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Joint Information and Jamming Beamforming

for Secrecy Rate Maximization in

Cognitive Radio Networks
Van-Dinh Nguyen, Trung Q. Duong, Senior Member, IEEE, Octavia A. Dobre, Senior Member, IEEE, and

Oh-Soon Shin, Member, IEEE

Abstract—In this paper, we consider the secure beamforming
design for an underlay cognitive radio multiple-input single-
output broadcast channel in the presence of multiple passive
eavesdroppers. Our goal is to design a jamming noise (JN)
transmit strategy to maximize the secrecy rate of the secondary
system. By utilizing the zero-forcing method to eliminate the
interference caused by JN to the secondary user, we study the
joint optimization of the information and JN beamforming for
secrecy rate maximization of the secondary system while satisfy-
ing all the interference power constraints at the primary users,
as well as the per-antenna power constraint at the secondary
transmitter. For an optimal beamforming design, the original
problem is a nonconvex program, which can be reformulated
as a convex program by applying the rank relaxation method.
To this end, we prove that the rank relaxation is tight and
propose a barrier interior-point method to solve the resulting
saddle point problem based on a duality result. To find the
global optimal solution, we transform the considered problem
into an unconstrained optimization problem. We then employ
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method to solve the
resulting unconstrained problem which helps reduce the complex-
ity significantly, compared to conventional methods. Simulation
results show the fast convergence of the proposed algorithm and
substantial performance improvements over existing approaches.

Index Terms—Cognitive radio, interference, jamming noise,
physical layer security, zero-forcing, transmit beamforming.

I. INTRODUCTION

Physical layer (PHY)-security has been considered as a

promising technique to prevent eavesdropping without upper

layer data encryption. The key aim of PHY-security is to

guarantee a positive secrecy rate of the legitimate user by

exploiting random characteristics of the wireless channel [2],

[3]. To make PHY-security viable, the quality of the legitimate

channel is required to be better than the eavesdroppers’

[4]. However, this assumption may not be always feasible
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in practice. Traditionally, one possible way to improve the

secrecy rate is to use multiple antennas at the transmitter

for designing beamforming vectors [5]–[7]. This technique

allows the concentration of the transmit signal over the in-

tended user’s direction while reducing power leakage to the

eavesdroppers. Furthermore, the transmitter tries to debilitate

the desired signal at the eavesdroppers.

Recently, another promising technique has been proposed

to embed jamming noise (JN), also known as artificial noise,

at the transmitter, which is transmitted simultaneously with

its own information signal to degrade the channel of the

eavesdropper. Notably, [8] first introduced the transmitter that

spends some of the available power to produce the JN for

the purpose of degrading the channel to eavesdroppers. The

use of JN for beamforming design can be divided into two

major categories, depending on how much the transmitter

knows the channel state information (CSI) of the eavesdropper,

e.g., with passive and active eavesdroppers. In [9], a passive

eavesdropper case was considered where the JN is designed to

null out the interference to the legitimate user. Inspired by the

work in [9], the authors in [10]–[13] analyzed and optimized

the secrecy performance of the systems. The common design

of those works is to force JN beamforming into the null space

of the legitimate channel, whereas the beamforming for trans-

mitting information is fixed to maximum-ratio-transmission

(MRT). For the case of active eavesdroppers, the secrecy

rate maximization problem for multiple-input single-output

(MISO) channel overheard by multiple eavesdroppers was

considered in [14], [15], where the rank relaxation is proved to

be tight by applying a semidefinite program (SDP) relaxation.

In addition, the imperfect knowledge of the eavesdropper’s

CSI at the legitimate transmitter was presented as an emerging

subject in different works, e.g., related to the outage robust

design [16] and the worst-case robust transmit design [17],

[18].

Moreover, similarly to other wireless networks, cognitive

radio networks (CRNs) are particularly faced with security

threats due to the openness of wireless transmission media.

Although security is a critical issue, PHY-security of CRNs

has not been well studied until recently. Several efforts of

PHY-security in CRNs have been reported in [5], [19]–[22].

In [19], by considering a secondary transmitter equipped with

multiple antennas, the authors designed a beamforming vector

to maximize the secrecy capacity of the secondary system,

as well as to help the primary system improve the secrecy
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capacity. A cooperative communication between the secondary

and primary systems was studied in [20] to improve the

secrecy capacity of the primary system while satisfying the

quality of service (QoS) of the secondary system. The optimal

robust design problem for secure MISO CRNs, where the

secondary transmitter does not have perfect CSI of all the

channels but only knows the uncertainty regions containing

the actual channels, was addressed in [21]. Furthermore, the

primary transmitter with a jamming beamforming that avoids

interference to the primary receiver was investigated in [22],

where a closed-form expression of the achievable rate was

derived. Most of the prior research on beamforming design

for CRNs assumed either a single primary receiver or a

single eavesdropper. In addition, the CSI of the eavesdropper’s

channel was assumed to be perfectly known at the transmitter.

However, those assumptions are not practical, particularly

when the eavesdroppers are passive devices.

