a correct 

material classi�cation based on the K-edges [7].

The PhotonAttenuation software is used to model the photon attenuation process 

through the designed phantom. With a unique energetic signature for a chosen chemical ele-

ment, one can obtain the mass attenuation coef�cients speci�c to each considered material 

(see �gure 3(b)).

In order to generate multi-spectral projection data avoiding the ‘inverse crime’ [48], we use 

the ASTRA-toolbox package [47]. We set the fan-beam scanning geometry, which repli-

cates the cone-beam geometry used in [7] for the central slice of 3D volume. The width of the 

(a) (b) (c) (d)

Figure 2. Numerical phantom consisting of 4 materials: Quartz (a), Pyrite (b), Galena 
(c), and Gold (d). The background is air. The phantom is inspired by a real mineralized 
ore sample [7]. (a) Quartz (No.1). (b) Pyrite (2). (c) Galena (3). (d) Gold (4).

Figure 3. (a) The full x-ray energy spectrum and the selected range (45–114 keV) of 
energies used for data modeling. The selected spectrum is discretized into 70 energy 
bins; (b) A plot of mass attenuation coef�cients (MACs) for each material in table 1 for 
the selected photon energies. The step changes in MACs correspond to the K-edges of 
gold (80.725 keV) and galena (88.005 keV), respectively. (a) Energy spectrum I0q̃(E). 
(b) Mass attenuation curves material-wise.

D Kazantsev et alInverse Problems 34 (2018) 064001



12

reconstruction domain is set to be 1 cm, the distance from the source to the rotation center is 

3 cm, the distance from the source to the detector is 5 cm, and the width of the detector array 

is 2 cm. The pixel size of the reconstructed domain is 512 × 512 pixels (the data have been 

simulated on a larger grid of 1024 × 1024 pixels), the number of projection angles is set to 

120. Poisson distributed noise has been added to the projection data according to the energy-

variant spectrum I0q̃(E).
In �gure 4 (upper row) we demonstrate sinograms for three energy channels which are 

taken from the discretized spectrum in �gure  3(b). Spanning the full spectral range, they 

re�ect differences in the grayscale values, noise levels, and also the pronunciation of features 

with respect to different energies. In the bottom row we demonstrate the FBP reconstructions 

of the selected sinograms. Note that for lower energies (e.g. channel no. 1), the beam has been 

absorbed substantially in quartz. The FBP reconstruction is noisy and shows many streak 

artifacts due to poor angular sampling. For mid-range energies, the quartz and pyrite materials 

(see �gure 2) are strongly pronounced in the sinogram, while highly attenuated materials are 

less visible. The FBP reconstruction of the 35th channel in �gure 4(b) is substantially noisier 

(the error is lower because intensity is overall lower for the channel). For higher energies, 

gold and galena traces in the sinogram are visible in �gure 4(c), however quartz and pyrite are 

obscured in higher levels of noise.

5.2. Quantitative reconstruction quality assessment

To globally quantify the quality of obtained reconstructions we use the root mean square error 

(RMSE) ∆Σ averaged over all channels given as:

Figure 4. Upper row: three selected sinograms with 120 projection angles and 724 
detectors, (a) channel no. 1 (45 keV), (b) no. 35 (79 keV) and (c) no. 70 (114 keV). 
Note different attenuation characteristics, noise levels, and the grayscale levels. The 
bottom row shows corresponding FBP reconstructions. (a) FBP, ∆1 = 354. (b) FBP, 
∆35 = 128. (c) FBP, ∆70 = 286.
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∆Σ(x, x̂) =
1

K

K
∑

k=1

∆k

(

Xk, X̂k

)

, (22)

where for (single-channel) images v, v̂ ∈ R
N we have the channel-wise RMSE:

∆k(v, v̂) =

√

√

√

√

1

N

N
∑

i=1

(vi − v̂i)2
× 100, (23)

where v̂, x̂ and X̂k  refer to exact images and we compute the error over the entire image. The 

global measure ∆Σ conveniently simpli�es some optimization tasks and represents the gen-

eral measure of reconstruction quality over all channels.

