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SUMMARY

In many longitudinal studies, the individual characteristics associated with the repeated measures may be
possible covariates of the time to an event of interest, and thus, it is desirable to model the time-to-event
process and the longitudinal process jointly. Statistical analyses may be further complicated in such studies
with missing data such as informative dropouts. This article considers a nonlinear mixed-effects model
for the longitudinal process and the Cox proportional hazards model for the time-to-event process. We
provide a method for simultaneous likelihood inference on the 2 models and allow for nonignorable data
missing. The approach is illustrated with a recent AIDS study by jointly modeling HIV viral dynamics
and time to viral rebound.
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1. INTRODUCTION

In many longitudinal studies, we need to model a longitudinal process and a time-to-event process simul-
taneously. For example, in AIDS studies, we are often interested in modeling the HIV viral dynamics in
the early period of an anti-HIV treatment, and in the meantime, we are also interested in the relationship
between the individual-specific characteristics of the viral load process in the early period and a long-term
antiviral response such as the time to viral rebound (or viral suppression or death). An important question
is then to check if patients with a faster initial viral decay rate may have earlier viral rebound later in

∗To whom correspondence should be addressed.

c© The Author 2007. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/9/2/308/353719 by guest on 21 August 2022



Joint inference for NLME models and time to event at the presence of missing data 309

the study. Nonlinear mixed-effects (NLME) models are very useful in many longitudinal studies because
these models are based on the underlying mechanisms which generate the data (Davidian and Giltinan,
1995). For time-to-event data, Cox proportional hazards model is often used. In these studies, missing
data are common since subjects may drop out early for various reasons such as toxicities or side effects
and data may be missing at scheduled times. The missing data may be nonignorable (or informative) in
the sense that the missingness may be related to unobserved values. For example, the dropout or missing
data process may be related to the initial (unobservable) true viral decay rates. Thus, analyses of longitu-
dinal data often involve methods for missing data. In this article, we consider a “joint” likelihood method
for an NLME model and a survival model, incorporating missing data in the time-varying responses and
baseline covariates.

1.1 The data set and models

Our research is motivated from an AIDS study (Wu and others, 2004). The study consists of 115 subjects
enrolled in an AIDS clinical trial. The viral load is repeatedly measured over time during an anti-HIV
treatment. Some covariate measurements are also available. Here, we focus on the first 90-day data after
start of the treatment because data after 3 months may be complicated by long-term clinical factors. The
number of viral load measurements in the first 90 days varies from 3 to 10 (with a mean of 9 and a standard
deviation of 1.4), and the typical measurement times are day 0, 1, 2, 7, 10, 14, and every 1 or 2 weeks (some
measurements are made near the scheduled times). Twenty-four subjects drop out early and 3 subjects have
missing CD4 values at baseline. Figure 1 shows viral load trajectories for 6 randomly selected patients
from the study. We see that patients’ viral loads after initiating antiviral treatment declined in the early
period, and then, some patients’ viral loads rebounded in the later period. This is probably because HIV
virus was sensitive to the antiviral treatment in the initial period but developed drug resistance after the
initial period. There is a substantial variation between patients, and some patients do not experience viral
rebound during the study period. Some patients with faster initial viral decays appear to have earlier viral
rebound. Ding and Wu (2001) show that the initial viral decay rate may reflect the efficacy/potency of the
anti-HIV treatment. Therefore, it is important to study if the initial viral decay rate is predictive for time
to viral rebound.

Fig. 1. Profiles of viral load (RNA) for 6 randomly selected patients.
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Based on some biological arguments, Wu and Ding (1999) derived the following nonlinear exponential
decay model with individual-specific parameters for HIV viral dynamics (see also Wu, 2002):

yi j = log10(P1i e−λ1i ti j + P2i e−λ2i ti j ) + ei j , (1.1)

log(P1i ) = β1 + b1i , λ1i = β2 + β3CD4i + b2i ,

log(P2i ) = β4 + b3i , λ2i = β5 + b4i , i = 1, 2, . . . , N , j = 1, 2, . . . , n, (1.2)

where yi j is the log10-transformation of the viral load measurement for the i th patient at j th time point,
λ1i and λ2i represent individual-specific first and second phases of viral decay rates, respectively, P1i and
P2i are individual-specific baseline values, βββ = (β1, . . . , β5)

T are population parameters (fixed effects),
ei j represent within-individual errors, bki are random effects, and N is the number of patients and n is
the number of viral load measurements for patient i . In models (1.1) and (1.2), baseline CD4 values are
introduced to partially explain the between-individual variation in the initial viral decay rate λ1i (Wu,
2002) and the random effects bi = (bi1, bi2, bi3, bi4)

T represent individual characteristics of the viral
load trajectories. The exponential decay rates λ1i and λ2i can be interpreted as turnover rates of produc-
tively infected cells and long-lived and/or latently infected cells, respectively. We assume that λ1i > λ2i .
Parameters P1i and P2i represent baseline viral loads (in log10-scale). Model (1.1) is a 2-compartment
model which is a simplification from a multi-compartment model under some assumptions (see Wu and
Ding, 1999, for details). We assume that ei j i.i.d. ∼ N (0, Ri ) and are independent of bi ∼ N (0, D).