To overcome these limitations of the previous works, in

this paper we consider the case where multiple eavesdroppers

wiretap the confidential messages from the secondary system

in the presence of multiple primary users. Different from the

works in [5], [19]–[21], we investigate the scenario where

the CSI of the eavesdroppers’ channels is partially known

[9], [22], in the statistical sense. It is important to note

that the results in [9], [22] cannot be directly applied to

our scenario since the transmit and JN beamformings are

fixed and mainly focus on power allocation. In addition, the

beamforming design of the works in [9], [22] may not be

efficient for an underlay CRN, where the interferences to the

primary users caused by the secondary system cannot exceed

a certain threshold. For the present problem, we consider

the joint optimization of information and JN beamforming

to maximize the secrecy rate subject to per-antenna power

constraints (PAPCs) at the secondary transmitter and the in-

terference power constraint at the primary users. The problem

of interest differs from the ones studied previously, which

often assumed a sum power constraint. In many existing

approaches, the beamforming designs for information and JN

are not simultaneously optimized. In this paper we adopt the

zero-forcing method at the secondary transmitter to eliminate

the interference caused by JN to the secondary user, for its

simplicity and effectiveness. To facilitate the maximization

of the secrecy rate, we introduce an auxiliary variable to

control the level of mutual information from the secondary

transmitter to eavesdroppers. For an optimal solution, the

beamforming design problem can be cast as an SDP by

showing that the rank relaxation is tight as in [14], [15], [19],

which can be solved by generic conic solvers such as SDPT3

[30] and SeDuMi [31]. However, we do not follow such an

approach for the following two reasons. First, it provides few

useful insights into the structure of the optimal beamforming

design. Second, its computational complexity is generally very

high when the problem size becomes large for a real-time

implementation, and it has no explicit form, thus hindering

any further theoretical analysis.

In this paper, we propose an efficient algorithm for the opti-

mization problem by first transforming the constraint resulting

from the statistical information of the passive eavesdroppers

into a linear matrix inequality and convex constraint, and

prove the optimality of the rank relaxation. By extending

a duality result, we convert the considered problem into a

minimax program with an equality constraint, for which a

barrier method is derived to find a saddle point. The proposed

algorithm is an iterative Newton method which exploits the

special features of the design problem. In particular, in each

iteration to find the Newton step, we apply a block elimination

method to derive a system of generalized Sylvester equations;

this requires a reduced complexity compared to a generic

method based on solving a system of linear equations. To find

a global optimal solution, we design an optimization problem

via the dual problem associated with the algorithm of quasi-

Newton optimization, referred to as the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm. In fact, the BFGS method

is an approximation of the Newton method for solving non-

linear problems, and often exhibits a superior convergence rate.

The rest of this paper is organized as follows. The system

model and the formulation of the secrecy rate maximization

problem are described in Section II. In Section III, we derive

the optimization problem for the beamforming design. In

Section IV we present the proposed algorithms to solve this

problem. Numerical results are provided in Section V, and

Section VI concludes the paper.

II. SYSTEM MODEL AND NOTATION

In this section, after introducing the notation used in this pa-

per, we present a CRN model for secure communication with

concurrent wireless information and jamming noise transfer.

A. Notation

Bold lower and upper case letters represent vectors and

matrices, respectively. XH , XT , tr(X), and rank(X) are the

Hermitian transpose, normal transpose, trace, and rank of a

matrix X, respectively. ‖ · ‖ and | · | denote the Euclidean

norm of a matrix or vector and the absolute value of a

complex scalar, respectively. IN represents an N ×N identity

matrix. [x]i is the i-th entry of vector x. [X]i,j is the entry

at the i-th row and j-th column of X. en is the n-th unit

vector, i.e., [en]n = 1 and [en]i = 0, ∀i 6= n. diag(x),
where x is a vector, denotes a diagonal matrix with diagonal

elements of x. x ∼ CN (η,Z) indicates that x is a random

vector following a complex circularly symmetric Gaussian

distribution with mean vector η and covariance matrix Z. The

notation X � 0 represents a positive semidefinite matrix X.

H
N denotes the set of N × N complex Hermitian matrices.

λmax(X) and λj(X) denote the maximum eigenvalue and

the j-th eigenvalue of a Hermitian matrix X, respectively.

∇xf(x) represents the gradient of f(·) with respect to vector

x. The acronyms inf and sup denote the terms of infimum

and supremum, respectively.

B. Signal Model

We consider the PHY-security of a CRN consisting of

one secondary transmitter (ST), one secondary receiver (SU),

M primary users (PUs), and K eavesdroppers (Eves), as
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Fig. 1. A CRN model with multiple eavesdroppers.

illustrated in Fig. 1. The ST is equipped with N antennas,

while the other nodes are equipped with a single antenna.

In the secondary system, Eves intend to wiretap and decode

confidential messages from the ST. All the channels are

assumed to remain constant during a transmission block and

change independently from one block to another.

The main objective of the design is to maximize the secrecy

rate of the SU while satisfying a given interference power

constraint Im at the m-th PU, for m = 1, 2, . . . ,M . We

aim to design two beamforming vectors w and u at the ST,

corresponding to the data and the jamming noise as

xs = wsc + u (1)

where sc ∈ C is the confidential message that the ST transmits

to SU, with E{|sc|
2} = 1, which is weighted with the beam-

forming vector w ∈ C
N×1, and u is the jamming noise vector

whose elements are zero-mean complex Gaussian random

variables with covariance matrix U, i.e., u ∼ CN (0,U),
where U ∈ H

N and U � 0.