The second quality metric is a channel-wise mean structural similarity index (MSSIM) [49] 

which is de�ned as:

MSSIM(v, v̂) =
1

N

N∑

i=1

(2µ(vi)µ(v̂i) + C1) + (2σ(viv̂i) + C2)

(µ2(vi) + µ2(v̂i) + C1)(σ2(vi) + σ2(v̂i) + C2)
, (24)

where µ and σ are the mean intensity and the standard deviation of a 8 × 8 patch centered at 

the ith pixel. The variable σ(vv̂) denotes the cross-correlation and C1,2 are small constants to 

avoid division by zero. The MSSIM metric is a different quality metric from RMSE (23) as 

it considers image degradation as a visually perceived change in structural information. The 

MSSIM metric �ts well to our problem where problematic energy channels can have signi�-

cant structural degradation. The MSSIM value equals 1 if images are identical and  −1 if they 

anti-correlated, i.e. MSSIM(v, v̂) ∈ [−1, 1].

5.3. Selection of the optimal regularization parameters

The proper choice of the regularization parameter in (6) is very important for the successful 

reconstruction of all energy channels with the uniform spatial resolution. It is known that noise 

variance can vary substantially across energy space (see �gure 4). To the authors’ knowledge, 

two approaches currently exist to deal with the issue.

The �rst approach requires data variances σ2

k
 of all energy channels so a ‘noise-balancing’ 

procedure can be implemented on sinograms as bk/σ
2

k
, see [18]. After data have been noise-

balanced, one can apply a constant regularization parameter to reconstruct all channels. The 

disadvantage of this technique is that it requires a change of data space and therefore modi�ca-

tion of the original reconstruction problem. Additional dif�culty lies in the estimation of vari-

ances, which for a larger number of channels can be nontrivial and time-consuming to obtain.

An alternative approach of dealing with spectrally-varying variances and signal amplitudes 

will be to introduce energy-variant regularization parameters [13]. This approach does not 

modify the original reconstruction problem but can result in dif�culties of estimating spec-

tral equalization multipliers (SEM) for a multi-channel dataset. Additional dif�culty of using 

spectrally-variant regularization parameters lies in estimating them for channel-correlated pri-

ors such as dTV and TNV. In order to simplify our presentation in this paper we use a scalar 

regularization parameter (energy-invariant) for all channels.

Here we present the strategy we used to choose optimal regularization parameters for 

the methods. Since our multi-channel optimization problem is high dimensional for correla-

tive reconstruction methods, we use the global ∆Σ error (22) to assess how well the whole 

sequence of channels is reconstructed. In order to establish regularization parameters for all 

methods we perform the following tasks. We use 30 values of regularization parameters to 
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select the optimal one βopt for which the global error is minimal. Note that the global error is 

calculated for the �nal outer iteration of the FISTA algorithm.

In �gure  5 we demonstrate how regularization parameters for all methods have been 

selected. Notably a well-de�ned global minimum is present for TV and TNV methods. The 

estimation of the optimal βopt for the dTV-p method is more complicated since it includes a 

probabilistic component (see section 3). To minimize possible deviations due to the random 

selection of a reference channel in iterations, we perform three optimization instances for each 

unique value of β. In �gure 5(c) one can identify the general trend of three realizations for the 

dTV-p method. Based on this the optimal parameter can be established. Now using optimal 

parameters one can reconstruct the whole sequence of channels and calculate ∆k errors (23) 

and (24) with respect to each channel. This provides more detailed information how well each 

channel is reconstructed.

5.4. Reconstruction with optimally selected regularization parameters

Before we proceed with comparisons with optimally selected regularization parameters we 

will demonstrate that the deterministic dTV-d method (18) fails to reconstruct variance-unbal-

anced datasets (see �gure 6). Such a poor recovery can be explained by using consistently very 

Figure 5. Optimally selected regularization parameters for TV, TNV, and dTV-p (three 
realizations) penalties. Using the global ∆Σ error, the optimal regularization parameters 

can be established. (a) TV, βopt = 4.2 × 10−4. (b) TNV, βopt = 1.2 × 10−3. (c) dTV-p, 

βopt = 3.2 × 10−3.