1.2 Outline

In this article, we consider a joint likelihood method for the viral dynamic model (1.1) and (1.2) and a
proportional hazards model for time to viral rebound, incorporating informative dropouts and missing
covariates, and estimate all model parameters simultaneously. We present our method in a more general
framework—joint likelihood inference for a NLME model and a proportional hazards model at the pres-
ence of missing data—so that our method may be applied to other problems. The missing time-varying
responses in the NLME model are allowed to be nonignorable for dropout patients. For covariates, we
focus on missing baseline covariates with an ignorable missing mechanism (or missing at random) and
ignorable measurement errors in the covariates. We extend our method to missing time-varying covariates
and mismeasured covariates in Section 5, with technical details outlined in Appendix B. The random ef-
fects in the NLME model, which represent individual-specific characteristics of the longitudinal process,
are used as possible error-free “covariates” for the proportional hazards model and the missing response
model. A Monte Carlo expectation maximization (EM) algorithm is used for likelihood estimation.

Joint modeling of longitudinal data and survival data has been studied in the literature (e.g. DeGruttola
and Tu, 1994; Wulfsohn and Tsiatis, 1997; Henderson and others, 2002; Guo and Carlin, 2004). Tsiatis
and Davidian (2004) provide a very nice review. These methods often consider linear (mixed) models for
the longitudinal process and focus on complete data or ignorably missing data cases. Here, we consider
NLME models for the longitudinal process and incorporate nonignorably missing data (or informative
dropouts).

In Section 2, we describe the models for longitudinal data and time-to-event data, as well as the
models for the missing data mechanism. In Section 3, we describe the Monte Carlo EM algorithm for
inference, with computational details given in Appendix A. A real-data example is presented in Section 4.
In Section 5, we conclude the article and discuss an extension of our method to time-dependent covariates
with measurement errors, with technical details given in Appendix B.
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2. NOTATION AND MODELS

2.1 Notation

Suppose that there are N individuals. Let yi j be the response value for individual i at time ti j , i =
1, . . . , N , j = 1, . . . , n, and let yi = (yi1, . . . , yin)T . We assume that the measurement schedules are
fixed and common to all individuals. We consider a response missing if its value is not observed at or near
the scheduled time point. Let zi be the collection of time-independent (baseline) covariates for individual i .
We write yi = (yi,mis, yi,obs), where yi,mis is the collection of missing responses for dropout patients
and yi,obs is the collection of observed responses, and similarly, we write zi = (zi,mis, zi,obs). Let si =
(si1, . . . , sin)

T be a vector of missing response indicators such that si j = 1 if yi j is missing and 0 other-
wise. We allow for arbitrary patterns of missing data, that is, we do not restrict to monotone missing data
patterns, which assume that once a subject leaves the study, return is not possible. Let ri = (ri1, . . . , rim)T

be the vector of an “event” indicator with individual i : ri j = 1 or 0 if the event has happened or not by
time ti j . We assume that ri1 = 0 for all i . If patient i drops out between time tik and ti,k+1 and does not
return to study later, then si1 = · · · = sik = 0, si j = 1 for j > k.

For individual i , let Ti be the time to an event (or the duration time until an event occurs) and assume
P(Ti < ∞) = 1. In the AIDS example, Ti is the time to the first viral rebound in the study, which is
usually not observable but confirmed in practice by an observed rise of viral load after the initial decay, say,
2 consecutive increases in viral load. Specifically, if there is k � m such that k is the smallest number with
yi,k−1 < yik and yi,k−1 < yi,k+1, in practice we take ri1 = · · · = ri,k−1 = 0 and rik = · · · = rim = 1,
that is, ti,k−1 < Ti � tik (the rebound takes place during the time period (ti,k−1, tik]). If there is no such a
number k, we view ri j = 0 for j = 1, . . . , m and thus Ti > tim . This type of event time data structure is
referred to as interval-censored event times (see, e.g. Lawless, 2003).