The signal-to-interference-plus-noise ratio (SINR) at the SU

and at the k-th Eve are, respectively, given by

Γs =
|hHw|2

hHUh+ 1
andΓk =

|gH
k w|2

gH
k Ugk + 1

, ∀k ∈ K (2)

where h ∈ C
N×1 and gk ∈ C

N×1 are the baseband equivalent

channels of the links from the ST to SU and to the k-th Eve,

respectively. K is defined as K , {1, 2, . . . ,K}. Without loss

of generality, the background thermal noise at each receiver

is assumed to be a zero-mean and unit variance complex

Gaussian random variable.

C. Problem Formulation

The secrecy rate of the SU, Rs, is defined as [24]

Rs = max
(

log(1 + Γs)−max
k∈K

log(1 + Γk), 0
)

. (3)

If Rs is kept larger than zero while ensuring that the received

interference at the m-th PU is below the predetermined thresh-

old Im, then the signal transmitted from the ST to the SU is

“undecodable,” as indicated in [25].

In this paper, the beamformer for the jamming noise is

designed to null out the interference to SU, such that

ΦHh = 0 (4)

where we choose U = ΦΦH with Φ ∈ C
N×(N−1) [9], [22].

Thus, the SINR of SU and the k-th Eve can be rewritten as

Γs = |hHw|2 andΓk =
|gH

k w|2

‖gH
k Φ‖2 + 1

, ∀k ∈ K. (5)

Remark 1: The assumption of null space jamming noise in

(4) is reasonable, since the use of jamming noise is intended

to degrade the channel of eavesdroppers, but not the legitimate

user [9], [22]. Importantly, the use of the null space jamming

noise constraint may simplify the design and analysis [16],

[17].

The optimization problem can be formulated as

P1 : max
w,Φ

{

log(1 + Γs)−max
k∈K

log(1 + Γk)

}

(6a)

s. t. ΦHh = 0 (6b)

[wwH ]n,n + [ΦΦH ]n,n ≤ Pn, ∀n ∈ N (6c)

|fHmw|2 + ‖fHmΦ‖2 ≤ Im, ∀m ∈ M (6d)

where N , {1, 2, . . . , N} and M , {1, 2, . . . ,M}. fm ∈
C

N×1 is the baseband equivalent channel of the link from the

ST to the m-th PU. The constraint in (6c) represents the power

constraint for the n-th antenna at the ST. We note that each

antenna is often equipped with its own power amplifier (PA).

Thus, one may need to limit the per-antenna peak power to

operate within the linear region of the PA [26]. The PAPCs

in (6c) are different from the sum power constraint (SPC)

considered in [15], [20]; however, the proposed beamforming

scheme in this paper can also be applied to the SPC with

slight modifications. The constraint in (6d) is to protect the

primary system, so that the interference power at the m-th PU

due to the ST is less than a given interference threshold Im,

∀m ∈ M.

By introducing an auxiliary variable Γtol and in the spirit

of [27], P1 has the same optimal solutions as the following

new problem

P2 : max
w,Φ,Γtol>0

log(1 + |hHw|2)− log(1 + Γtol) (7a)

s. t.max
k∈K

|gH
k w|2

‖gH
k Φ‖2 + 1

≤ Γtol (7b)

(6b), (6c), (6d) (7c)

where Γtol > 0 is the maximum allowable SINR for Eves to

wiretap the confidential messages from the ST. Intuitively, we

have an equivalent problem with less difficulty by adjusting

Γtol.

To further simplify P2, let V̄ ∈ C
N×(N−1) be the null

space of hH . Then we can write Φ = V̄Φ̄, where Φ̄ ∈
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C
(N−1)×(N−1) is the solution to the following problem

P3 : max
w, Φ̄,Γtol>0

log(1 + |hHw|2)− log(1 + Γtol) (8a)

s. t.max
k∈K

|gH
k w|2

gH
k V̄Φ̄Φ̄

H
V̄Hgk + 1

≤ Γtol (8b)

[wwH ]n,n + [V̄Φ̄Φ̄
H
V̄H ]n,n ≤ Pn, ∀n ∈ N (8c)

|fHmw|2 + ‖fHm V̄Φ̄‖2 ≤ Im, ∀m ∈ M. (8d)

D. Channel State Information

We consider the case that the CSI of h and fm, ∀m, is

perfectly known at the ST [5], [19], [20], where the SU and

PUs are active users. Explicitly, the ST sends pilot signals

at the beginning of each scheduling slot to the SU and PUs.

The channel vectors are estimated at the SU and PUs and

then fed back to the ST using a dedicated control channel.

In this paper, we assume that Eves passively wiretap the

confidential messages transmitted from the ST to SU without

causing any interference to the SU and PUs. For the passive

Eves, the entries of gk, ∀k, are modeled as independent and

identically distributed (i.i.d.) Rayleigh fading channels, where

the instantaneous information of these wiretap channels are

not available at ST. These assumptions about the passive Eves

are commonly used in the literature [9], [22], [23]. Based on

the above settings, P3 can be rewritten as

P4 : max
w, Φ̄,Γtol>0

log(1 + |hHw|2)− log(1 + Γtol) (9a)

s. t. Pr
(

max
k∈K

wHGkw

tr(GkV̄Φ̄Φ̄
H
V̄H) + 1

≤ Γtol

)

≥ κ (9b)

[wwH ]n,n + [V̄Φ̄Φ̄
H
V̄H ]n,n ≤ Pn, ∀n ∈ N (9c)

|fHmw|2 + ‖fHm V̄Φ̄‖2 ≤ Im, ∀m ∈ M. (9d)

where Gk , gkg
H
k , and κ is a parameter for providing secure

communication. In particular, the maximum received SINR at

all Eves is required to be less than a given value Γtol with at

least probability κ [23].