Figure 6. Reconstruction using the dTV-d method for βopt. (a) dTV-d, ∆1 = 4200.  
(b) dTV-d, ∆35 = 1640. (c) dTV-d, ∆70 = 3000.
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low SNR references (e.g. from high energy channels) throughout the reconstruction process. 

Therefore the error from low SNR channels accumulates, ampli�es and propagates into high 

SNR channels as it can be seen in (a) and (b) in �gure 6.

In �gure 7 we show channel-wise errors for TV, TNV, and dTV-p methods with respect to dif-

ferent ROIs: background, quartz, pyrite, and galena and gold (see �gure 2). In �gure 8 we also 

produce channel-wise MSSIM values (24) and in �gure 9–11 we show reconstructions, image 

errors (squared difference between the reconstructed image and the exact phantom) and binary 

segmentations for the TV, TNV, and dTV-p methods, respectively. In this work we used binary 

thresholding for which the optimal threshold is manually selected channel-wise. The same 

thresholds used consistently for each reconstruction method which ensures fair compariso n. 

Also in �gure 12 we show zoomed image errors for TNV and dTV-p methods for 70th channel. 

In the text below we give a general overview of results while refer to different �gures.

Figure 7. Reconstruction errors for 70 channels for TV, TNV and dTV-p methods with 
respect to different ROIs. (a) Background ROI. (b) Quartz ROI. (c) Pyrite ROI. (d) Gold 
and galena ROI.
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In �gure 7(a) one can see that for ROI-background the dTV-p method generally outper-

forms other methods. Indeed, it is noted in the reconstructed images (see �gure 9) that dTV-p 

reconstructs inner areas of objects better than other methods. Figure 7(b), however, shows the 

highest RMS errors for the dTV-p method and a small advantage of TNV over TV. We believe 

that high errors in dTV-p recovery are due to outliers of high intensity which exist on the 

boundaries of the reconstructed objects (see �gure 12). These high-intensity localized pixels 

can contribute signi�cantly to the overall error while visually may not be so obvious (see  

�gure 11). For ROI-pyrite (see �gure 7(c)), the dTV-p method performs only slightly worse 

than TNV. Meanwhile, for galena and gold ROI (see �gure 7(d)), the dTV-p method outper-

forms (especially for higher energy channels) all other methods, including TNV.

Additionally in �gures 7(b) and (d) one can notice a jump in quartz and gold and galena 

channel-wise RMSE at channel 37 (81 keV). We ascribe this to the K-edge of gold at 80.725 keV 

after which attenuation is strongly increased. This reduces the SNR of the measured data sub-

stantially, and consequently all methods observe a drop in the performance exactly at this 

point. Furthermore, on close inspection a second jump at channel 45 (89 keV) can be seen for 

some methods. This agrees with the lead (galena) K-edge at 88.005 keV. It also makes sense 

that it is quartz and gold and galena errors that show this K-edge dependence, since the gold 

and galena particles are embedded in the quartz phase, whereas the background and pyrite 

phases are unaffected.

We also believe that in our case the RMSE does not re�ect well the visual perception of 

the reconstructed images. For instance one can focus on pyrite reconstruction in 70th channel 

using TV (see �gure 9) and compare it to dTV-p (see �gure 11). Most of central objects are 

totally missing (smoothed) from the TV-reconstructed image giving the pronounced image 

error and poor segmentation. The dTV-p image, however, is reconstructed relatively well when 

all pyrite features are clearly visible. Still, the RMSE values in �gure 7(c) infer the opposite.

Therefore after slightly ambiguous results based on channel-wise RMSE, we are interested 

to obtain more global measure of structural similarity provided by MSSIM (24). In �gure 8 

we present MSSIM values for three methods in comparison. We see that the dTV-p outper-

forms other methods substantially (only last two channels are slightly worse than with TNV). 