2.2 Models for longitudinal and time-to-event data

For the longitudinal process, we consider the following general NLME model (Davidian and Giltinan,
1995):

yi j = g(ti j , βββ i ) + ei j , ei ∼ N (0, Ri ), (2.1)

βββ i = h(zi , βββ) + Bi bi , bi i.i.d. ∼ N (0, D), j = 1, . . . , n, i = 1, . . . , N , (2.2)

where g(·) is a nonlinear function, ei = (ei1, . . . , ein)T are measurement errors, βββ i = (βi1, . . . , βis)
T

is a vector of individual-specific regression parameters, βββ = (β1, . . . , βr )
T is a vector of population

parameters, h(·) is a s-dimensional vector-valued function, Bi is an incidence matrix of 0’s and 1’s, bi =
(bi1, . . . , bis)

T is a vector of random effects and is independent of ei , Ri is the unknown within-individual
covariance matrix which contains distinct parameters σσσ , and D is an unstructured covariance matrix. If
there are no missing data, the probability density for yi can be written as

f (yi |zi , βββ, σσσ , D) =
∫

f (yi |zi , bi , βββ, σσσ) f (bi |D)dbi . (2.3)

For the time-to-event process, we assume that the distribution of Ti depends on the random effects bi

which represent individual-specific longitudinal processes. For example, in AIDS studies, patients with
faster (or slower) initial viral decays may be more likely to have an earlier viral rebound, so the time to
viral rebound Ti depends on the random effect associated with initial viral decays. We therefore consider
a frailty model for Ti which is linked to the NLME model (2.1)–(2.2) through the random effects bi .
Specifically, we assume that the conditional hazard rate of Ti at time ti is

λ(ti |zi , bi ) = λ0(ti ) exp(γγγ T
1 zi + γγγ T

2 bi ), (2.4)
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where λ0(ti ) is an unspecified baseline hazard function and γγγ 1 and γγγ 2 are unknown parameters linking
baseline covariates zi and random effects bi to the conditional hazard rate, respectively. For the above
survival model, we assume that all individuals have the same set of measurement schedules, although for
the longitudinal model we allow the response measurement schedules to be somewhat different across
individuals or ignorable missing responses for subjects who do not drop out.

Let

pik = P(rik = 1|ril = 0, 0 � l < k; zi , bi )

= 1 − P(Ti � tik |Ti � ti,k−1; zi , bi ), k = 1, 2, . . . , m. (2.5)

Then, we have

pik = 1 − exp[− exp(γ0k + γγγ T
1 zi + γγγ T

2 bi )] (2.6)

or log(− log(1 − pik)) = γ0k + γγγ T
1 zi + γγγ T

2 bi , where γ0k = log
∫ tik

ti,k−1
λ0(u)du, k = 1, . . . , m. Given the

current observation mechanism, we need only to deal with the finite number of parameters γ0k instead of
the unknown function λ0(t) in the likelihood estimation. Denote the vector that its components are all the
distinct γ01, . . . , γ0m for i = 1, . . . , N by γγγ 0 and γγγ = (γγγ 0, γγγ 1, γγγ 2). Note that

f (ri |zi , bi , γγγ ) =
m∏

k=1

f (rik |ril , 0 � l < k; zi , bi , γγγ ), (2.7)

where
f (rik |ril = 0, 0 � l < k; zi , bi , γγγ ) = prik

ik (1 − pik)
1−rik ,

and rik equals 0 before an event and 1 after an event. With li = max(ti j : ri j = 0) and ui = min(til :
ril = 1), (2.7) can be written as

P(li < Ti � ui |zi , bi )

= exp

(
−

∫ li

0
λ0(t)dtexp(γγγ 1zi + γγγ 2bi )

){
1 − exp

(
−

∫ ui

li
λ0(t)dtexp(γγγ 1zi + γγγ 2bi )

)}
,

which may reduce some computing and simplify the presentation. Here, ui = ∞ if ril = 0 for l =
1, . . . , m.

2.3 Missing data model

When there are informative dropouts (or nonignorable missing longitudinal responses), the missing data
mechanism must be taken into account for valid likelihood inference, but the missing data mechanism can
be ignored in likelihood inference if the missing data are ignorable in the sense of missing at random or
missing completely at random (Little, 1995). As noted in Section 1, we assume a missing response model
which allows the missing probability to possibly depend on the unobservable random effects bi . Such a
missing data model is related to the shared parameter models or random effect–based dropouts (Wu and
Carroll, 1988; DeGruttola and Tu, 1994; Little, 1995; Follmann and Wu, 1995; Ten Have and others,
1998). In other words, the missingness depends on both ymis,i and yobs,i through the random effects bi .
For such missing responses, a model specifying the missing response mechanism must be incorporated in
likelihood inference. The probability of missing responses at the time ti j may also depend on the missing
status at the previous time point ti, j−1. We assume that the missing baseline covariates are missing at
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random (or ignorable) in the sense that the missingness may be related to the observed data but not
the missing values, so we do not need to specify a missing covariate mechanism. However, we need to
make a distributional assumption for the incompletely observed covariates for likelihood inference. No
distributional assumption is needed for covariates without missing data.