III. OPTIMIZATION PROBLEM DESIGN

The global optimal Γtol of P4 can be found from one

dimensional search. Therefore, our main task in this section is

to derive a convex optimization approach to P4 with respect

to w and Φ̄ for a fixed value of Γtol. A method to find the

optimal solution of Γtol will be presented in the next section.

We note that P4 is not a convex program. A standard way to

solve (9) for a fixed Γtol is to consider the following problem

P5 : max
W�0, Ū�0

log(1 + hHWh) (10a)

s. t.Pr
(

max
k∈K

tr(GkW)

tr(GkV̄ŪV̄H) + 1
≤ Γtol

)

≥ κ (10b)

[W]n,n + [V̄ŪV̄H ]n,n ≤ Pn, ∀n ∈ N (10c)

tr(FmW) + tr(F̄mŪ) ≤ Im, ∀m ∈ M (10d)

rank(W) = 1 (10e)

where W , wwH , Ū , Φ̄Φ̄
H

, Fm , fmfHm , F̄m , f̄mf̄Hm ,

and f̄m , V̄Hfm. In addition, we have dropped log(1 + Γtol)

from the objective function in (10) to have a simpler problem

without affecting optimality. We remark that the constraint

rank(W) = 1 must be satisfied to transmit the confidential

message sc ∈ C. P5 is still a nonconvex program due to the

nonconvex constraints in (10b) and (10e).

To make P5 a tractable problem, we first transform the

constraint in (10b) into a linear matrix inequality and convex

constraint according to the following lemma.

Lemma 1: The constraint in (10b) can be transformed as

W − ΓtolV̄ŪV̄H � Iξ (11)

where ξ = Φ−1
N (1−κ1/K)Γtol, with Φ−1

N (·) being the inverse

cumulative distribution function of an inverse central chi-

square random variable with 2N degrees of freedom.

Proof: See Appendix A.

Remark 2: Note that the implication in (11) can be applied

to any continuous channel distribution by replacing Φ−1
N (·)

with the corresponding one. Consequently, the proposed so-

lution introduced in this paper also applies to other eaves-

droppers’ channel distributions with slight modification of the

optimization problem.

By replacing (10b) with (11), we obtain the following new

problem

P6 : max
W,Ū

log(1 + hHWh) (12a)

s. t.W − ΓtolV̄ŪV̄H � Iξ (12b)

[W]n,n + [V̄ŪV̄H ]n,n ≤ Pn, ∀n ∈ N (12c)

tr(FmW) + tr(F̄mŪ) ≤ Im, ∀m ∈ M (12d)

W � 0, Ū � 0, rank(W) = 1. (12e)

We note that the feasible solutions of (12) also satisfy (10) but

not vice versa due to the inequality in (59). In other words, (11)

is a relaxation of (10b) which yields a large feasible solution

set for P5. Although (12) is a nonconvex program, it can be

efficiently solved with some numerical solvers by dropping

the rank constraint in (12e); then, the considered problem P6

becomes a so-called rank relaxed problem. Importantly, we

prove that the rank relaxation is tight in the following lemma.

Lemma 2: The optimal solution W⋆ to (12) satisfies

rank(W⋆) = 1.

Proof: See Appendix B.

Remark 3: We note that the optimization problem with a

fixed Γtol in (12) is also applicable for the SINR-based design

in [19], [23]. More challengingly, the goal of this paper is to

provide a secrecy rate maximization for the secondary system,

rather than a certain quality-of-service.

The problem P6 now is a convex SDP, which can be solved

by numerical solvers such as SDPT3 [30] and SeDuMi [31].

However, solving (12) directly may not be efficient since W

is treated as a Hermitian matrix of N2 real variables, which

is of relatively high complexity especially when N becomes

large. As mentioned earlier, such a method is not considered

in this paper. We now present the following theorem.
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Theorem 1: Consider the following minimax problem

P7 : min
ψ≥0,D�0

max
w≥0,Ū�0

log |Σ+hwh
H |

|Σ|

s. t. w + tr(ΩŪ) ≤ P
ξtr(D) + pTψ ≤ P

(13)

where Σ = D + diag(λ) +
∑M

m=1 µmFm, Ω =

V̄H
(

−ΓtolD+ diag(λ) +
∑M

m=1 µmFm

)

V̄, and ψ =

[λT µT ]T . Then, the optimal solution W⋆ of the relaxed

problem (12) can be obtained from that of (13) as

W =
Σ−1hwhHΣ−1

hHΣ−1h
. (14)

Proof: See Appendix C.

We remark that the problem in (13) is equivalent to (12),

and the inequality constraints in (13) hold with equality at

optimality. We now provide a sketch of the proof to verify this

point. Suppose w + tr(ΩŪ) < P for a fixed (ψ, D), there

possibly exists an arbitrarily small value ǫ > 0 that satisfies

w+ǫ+tr(ΩŪ) < P . Replacing w by w+ǫ/2 in the objective

function in (13) yields a larger objective value, which leads

to contradiction since w is optimal. A similar observation can

be made in the constraint ξtr(D) + pTψ ≤ P for a fixed

(w, Ū). Thus, (13) can be efficiently solved by the interior-

point methods in [33] since the equality constraints are easy to

handle in general. Interestingly, solving (13) for the optimal

solution of w ∈ C requires much lower complexity, when

compared with solving W ∈ C
N×N . We propose a numerical

algorithm to solve (13) based on interior-point methods in the

next section.