Figure 8. MSSIM values for 70 channels for TV, TNV and dTV-p methods.
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Notably, TV and dTV-p have a similar trend, i.e. when SNR reduces the MSSIM values also 

diminish. Interestingly, until the 50th channel channel-wise TV slightly outperforms TNV, but 

after that the method quickly deteriorates.

In �gure 10 one can see the result of reconstruction and segmentation for the TNV method. 

One can notice the signi�cant improvement in terms of better spatial resolution and less noise 

in the reconstructed images using the correlative method. The image errors appears to be 

lower and segmentation results are better than with channel-wise TV (see �gure 9). Note, 

however, the quality of segmentation of the 70th channel. It is clearly better than with TV, but 

misclassi�ed areas are still abundant.

In �gure 11 we show results with the proposed dTV-p method. One can see that the qual-

ity of reconstructions is high and image errors are visually low. Notably the segmentation of 

the 70th channel is much better with dTV-p than with TNV. Nevertheless, to understand the 

reason of higher RMSE values for dTV-p we show image errors with magni�cation in �g-

ure 12. One can see that with dTV-p (c) some erroneous pixels (or small clusters of pixels) on 

Figure 9. Reconstruction, image error and segmentation for TV method with βopt.
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boundaries of objects are more abundant than with TNV reconstruction and also more intense. 

The presence of those perturbations is what results in high RMSE values.

The presence of outliers can be due to insuf�cient resistibility of the dTV-p method to han-

dle errors in the selected reference channel. If the given reference has a low SNR or some arti-

facts, there is a fair chance that for some pixel elements, the direction of dTV smoothing will 

be incorrect. As with dTV-d case, this can affect the reconstruction signi�cantly (see �gure 6). 

Substantially more reliable behavior of dTV-p can be explained by favoring the selection of 

high-SNR references. More detailed insight into the problem is given in section 6.

To further con�rm the competitiveness of the proposed method, in �gure 13 we present 

MAC plots for four materials reconstructed with the FBP, TV, TNV, and dTV-p methods. 

The plots show MAC curves for one randomly selected pixel per material plotted across the 

whole energy domain. As expected, in the FBP curves one can see major perturbations for 

quartz and pyrite and somewhat minor for galena and gold. The channel-wise TV method sig-

ni�cantly reduces noise perturbations in quartz and pyrite, however strong deviation to lower 

Figure 10. Reconstruction, image error and segmentation for TNV method with βopt.
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MAC values is visible for gold and galena right after K-edge. The correlative priors provide 

substantial improvement for all materials. The TNV method, however has more perturbations 

for quartz than the dTV-p method. Again, this con�rms our hypothesis that only due to selec-

tive erroneous pixels the resulting error can be higher for the dTV-p method over TNV. The 

K-edge curves (galena and gold) are well recovered with both correlative priors.

5.5. Assessing the robustness of the dTV-p method to the selection of the reference

Because the proposed dTV-p method is probabilistic, one needs to establish how it responds 

to different realizations (runs) with a �xed set of parameters. In �gure 14 we demonstrate 

the distribution of errors for 10 realizations (complete reconstructions of all channels). The 

reconstructions are performed for the same value of the optimal regularization parameter and 

errors are given for the �nal iteration.

Figure 11. Reconstruction, image error and segmentation for dTV-p method with βopt.
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From �gure 14 one can see that the ‘spread’ of errors is very small and the number of outli-

ers is quite insigni�cant. Notably the outliers lie very close to the median values. The aver-

age difference between the maximum and the minimum ∆k error per channel is less than 2. 

Compare to the general spread of errors, this is a small deviation indeed. This result con�rms 

that the dTV-p method is globally robust to random selection of a reference channel and does 

not deviate substantially.