Based on the above arguments, as an example, we may consider the following model for the missing
responses:

logit(P(si j = 1|si, j−1, bi , φφφ)) = φ0 + φ1si, j−1 + φφφT
2 bi , (2.8)

f (si |bi , φφφ) = f (si1|bi , φφφ)

n∏
j=2

f (si j |si, j−1, bi , φφφ), (2.9)

where the parameters φφφ may be viewed as nuisance parameters and are usually not of inferential interest.
In the above missing data model, the probability of missing data (or dropout) is related to the individual
characteristics (i.e. random effects bi ) of the longitudinal process, which appears to be reasonable for
AIDS studies as noted earlier. The probability of missing data may also depend on covariates zi , but
we should avoid to build a too complicated missing data model if zi are not highly predictive of the
missingness.

3. INFERENCE BASED ON JOINT LIKELIHOOD

3.1 The joint likelihood

In this section, we consider simultaneous likelihood inference for all parameters based on the joint like-
lihood of the observed data {(yi,obs, zi,obs, ri , si ), i = 1, 2, . . . , N }. Let f (·) denote a generic density
function and f (y|x) denote the conditional distribution of y given x . Let θθθ = (βββ, σσσ , γγγ , φφφ, D) denote the
collection of all unknown parameters. We assume that yi and ri are conditionally independent given the
random effects bi , that is, ri depends on yi through the random effects bi . In AIDS studies, this implies
that the time to viral rebound depends on viral load trajectories through individual-specific (error-free)
initial viral levels and viral decay rates. Based on the motivation discussed in Section 2.3, we also assume
that f (si |yi , bi , φφφ) = f (si |bi , φφφ). Thus, we have

f (yi , ri , si |zi , bi , θθθ) = f (yi |zi , bi , βββ, σσσ) f (ri |zi , bi , γγγ ) f (si |bi , φφφ).

The joint likelihood for the “observed” data can then be written as

Lo(θθθ) =
N∏

i=1

[∫∫∫
f (yi |zi , bi , βββ, σσσ) f (ri |zi , bi , γγγ ) f (si |bi , φφφ) f (zi |ααα) f (bi |D)dyi,mis dzi,mis dbi

]
,

where f (zi |ααα) is the assumed distribution for the incompletely observed covariates zi with unknown
parameters ααα. Maximum likelihood estimates (MLEs) of all parameters θθθ can be obtained by maximizing
the observed data likelihood Lo(θθθ). However, the observed data likelihood Lo(θθθ) may be difficult to
evaluate because it involves an intractable and high-dimensional integral. In the following, we use a Monte
Carlo EM algorithm to obtain the MLEs.

3.2 A Monte Carlo EM algorithm

The EM algorithm is a widely used method for finding MLEs in the presence of missing data. It iterates
between an E-step and an M-step: the E-step computes the conditional expectation of the complete data
log-likelihood given the observed data, and the M-step gives updated parameter estimates by maximizing

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/9/2/308/353719 by guest on 21 August 2022



314 L. WU AND OTHERS

the conditional expectation in the E-step. Iterating between an E-step and an M-step until convergence
leads to MLEs. When the conditional expectation in the E-step is difficult to evaluate analytically, Monte
Carlo approximations may be used, which leads to a Monte Carlo EM algorithm (Wei and Tanner, 1990).
For the current problem, if we treat the unobservable random effects bi as additional “missing data,”
we can write the “complete data” as {(yi , zi , ri , si , bi ), i = 1, 2, . . . , N }. Thus, the complete data log-
likelihood for individual i can be written as

l(i)c (θθθ) = log f (yi |zi , bi , βββ, σσσ) + log f (zi |ααα) + log f (bi |D) + log f (ri |zi , bi , γγγ ) + log f (si |bi , φφφ).

The E-step at the t th iteration of the EM algorithm for individual i can then be written as

Qi (θθθ |θθθ(t)) =
∫∫∫

{log f (yi |zi , bi , βββ, σσσ) + log f (zi |ααα) + log f (bi |D) + log f (ri |bi , γγγ 0, γγγ )

+ log f (si |bi , φφφ)} f (yi,mis, zi,mis, bi |yi,obs, zi,obs, si , ri , θθθ
(t))dyi,mis dzi,mis dbi .

Since it is difficult to evaluate the integral Qi (θθθ |θθθ(t)) analytically, we approximate the integral by Monte
Carlo methods as follows.