Remark 4: As mentioned in Section II-C, we now show

how P7 can be modified to include a SPC which is writ-

ten as tr(W + V̄ŪV̄H) ≤ P , where P is the total

transmit power at the ST. By following the same steps

as presented in Appendix C, we can arrive at a sim-

ilar minimax problem as shown in P7, where Σ, Ω,

and ψ are changed to Σ = D + λI +
∑M

m=1 µmFm,

Ω = V̄H
(

−ΓtolD+ λI+
∑M

m=1 µmFm

)

V̄, and ψ =

[λ µT ]T , respectively, and λ ∈ C is the dual variable

associated with the SPC. Consequently, Algorithm 1 is rather

general in the sense that it can be applied to handle this

case as well. In addition, if we assume that the total transmit

power at the ST is the sum of all PAPCs, i.e., mathematically

P =
∑N

n=1 Pn, then it follows that RSPC
s ≥ RPAPCs

s , where

RSPC
s and RPAPCs

s are the optimal values of (3) corresponding

to the SPC and PAPCs, respectively.

IV. PROPOSED ALGORITHM

A. Proposed Algorithm to Solve (13) with a fixed Γtol

For simplicity, we define Ū = Ω−1/2U̇Ω−1/2 since Ω is

invertible and then the relationship between U and U̇ is given

by

U = V̄Ω−1/2U̇Ω−1/2V̄H . (15)

We now present a computationally efficient algorithm to solve

(13) to find the optimal solution for w and U̇. Toward this

end, we use the relationships in (14) and (15) to derive the

optimal beamformers of W and U. As mentioned earlier,

we consider the following problem rather than problem (13)

without affecting its optimality.

min
ψ≥0,D�0

max
w≥0,U̇�0

log |Σ+hwh
H |

|Σ|

s. t. w + tr(U̇) = P
ξtr(D) + pTψ = P.

(16)

The proposed method to solve (16) is based on a barrier

method to find a saddle point [33]. Accordingly, we consider

the modified objective function given by

f(t,ψ,D, w, U̇) = log
|Σ+ hwhH |

|Σ|
−

1

t

N+M
∑

i=1

log(ψi)

−
1

t
log |D|+

1

t
log(w) +

1

t
log |U̇| (17)

where log |U̇|, log |D|, log(ψi), and log(w) are the logarithmic

barrier functions to account for the constraints U̇ � 0,D �
0, ψi ≥ 0, and w ≥ 0, respectively, and t > 0 is a parameter

that controls the logarithm barrier terms. We should remark

that the modified objective function (17) is concave in (w, U̇)
for a fixed value of (ψ, D), and convex in (ψ, D) for a fixed

value of (w, U̇). For a given value of t, the barrier method

requires to solve a standard equality constrained maximization

problem

min
ψ≥0,D�0

max
w≥0,U̇�0

f(t,ψ,D, w, U̇) (18a)

s. t. w + tr(U̇) = P (18b)

ξtr(D) + pTψ = P. (18c)

The main idea of the interior-point method used to solve

(18) is summarized as follows: we find the optimal solution

(ψ,D, w, U̇) for a fixed value t (which is referred to as

a centering step), and increase t until the dual gap of the

equality constrained maximization problem (18) satisfies a

given accuracy. To do this, we start with the Karush-Kuhn-

Tucker (KKT) conditions for (18), which are given by

hH(Σ+ hwhH)−1h+
1

t
w−1 − η1 = 0. (19a)

1

t
U̇−1 − η1I = 0. (19b)

w + tr(U̇) = P. (19c)

eHn
[

(Σ+ hwhH)−1 −Σ−1
]

en

−
λ−1
n

t
+ η2Pn = 0, ∀n. (19d)

fHm
[

(Σ+ hwhH)−1 −Σ−1
]

fm

−
µ−1
m

t
+ η2Im = 0, ∀m.(19e)

(Σ+ hwhH)−1 −Σ−1 −
1

t
D−1 + η2ξI = 0. (19f)

ξtr(D) + pTψ = P. (19g)

where η1 and η2 are the dual variables corresponding to the

constraints in (18b) and (18c), respectively. The results in

(19a), (19b), (19d), (19e), and (19f) are obtained by utilizing
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the gradient of the Lagrangian function with respect to w, U̇,

λ, η, and D, respectively.

Toward this end, we use the infeasible start Newton method

to find the optimal solution of (19). The aim of the Newton

method is to calculate a Newton step in each iteration. Specifi-

cally, we replace w by w+∆w, U̇ by U̇+∆U̇, λ by λ+∆λ,

µ by µ+∆µ, D by D+∆D, and ηi by ηi+∆ηi, i ∈ {1, 2},

in (19a) to have

thH(Σ+ hwhH +∆Σ+ h∆whH)−1h

+(w +∆w)−1 − t(η1 +∆η1) = 0 (20)

where ∆Σ = ∆D+diag(∆λ)+
∑M

m=1 ∆µmFm. By applying

the identity (A + B)−1 ≈ A−1 −A−1BA−1 for small B,1

(20) can be approximated as

thHΞ∆ΣΞhw2 + thHΞh∆whHΞhw2 +∆w

+tw2∆η1 = twhHΞhw + w − tw2η1 (21)

where Ξ , (Σ+ hwhH)−1. Note that

hHΞ∆ΣΞh = hHΞ∆DΞh+

N
∑

n=1

∆λnh
HΞene

H
n Ξh

+

M
∑

m=1

∆µmhHΞFmΞh. (22)