6. Discussion

In this paper, we presented a one possible approach to select a PMF, based on which the refer-

ence channel is selected for the dTV-p method. As we have demonstrated through numerical 

experiments, the correct choice of a PMF is crucial to obtain quanti�able results. One can 

choose a unique PMF based on information within the kth channel. In this case, the PMF is 

not �xed as it is currently implemented, but may be variable to further improve the quality of 

reconstructions. Nevertheless, this approach can introduce an additional level of uncertainty 

how the algorithm will converge globally. However, it is exactly the stochastic selection of 

the reference channel ensures the stable behavior of the method. The deterministic dTV-d 

method fails to reconstruct because it uses neighboring channels, which for some energies can 

be severely distorted by noise. Therefore the dTV-d method propagates errors into high SNR 

channels and ampli�es bias in the subsequent iterations.

Related to the choice of suitable PMF there is also the question of how energy variant mul-

tipliers or spectral equalization multipliers (SEM) should be selected. In this paper we use a 

constant SEM, however since the variance and amplitude vary substantially across the energy 

space one should account for that. In future work, we will design and test a suitable SEM 

which will help to distribute the regularization strength according to some rule.

In section 3.2, another deterministic method was mentioned. It is based on selecting the 

highest SNR reference for all channels. Although we do not provide results in the paper we 

tested this approach and the obtained reconstruction quality was poor. This method has shown 

a similar performance to the dTV-d method. This further con�rms the hypothesis that the sto-

chastic component is highly important to obtain higher quality of the reconstruction.

Furthermore, in section 3.2 we brie�y discussed a possibility of generating a reference 

by reconstructing of projection data mean over the spectral dimension. This approach can 

(a) (b) (c)

Figure 12. The magni�ed error images for TNV (b) and dTV-p (c) methods. The main 
source of errors for the dTV-p method is the clustered pixels-outliers on the edges of the 
objects. Note that the inner regions of largest objects are recovered better with dTV-p. 
(a) Zoomed phantom. (b) TNV image error. (c) dTV-p image error.
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potentially improve SNR of the reconstructed image by increasing the total number of photon 

counts. In this case the information about the photon-energy will be lost affecting the linear-

ity of Beer’s law. Also when the energy resolution is �ne (e.g. hundreds of energy-channels 

available) and the spectrum range is broad, this can lead to severe beam-hardening artifacts 

and possibly the disappearance of some subtle structures through linear averaging. We have 

also preliminarily tested this approach using synthetic data and the results were promising 

and close to the quality of the proposed dTV-p method. However, before drawing conclusions 

how robust this approach is, one needs to apply this method to real multi-channel data and 

experiment with different energy-discretization scales and energy ranges. This will be in the 

scope of future research.

Figure 13. MACs plots for FBP, TV, TNV, and dTV-p reconstruction methods. The 
dTV-p method produces the best �t for all materials. (a) FBP. (b) TV. (c) TNV. (d) 
dTV-p.
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In section 5.4 we mentioned that the dTV-p method can be sensitive to noise and locally 

produce slightly inferior reconstructions to TNV. Unfortunately, it is a common problem of 

gradient driven local smoothing methods which exploit unregularized gradient �eld [29, 30, 

36]. One needs to ensure more robust to noise calculation of the gradient. This can be done, for 

example, through direct smoothing of the TV-norm as in [19, 33] or using the non-local gradi-

ent methods. Potentially, the choice of the threshold for the TV-norm smoothing can depend 

on the data variance. We will investigate this problem in future.

Another important issue is the separability (with respect to energies) of the proposed regu-

larizer and a potential to improve global convergence of the algorithm. In this work we use 

the smallest Lipschitz parameter L (20) which ensures global convergence of the algorithm 

solving the generic optimization problem (6). This partially has been done to overcome the 

non-separability of the TNV penalty. However, both TV and dTV are separable and therefore 

the optimal L can be calculated channel-wise. This can potentially accelerate the convergence 

of the algorithm. Furthermore, the dTV-p regularization step can be realized in parallel, which 

makes it suitable for the implementation on CPU and GPU computing clusters.

Regarding the computation times, the proposed method has almost equivalent to TV 

computing ef�ciency and memory footprint. Compare to TNV, the dTV-p method generally 

requires less than 2–3 times number of inner iterations (see appendix) to reach an accurate 

solution. The dTV-p method is also faster in the current CPU implementation, therefore for the 

same amount of iterations it updates all channels approximately two times faster then TNV. 