Since Qi (θθθ |θθθ(t)) is a (conditional) expectation with respect to the density f (yi,mis, zi,mis, bi | yi,obs,
zi,obs, si , ri , θθθ

(t)), we may approximate Qi by its empirical mean obtained by simulating many samples
from the conditional density f (yi,mis, zi,mis, bi |yi,obs, zi,obs, si , ri , θθθ

(t)) and then replacing the expectation
by an empirical mean. To generate random samples from the conditional density f (yi,mis, zi,mis, bi |yi,obs,
zi,obs, si , ri , θθθ

(t)), we may use the Gibbs sampler method (Gelfand and Smith, 1990) along with rejection
sampling methods. See Appendix A for details.

Suppose that {(̃y(1)
i,mis, z̃(1)

i,mis, b̃(1)
i ), . . . , (̃y(mt )

i,mis, z̃(mt )
i,mis, b̃(mt )

i )} is a random sample of size mt generated

from f (yi,mis, zi,mis, bi |yi,obs, zi,obs, si , ri , θθθ
(t)). The E-step of the Monte Carlo EM algorithm at the

(t + 1)th iteration can be approximated as follows:

Q(θθθ |θθθ(t)) =
N∑

i=1

Qi (θθθ |θθθ(t)) ≈
N∑

i=1

⎧⎨
⎩ 1

mt

mt∑
j=1

[log f (yi,obs, ỹ( j)
i,mis|zi,obs, z̃( j)

i,mis, b̃( j)
i , βββ, σσσ 2)

+ log f (zi,obs, z̃( j)
i,mis|ααα) + log f (̃b( j)

i |D)

+ log f (ri |zi,obs, z̃( j)
i,mis, b̃( j)

i , γγγ ) + log f (si |̃b( j)
i , φφφ)]

⎫⎬
⎭ . (3.1)

The above approximation can be made arbitrary accurate by increasing mt . The M-step of the Monte
Carlo EM algorithm is then to maximize Q(θθθ |θθθ(t)), which is just like a complete data maximization, so
standard optimization procedures for complete data models such as the Newton–Raphson method can be
used to obtain the updated parameters θθθ(t+1). If we assume that the parameters in each term of Q(θθθ |θθθ(t))
are distinct, we can maximize each term of Q(θθθ |θθθ(t)) separately using standard methods for linear, non-
linear, and logistic regression models. The convergence of the Monte Carlo EM algorithm is discussed in
Appendix A.

The variance–covariance matrix of θθθ can be approximated as follows: At the convergence of EM, let
Si j (θ̂θθ) = ∂l(θθθ |yobs,i , ỹ( j)

mis,i , zobs,i , z̃( j)
mis,i , b̃( j)

i , ri , si )/∂θθθ , evaluated at θθθ = θ̂θθ . We have

I (θ̂θθ) ≈
N∑

i=1

mt∑
j=1

1

mt
Si j (θ̂θθ)ST

i j (θ̂θθ).

The approximate asymptotic covariance matrix of θ̂θθ is I −1(θ̂θθ).

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/9/2/308/353719 by guest on 21 August 2022



Joint inference for NLME models and time to event at the presence of missing data 315

4. DATA ANALYSIS AND SIMULATION

4.1 Data analysis

In this section, we analyze the data set described in Section 1 based on the proposed method. In the
analysis, we assume that Ri = σ 2 I . One of our objectives is to test if the time to rebound Ti de-
pends on baseline CD4 values and the random effects bi1, bi2, bi3, so we consider the following model
for Ti :

λ(ti |zi , bi ) = λ0(ti ) exp(γ1zi1 + γ2bi1 + γ3bi2 + γ4bi3), (4.1)

where zi1 = CD4i . Since baseline CD4 contains some missing data, we need to make a distributional
assumption for baseline CD4 values and assume zi ∼ N (α1, α2). We also assume that the missing CD4
values are ignorable (i.e. missing at random). This assumption should not be too restrictive here since
the missing rate in CD4 is low. There are also some dropouts, which lead to missing values in yi , and
the missingness may be informative as discussed in Section 1. Note that if data are collected close to the
scheduled time points but not exactly at the scheduled time points, the data at the scheduled time points
are not viewed as missing data here. We assume the following simple model for the missing response
mechanism:

f (si |yi , bi , zi , φφφ) =
n∏

j=1

P(si j = 1|φφφ, bi )
si j (1 − P(si j = 1|φφφ, bi ))

1−si j , (4.2)

log

(
P(si j = 1|φφφ, bi )

1 − P(si j = 1|φφφ, bi )

)
= φ0 + φ1b1i + φ2b2i + φ3b3i + φ4b4i , i = 1, 2, . . . , N , (4.3)

where the missingness probability of the responses may depend on the random effects which characterize
individual differences of the viral load trajectories. Although we can assume more complicated models
for the missing response mechanism and include other covariates in (4.3), we should avoid building a
too complicated missing response model since large number of nuisance parameters may lead to poor
precision if these covariates are not the main focus and are not highly significant.