Substituting (22) into (21), we arrive at

thHΞ∆DΞhw2 + t

N
∑

n=1

∆λnh
HΞene

H
n Ξhw2

+ t

M
∑

m=1

∆µmhHΞFmΞhw2 + thHΞh∆whHΞhw2

+∆w + tw2∆η1 = twhHΞhw + w − tw2η1. (23)

Next, from (19d), (19e), and (19f), we have

teHn
[

(Σ+ hwhH +∆Σ+ h∆whH)−1 − (Σ+∆Σ)−1
]

en

−(λn +∆λn)
−1 + t(η2 +∆η2)Pn = 0, ∀n. (24)

tfHm
[

(Σ+ hwhH +∆Σ+ h∆whH)−1 − (Σ+∆Σ)−1
]

fm

−(µm +∆µm)−1 + t(η2 +∆η2)Im = 0, ∀m. (25)

t(Σ+ hwhH +∆Σ+ h∆whH)−1 − t(Σ+∆Σ)−1

−(D+∆D)−1 + t(η2 +∆η2)ξI = 0. (26)

Following the same steps from (21) to (23), (24) can be

approximated as

teHn Ξ∆DΞen − teHn Σ−1∆DΣ−1en + t

N
∑

i=1

∆λiϕn,i

+ t
M
∑

m=1

∆µmϕn,m + t∆wφn −∆λnλ
−2
n − t∆η2Pn

= tϕn − λ−1
n + tη2Pn, ∀n (27)

1The approximation (A + B)−1 ≈ A−1 − A−1BA−1 is proper for
small entries of matrix B and relatively rough for large entries of matrix B

[34, Chapter 3]. In particular, the residual error, as shown in Fig. 2, is high
for the first iterations since the approximation is not reliable. However, when
Algorithm 1 reaches the optimal solution due to updating B in each iteration,
the residual error will be small and thus the approximation becomes very
accurate.

where ϕn,i , |eHn Ξei|
2 − |eHn Σ−1ei|

2, ϕn,m , |eHn Ξfm|2 −
|eHn Σ−1fm|2, φn , |eHn Ξh|2, and ϕn , eHn [Ξ−Σ−1]en.

Similarly, (25) is approximated as

tfHmΞ∆DΞfm − tfHmΣ−1∆DΣ−1fm + t

N
∑

j=1

∆λjϑm,j

+ t

M
∑

s=1

∆µsϑm,s + t∆wαm −∆µmµ
−2
m

− t∆η2Im = tϑm − µ−1
m + tη2Im, ∀m (28)

where ϑm,j , |fHmΞej |
2 − |fHmΣ−1ej |

2, ϑm,s , |fHmΞfs|
2 −

|fHmΣ−1fs|
2, αm , |fHmΞh|2, and ϑm , fHm [Ξ−Σ−1]fm.

Similarly, we can approximate (26) as

tDΞ∆DΞD− tDΣ−1∆DΣ−1D+ t

N
∑

n=1

∆λnDΞ̇nD

+ t

M
∑

m=1

∆µmDΞ̂mD+ t∆wDΞ̄D−∆D− t∆η2ξD
2

= tD[Ξ−Σ−1]D−D+ tη2ξD
2 (29)

where Ξ̇n , Ξene
H
n Ξ − Σ−1ene

H
n Σ−1, Ξ̂m , ΞFmΞ −

Σ−1FmΣ−1, and Ξ̄ , ΞhhHΞ. Finally, from (19b), (19c),

and (19g), we have

∆U̇+ t∆η1U̇
2 = U̇− tη1U̇

2 (30)

∆w + tr(∆U̇) = P − w − tr(U̇) (31)

ξtr(∆D) + pT∆ψ = P − ξtr(D)− pTψ. (32)

At each Newton step, we can transform (23), (27), (28),

(29), (30), (31), and (32) into a system of linear equations

(i.e., vectorize D and U̇ as a vector of length N(N+1)/2 and

N(N − 1)/2, respectively) to find the optimization variables.

However, such a generic method using elimination requires

complexity of O(N6). In what follows, we apply a block elim-

ination method to find the optimal primal and dual variables

which results a low-complexity [33] as

∆U̇ = Ψ(0) +∆η1Ψ
(1). (33)

∆D = Θ(0) +

N
∑

n=1

∆λnΘ
(n) +

M
∑

m=1

∆µmΘ(N+m)

+∆wΘ(N+M+1) +∆η2Θ
(N+M+2). (34)

Substituting (33) into (30), we have

Ψ(0) = U̇− tη1U̇
2

Ψ(1) = −tU̇2.
(35)

The complexity of computing the multiplication of two ma-

trices in (35) is of the order O((N − 1)3). By doing so, we

substitute (34) into (29) yielding a system of (N +M + 3)
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generalized Sylvester equations

tDΣ−1Θ(0)Σ−1D− tDΞΘ(0)ΞD+Θ(0)

= −tD[Ξ−Σ−1 + η2ξI]D+D

tDΣ−1Θ(n)Σ−1D− tDΞΘ(n)ΞD+Θ(n)

= tDΞ̇nD, ∀n

tDΣ−1Θ(N+m)Σ−1D− tDΞΘ(N+m)ΞD

+Θ(N+m) = tDΞ̂mD, ∀m (36)

tDΣ−1Θ(N+M+1)Σ−1D− tDΞΘ(N+M+1)ΞD

+Θ(N+M+1) = tDΞ̄D

tDΣ−1Θ(N+M+2)Σ−1D− tDΞΘ(N+M+2)ΞD

+Θ(N+M+2) = −tξD2.