However, there is a space to accelerate TNV implementation as well.

7. Conclusions

In this paper we presented a novel iterative reconstruction algorithm for multi-channel x-ray 

computed tomography. We showed that the structural correlation embedded into the regu-

larization term can result in signi�cant improvements in image quality of the reconstructed 

images. Furthermore, we make an important observation that the information collected from 

the adjacent channels is not always reliable for multi-channel problems. We proposed and 

implemented a probabilistic technique to select a reference channel which is based on the 

knowledge about the signal-to-noise ratio of the �ux. This prior was demonstrated to be a 

Figure 14. The distribution of errors for the dTV-p method based on 10 realizations 
(complete reconstructions of all channels) with optimally selected regularization 

parameter βopt = 3.2 × 10−3. The central mark indicates the median, and the bottom 

and top edges of the box indicate the 25th and 75th percentiles, respectively. The 

whiskers extend to the most extreme data points not considered outliers, and the outliers 
are plotted individually using the ‘+’ symbol.
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strong competitor to state-of-the-art correlative regularizers, such as total nuclear variation. 

The method is computationally ef�cient, simple to implement, and can be easily parallelized.
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Appendix

A.1. Algorithm veri�cation and selection of number of algorithm iterations

To ensure correctness of our implementations we verify the computed reconstructions against 

reference solutions computed using the established and highly reliable CVX modeling system 

for convex optimization [50, 51]. Our motivation for this veri�cation step is �rstly to ensure 

we assess the methods considered in terms of the speci�ed optimization solution and not an 

inaccurate algorithm-dependent early approximation which may substantially skew compara-

tive results. Secondly, to aid in determining a suf�cient yet practical number of inner and outer 

iterations to run.

To test single channel TV we de�ne a 64 × 64 pixel Shepp–Logan test image and generate 

a parallel-beam test problem with 36 projections over 180
◦ using the paralleltomo func-

tion of the AIR Tools MATLAB package [52, 53]. With the regularization parameter β = 2 

and con�gured to its best precision setting, CVX produces the highly accurate reconstruction 

in �gure A1, top left, with the resulting optimal objective value of 613.648 756.

We now run our FISTA implementation for the same problem using all combinations of 50, 

250, 2000 outer and 10, 50, 250 inner iterations. In the bottom left of �gure A1 we plot the RMSE 

(equation (23)) with respective to the CVX reference solution (and not the original image) for 

each choice of number of inner iterations as function of number of outer iterations. The bottom 

right plot shows the relative error of the �nal objective value with respect to the CVX refer-

ence objective value plotted in the same way. We conclude that our FISTA implementation for 

TV-regularized reconstruction works since both quantities approach zero when the number of 

inner and outer iterations are increased. The three images to the top right are the FISTA recon-

structions for 50/10, 250/50 and 2000/250 outer/inner iterations with the CVX reference solution 

subtracted and displayed in a very narrow grayscale to highlight differences. Each image title 

states the �nal FISTA objective value and RMSE, compare to CVX. Based on the difference 

images and plot we choose to use 250 outer and 50 inner iterations in the main numerical experi-

ments as a compromise between achieving an accurate solution and reasonable computing time.

Similarly, for TNV we use a small test problem but with 3 channels instead of just one. It 

was established that our implementation could accurately reproduce the CVX TNV solution, 

however a larger number of inner iterations is required. For this reason in the reconstruction 

experiments we use 250 outer and 200 inner iterations for TNV.
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While the dTV problem is not convex and hence does not admit a CVX implementation, we 

tested the dTV implementation on a 2-channel case with the reference channel �xed as a blank 

image. In this case the dTV regularizer reduces to the standard TV and we con�rmed numer-

ically that the dTV implementation in this case reproduced the CVX TV solution. Therefore 

for both TV and dTV methods in this paper we use 250 outer and 50 inner iterations.
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