We use the likelihood method described in Section 3 to obtain the parameter estimates. The starting
values for the EM algorithm are obtained by fitting the models separately and ignoring all missing data.
The convergence of the Gibbs sampler is based on visual inspection of autocorrelation plots. We used
400 burn-ins for the Gibbs sampling. The EM is considered converged if the maximum difference in
consecutive parameter estimates is less than 1%. The number of Monte Carlo samples mt is increased at
each iteration until convergence.

Table 1 shows the resulting parameter estimates and the associated standard errors. The p-values are
computed based on Wald-type tests. The estimate of β3 indicates that higher initial CD4 values are asso-
ciated with faster initial viral decay (p-value = 0.001). The estimate of β5 (negative sign, not significant)
reflects the viral rebound at later stage. We see that the missing responses (or dropouts) depend on initial
viral decay rate φ2 (p-value = 0.001) and initial viral load level φ3 (p-value = 0.008). Time to viral
rebound depends on initial CD4 values γ1 (p-value < 0.001) so that smaller baseline CD4 values are
associated with earlier viral rebound. However, the viral rebound time does not appear to be significantly
associated with initial viral decay rate. Although the viral decay rates may reflect the efficacy of the treat-
ment (Ding and Wu, 2001), the effect of viral decay rates on the viral rebound is not big enough. This is
probably because many other factors also contribute to the viral rebound. These results may be useful for
future AIDS studies.
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Table 1. Estimates of model parameters

Model Estimates of the NLME model parameters in (1.1)

Parameter β1 β2 β3 β4 β5

Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE

Estimate 10.32 0.15 53.98 9.17 14.01 4.37 6.02 0.22 –0.55 0.34
p-value <0.001 <0.001 0.001 <0.001 0.10

Model Estimates of the dropout model parameters in (4.3)

Parameter φ0 φ1 φ2 φ3 φ4

Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE

Estimate 3.00 0.006 0.017 0.019 –0.057 0.018 –0.056 0.021 –0.056 0.061
p-value <0.001 0.37 0.001 0.008 0.36

Model Estimates of the survival model parameters in (4.1)

Parameter γ1 γ2 γ3 γ4

Estimate SE Estimate SE Estimate SE Estimate SE

Estimate –1.47 0.06 0.041 0.046 –0.012 4.20 0.001 3.81
p-value <0.001 0.37 0.99 0.99

Estimates of the diagonal elements of matrix D is (0.103, 0.104, 0.083, 0.010). Estimates of the off-diagonal elements
are all less than 0.004. SE, standard error.

4.2 Simulation

We conducted a simulation study to evaluate the proposed method and compare the method with a
naive method where missing data are ignored. All the models used in the simulation are the same as
those in the example. The true values of the model parameters are βββ = (12, 40, 8, 8, 2), ααα = (0, 1),
φφφ = (3, 0.04, 0.08, −0.01, −0.1), γγγ = (−1.5, 0.03, 0.01, 0.02), σ = 0.2, D = diag(1, 0.5, 1, 0.01),
t = (2, 4, 6, 8, 10, 12, 15, 19, 23, 28)/28, and N = 100. We generated roughly 20% missing values and
rebounds in the responses based on the assumed models. The covariate is assumed to be completely ob-
served. The simulation was repeated 200 times, and the resulting estimates are averaged.

For each estimate, we computed percent bias and percent mean square error (MSE) as follows (say,

for β j ): percent bias = 100 × (β̂ j − β j )/β j and percent MSE = 100 ×
√

bias2 + variance, where β̂ j

is the average of all estimates for β j from simulation. The biases and MSEs are then averaged over all
simulations. Table 2 shows the simulation results. We see that the proposed method (joint model) performs
well in terms of both bias and MSE, and it is better than the naive method. The proposed method gives
approximately unbiased estimates and reasonable MSEs, so the method is feasible and reasonable. The
purpose of this small simulation study is to preliminary check the feasibility and performance of the
proposed method. Due to space limitation, a more comprehensive and thorough simulation study will be
reported separately.

5. DISCUSSION

An alternative approach for the problem discussed in this article, if there are no missing data, is the
so-called 2-step method: in the first step, we estimate the parameters and random effects based on the
NLME model alone, and then in the second step, we substitute the estimates from the first step into
the survival model to obtain estimates of parameters in the survival model. It is well known in the joint
model literature (e.g. Tsiatis and Davidian, 2004), however, that such a 2-step method ignores the vari-
ability in estimation of the parameters in the first step, so may lead to underestimation of the variability of
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Table 2. Simulation results

Method Estimates of the parameters in model (1.1)

β1 = 12 β2 = 40 β3 = 8 β4 = 8 β5 = 2

Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE

Joint model 11.75 0.30 35.62 4.35 6.84 1.46 7.97 0.12 1.97 0.12
Naive method 11.87 0.35 33.74 3.54 6.91 1.99 7.95 0.36 1.95 0.33