The numerical methods to solve the generalized Sylvester

equations (36) with complexity O(N3) can be found in [35].

Thus, it can be said that the complexity of solving (35) and

(36) is much lower than that of solving a system of linear

equations by a generic method.

To calculate ∆w, {∆λn}, {∆µm}, and ∆ηi, i ∈ {1, 2}, at

each Newton step, we aim to stack (23), (27), (28), (31), and

(32) into a system of linear equations. To do this, we substitute

(34) into (23), which leads to

γw∆w +

N
∑

n=1

γn∆λn +

M
∑

m=1

γ̃m∆µm

+ tw2∆η1 + γη2
∆η2 = γ0 (37)

where γw, γn, γm, γη2
, and γ0 are, respectively, given as

follows

γw = thHΞΘ(N+M+1)Ξhw2 + thHΞhhHΞhw2 + 1

γn = thHΞΘ(n)Ξhw2 + thHΞene
H
n Ξhw2

γ̃m = thHΞΘ(N+m)Ξhw2 + thHΞFmΞhw2

γη2
= thHΞΘ(N+M+2)Ξhw2

γ0 = thHΞhw2 + w − tw2η1 − thHΞΘ(0)Ξhw2. (38)

Similarly to (37), (27) can then be rewritten as

φ̃n∆w +

N
∑

i=1

ϕ̃n,i∆λi − λ−2
n ∆λn

+

M
∑

m=1

˜̃ϕn,m∆µm + θn∆η2 = ϕ̃n, ∀n (39)

where φ̃n, ϕ̃n,i, ˜̃ϕn,m, θn, and ϕ̃n are, respectively, defined by

φ̃n = teHn ΞΘ(N+M+1)Ξen

− teHn Σ−1Θ(N+M+1)Σ−1en + tφn

ϕ̃n,i = teHn ΞΘ(i)Ξen − teHn Σ−1Θ(i)Σ−1en

+ tϕn,i

˜̃ϕn,m = teHn ΞΘ(N+m)Ξen

− teHn Σ−1Θ(N+m)Σ−1en + tϕn,m

θn = teHn ΞΘ(N+M+2)Ξen

− teHn Σ−1Θ(N+M+2)Σ−1en − tPn

ϕ̃n = tϕn − λ−1
n + tη2Pn

− teHn ΞΘ(0)Ξen + teHn Σ−1Θ(0)Σ−1en.

(40)

Next, (28) is reformulated as

α̃m∆w +

N
∑

j=1

ϑ̃m,j∆λj +

M
∑

s=1

˜̃
ϑm,s∆µs

−µ−2
m ∆µm + θ̃m∆η2 = ϑ̃m, ∀m (41)

where α̃m, ϑ̃m,j ,
˜̃
ϑm,s, θ̃n, and ϑ̃m are, respectively, given as

α̃m = tfHmΞΘ(N+M+1)Ξfm

− tfHmΣ−1Θ(N+M+1)Σ−1fm + tαm

ϑ̃m,j = tfHmΞΘ(j)Ξfm − tfHmΣ−1Θ(j)Σ−1fm

+ tϑm,j

˜̃
ϑm,s = tfHmΞΘ(N+s)Ξfm

− tfHmΣ−1Θ(N+s)Σ−1fm + tϑm,s

θ̃m = tfHmΞΘ(N+M+2)Ξfm

− tfHmΣ−1Θ(N+M+2)Σ−1fm − tIm

ϑ̃m = tϑm − µ−1
m + tη2PIm − tfHmΞΘ(0)Ξfm

+ tfHmΣ−1Θ(0)Σ−1fm.

(42)

Finally, substituting (33) and (34) into (31) and (32), respec-

tively, yields

∆w + tr(Ψ(1))∆η1 = P − w − tr(U̇+Ψ(0)) (43)

χw∆w +

N
∑

n=1

χn∆λn +

M
∑

m=1

χ̃m∆µm + χη2
∆η2 = χ0 (44)

where χw = ξtr(Θ(N+M+1)), χn = ξtr(Θ(n)) + Pn, χ̃m =
ξtr(Θ(N+m)) + Im, χη2

= ξtr(Θ(N+M+2)), and χ0 =

P − pTψ − ξtr(D + Θ(0)). Let us define ∆x ,

[∆w∆λT ∆µT ∆η1 ∆η2]
T . A system of linear equations can

be derived by stacking (37), (39), (41), (43), and (44) as

A∆x = b (45)

where b1 = γ0, bn+1 = ϕ̃n for n = 1, . . . , N , bN+1+m = ϑ̃m
for m = 1, . . . ,M , bN+M+2 = P − w − tr(U̇ +Ψ(0)), and

bN+M+3 = χ0. Next, the matrix A ∈ C
(N+M+3)×(N+M+3)

is given at the top of the next page, where δi,j denotes the

Kronecker’s function, i.e., δi,j = 1 if i = j and δi,j = 0 if

i 6= j. We point out that the complexity of solving (45) (i.e.,

the inverse of matrix A) is of the order O((N +M + 1)3)
[33].