Method Percent biases and percent MSEs

β1 = 12 β2 = 40 β3 = 8 β4 = 8 β5 = 2

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

Joint model −2 3 −11 15 −14 23 0 2 −2 7
Naive method −1 3 −16 18 −14 28 −1 5 −3 17

SE, standard error.

parameter estimates in the second step. The joint model method described in this article, on the other hand,
incorporates all variability, so it should lead to reliable estimates and standard errors, as demonstrated in
other cases in the literature (Tsiatis and Davidian, 2004). Moreover, the proposed method incorporates
both missing covariates and missing responses. Note that the missing data models cannot be tested based
on the observed data, so the choices of the missing data models should be based on practical reasonability.
Normally, we should try different missing data models to see if the results for the main model parameters
are robust against the missing data models.

The likelihood method based on a Monte Carlo EM algorithm as described in the article can be com-
putationally very intensive. To reduce computational burden, we may consider approximation methods
which are based on Laplace approximations or Taylor expansions about the random effects to linearize
the nonlinear models (so sampling the random effects in the E-step may be avoided). Detailed implemen-
tation of these approximate methods are under investigation.

The method presented in this article can be extended to time-dependent covariates where the covariates
may be measured with errors or may be missing. In practice, some covariates may be measured with sub-
stantial errors, and the time-varying covariates may also be missing due to different measurement sched-
ules from the response measurements or other problems. For example, in AIDS studies, CD4 count is often
measured with substantial errors and may have measurement schedules different from the viral load mea-
surement schedules. To address covariate measurement errors or missing data, we may model the time-
dependent covariates empirically using multivariate linear mixed-effects (LME) models. Then, a joint like-
lihood method can be developed in a similar way. An outline of the approach is presented in Appendix B.
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APPENDIX A: COMPUTATIONAL DETAILS, SAMPLING METHODS, AND
CONVERGENCE

For the Monte Carlo EM algorithm in Section 3, to generate random samples from the conditional density
f (yi,mis, zi,mis, bi |yi,obs, zi,obs, si , ri , θθθ

(t)), we may use the Gibbs sampler method by iteratively sam-
pling from the full conditionals f (yi,mis|yi,obs, zi , bi , si , ri , θθθ

(t)), f (zi,mis|zi,obs, yi , bi , si , ri , θθθ
(t)), and

f (bi |yi , zi , si , ri , θθθ
(t)) in turn until the resulting Markov chain converges. To sample these full condition-

als, note that

f (yi,mis|yi,obs, zi , bi , ri , si , θθθ
(t)) ∝ f (yi |zi , bi , βββ

(t), σσσ (t)), (A.1)

f (zi,mis|zi,obs, yi , bi , si , ri , θθθ
(t)) ∝ f (yi |zi , bi , βββ

(t), σσσ (t)) f (zi |ααα) f (ri |zi , bi , γγγ
(t)), (A.2)

f (bi |yi , zi , si , ri , θθθ
(t)) ∝ f (bi |D(t)) f (yi |zi , bi , βββ

(t), σσσ (t))

× f (ri |zi , bi , γγγ
(t)) f (si |bi , φφφ

(t)). (A.3)

Thus, rejection sampling methods such as a multivariate rejection method may be used to sample from
each of the full conditionals (see next paragraph). Iteratively sampling from each of the full condi-
tionals in turn for a burn-in period, we obtain a sample from f (yi,mis, zi,mis, bi |yi,obs, zi,obs, si , ri ,
θθθ(t)).

Sampling from the distributions (A.1)–(A.3) can be accomplished by rejection sampling methods as
follows: If the appropriate densities on the right-hand sides of (A.1)–(A.3) are log-concave, the adaptive
rejection algorithm of Gilks and Wild (1992) may be used. If some densities are not log-concave, we may
consider the multivariate rejection sampling method. For example, suppose that we want to generate ran-
dom samples from f (bi |yi , zi , ri , si , θθθ

(t)) in (A.3). Let h(bi ) = f (yi |zi , bi , βββ
(t), σσσ (t)) f (ri |zi , bi , γγγ

(t))
f (si |bi , φφφ

(t)) and τ = supb{h(b)}. A random sample from f (bi |yi , zi , ri , si , ψψψ
(t)) can be obtained as

follows. Step 1: sample b∗
i from f (bi |D(t)), and independently, sample w from the uniform(0,1) distri-

bution; Step 2: if w � h(b∗
i )/τ , then accept b∗

i ; otherwise, go to Step 1. Samples from the other 2 full
conditionals can be obtained in a similar way. Therefore, the E-step of the Monte Carlo EM method can
be accomplished by the Gibbs sampler method combined with the rejection sampling methods. To assess
the convergence of the Gibbs sampler, we may use standard graphical tools such as time-series plots and
autocorrelations and determine the burn-in or warm-up iterations of the Gibbs sampler based on some
preliminary draws.

The above rejection sampling methods may be slow when the dimension of (ymis,i , zmis,i , bi ) is
large. In this case, we may use importance sampling methods. The importance function can be chosen
to be a multivariate normal density or a multivariate student’s t density whose mean and variance match
the mode and curvature of f (ymis,i , zmis,i , bi |yobs,i , zobs,i , ri , si , θθθ

(t)). Other sampling methods include
Metropolis–Hastings or Markov chain methods.

To implement the E-step of the Monte Carlo EM algorithm, we should choose the numbers of Monte
Carlo samples mt . Generally, larger values of mt will result in more exact approximation in the E-step
but the computation will be slower. To ensure convergence of the Monte Carlo EM algorithm, we should
increase mt as the number t of EM iterations increases. For Monte Carlo EM algorithms, the incom-
plete data log-likelihood is not guaranteed to increase at each iteration due to Monte Carlo error at
the E-step. However, under suitable regularity conditions, Monte Carlo EM algorithms still converge
to the MLE (Fort and Moulines, 2003). For sufficiently large values of mt , the Monte Carlo EM al-
gorithm would inherit the properties of the exact versions, such as the likelihood-increasing properties
of EM.
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APPENDIX B: TIME-DEPENDENT COVARIATES WITH MEASUREMENT ERRORS OR
MISSING DATA

In this section, we outline an approach which extends the proposed method to time-dependent covariates
with measurement errors or missing data. Let zikl be the observed value and z∗

ikl be the (unobservable)
“true” value of covariate k for the i th individual at time uil , i = 1, . . . , N , k = 1, . . . , ν, l = 1, . . . , m. We
focus on the case where z∗

ikl is the current true covariate value, but our method can be extended to the case
where z∗

ikl is a summary of the true covariate history up to time uil . We allow the covariate measurement
times uil to differ from the response measurement times ti j , so we allow (ignorable) missing data in the
covariates.

Let zi = (zT
i1, . . . , zT

im)T , where zil = (zi1l , . . . , ziνl)
T , l = 1, . . . , m. Following Shah and others

(1997), we consider the following multivariate LME model to empirically describe the covariate
processes:

zil = Uilααα + Vilai + εεεil ≡ z∗
il + εεεil , i = 1, . . . , N , l = 1, . . . , m, (B.1)

where Uil and Vil are design matrices, ααα and ai are unknown population (fixed-effects) and individual-
specific (random-effects) parameter vectors, and εεεil are the random measurement errors for the i th
individual at the time uil . The true (unobservable) covariate values are assumed to be z∗

il = Uilααα + Vilai .
We also assume that ai i.i.d. ∼ N (0, A), εεεil i.i.d. ∼ N (0, R), and ai and εεεi = (εεεT

i1, . . . , εεε
T
im)T are in-

dependent, where A and R are unknown and unstructured covariance matrices. We further assume that
εεεi and ai are independent of ei and bi in the response model. Models such as (B.1) may be interpreted
as a covariate measurement error model (Carroll and others, 1995). To allow for missing data in the
time-varying covariates, we recast model (B.1) in continuous time:

zi (t) = Ui (t)ααα + Vi (t)ai + εεεi (t), i = 1, . . . , N ,

where zi (t), Ui (t), Vi (t), and εεεi (t) are the covariate values, design matrices, and measurement errors at
the time t , respectively. At the response measurement time ti j , the possibly unobserved true covariate
values can be viewed as z∗

i j = Ui jααα + Vi j ai , where Ui j = Ui (ti j ) and Vi j = Vi (ti j ).
When the covariates are measured with errors, we assume that the response and the time-to-event

distributions f (yi |ai , bi , βββ, σσσ) and f (ri |ai , bi , γγγ ) may depend on the unobserved true covariate values
rather than the observed mismeasured covariate values, that is, the distributions of yi and ri may depend
on the random effects ai and bi . The observed data log-likelihood can thus be written as

L∗
o(θθθ) =

N∏
i=1

[∫∫
f (yi |ai , bi , βββ, σσσ) f (bi |D) f (zi |ai , ααα) f (ai |A) f (ri |ai , bi , γγγ) f (si |bi , φφφ)dyi,mis dai dbi

]
.

Then, a Monte Carlo EM algorithm similar to that in Section 3 can be used to obtain the MLEs of all
unknown parameters. A main modification needed in the E-step is to sample the random effects ai instead
of zmis,i , which can again be accomplished by Gibbs sampler combined with rejection sampling methods
in a similar way.
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