In order to apply the barrier method, we need to compute

the residual norm of w, U̇,D,λ,µ, and {ηi} used in the
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A =

































γw · · · γn · · · γ̃m · · · tw2 γη2

...
...

...
...

...

φ̃n · · · ϕ̃n,i − λ−2
n δn,i · · · ˜̃ϕn,m · · · 0 θn

...
...

...
...

...

α̃m · · · ϑ̃m,j · · · ˜̃
ϑm,s − µ−2

m δm,s · · · 0 θ̃m
...

...
...

...
...

1 · · · 0 · · · 0 · · · tr(Ψ(1)) 0
χw · · · χn · · · χ̃m · · · 0 χη2

































.

backtracking line search procedure which is defined as [29]

r(w, U̇,D,λ,µ, {ηi}) =

|hH(Σ+ hwhH)−1h+
1

t
w−1 − η1|

+‖
1

t
U̇−1 − η1I‖F + ‖(Σ+ hwhH)−1

−Σ−1 −
1

t
D−1 + η2ξI‖F + ‖π‖2 + ‖̟‖2

+|P − w − tr(U̇)|+ |P − ξtr(D)− pTψ| (46)

where π ∈ C
N×1 and ̟ ∈ C

M×1 are, respectively, defined

by

πn , eHn
[

(Σ+ hwhH)−1 −Σ−1
]

en −
1

t
λ−1
n + η2Pn, ∀n

̟m , fHm
[

(Σ+ hwhH)−1 −Σ−1
]

fm −
1

t
µ−1
m + η2Im, ∀m.

The proposed numerical algorithm based on the barrier method

to solve (13) is summarized in Algorithm 1. The backtracking

line search procedure in line 12 stops when the residual norms

in (46) is less than a given accuracy, i.e., the tolerance ǫ.

B. Optimization over Γtol

P7 can be rewritten by considering the optimization over

Γtol as

max
Γtol>0

f(Γtol) (47)

where f(Γtol) is defined as

f(Γtol) =

min
ψ≥0,D�0

max
w≥0,Ū�0

log |Σ+hwh
H |

|Σ| − log(1 + Γtol)

s. t. w + tr(ΩŪ) = P
ξtr(D) + pTψ = P.

(48)

Since the objective function is concave with respect to Γtol,

a conventional method to find the optimal solution of Γtol

is based on one dimensional search [14]. However, the major

computational complexity comes from solving (48). Therefore,

one dimensional search method to seeking a saddle point

of Γtol may not be efficient since one dimensional search

often shows slow convergence. In this section, we propose an

efficient method to find the global optimal Γ⋆
tol which greatly

reduces the complexity. To do this, we consider the following

Algorithm 1 The proposed numerical algorithm to solve (13)

Initinalization: w := 1, U̇ := IN−1,D := IN ,λ := 1,µ :=
1, {ηi} := 0, t := t0, and ℓ and tolerance ǫ > 0

1: repeat {Outer iteration}
2: repeat {Inner iteration (centering step)}
3: Solve (35) to find Ψ(i) for 0 ≤ i ≤ 1.

4: Solve (36) to find Θ(i) for 0 ≤ i ≤ N +M + 2.
5: Solve (45) to find ∆w, ∆λ, ∆µ, and {∆ηi}.

6: Backtracking line search on r(w, U̇,D,λ,µ, {ηi}):

7: s = 1
8: while r

(

w + s∆w, U̇ + s∆U̇,D + s∆D,λ +
s∆λ,µ + s∆µ, {ηi} + s{∆ηi}

)

> (1 −

αs)r
(

w, U̇,D,λ,µ, {ηi}
)

or U̇ + s∆U̇ � 0 and

D+ s∆D � 0 do

9: s = βs
10: end while

11: Update primal and dual variables: w := w + s∆w,

U̇ := U̇ + s∆U̇; D := D + s∆D, λ := λ + s∆λ,

µ := µ+ s∆µ, and {ηi} := {ηi}+ s{∆ηi}.

12: until r(w, U̇,D,λ,µ, {ηi}) < ǫ
13: Increase t: t = ℓt.
14: until t is sufficiently large to tolerate the duality gap.

equivalent problem for a given set of (w, U̇,D,λ, µ)

min
Γtol>0

h(Γtol) , log(1 + Γtol)

s. t. −tr(V̄HDV̄Ū)Γtol = P − w − tr(Ω̃Ū)

ξ̃tr(D)Γtol = P − pTψ

(49)

where Ω̃ , V̄H
(

diag(λ) +
∑M

m=1 µmFm

)

V̄ and ξ̃ ,

Φ−1
N (1 − κ1/K). With implicit constraint Γtol > 0, we can

derive the simpler form of the objective function in (49)

without affecting optimality, as follows:

h̃(Γtol) , h(Γtol − 1) = log(Γtol). (50)

The Lagrangian function of (49) can be defined as [33]

L(Γtol,υ) = h̃(Γtol) + υ
TaΓtol − ρ

Tυ (51)

where ρ , [P − w − tr(Ω̃Ū) P − pTψ]T , a ,

[−tr(V̄HDV̄Ū), ξ̃tr(D)]T , and υ , [υ1 υ2]
T with υ1

and υ2 being the dual variables related to the constraints in

(49). Then, the solution of (49) can be found by solving the

dual problem which is presented in the following theorem
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Theorem 2: The dual problem of (49) is given by

max
υ

g(υ) = −ρTυ − log(−aTυ)− 1 (52)

with implicit constraint aTυ < 0.

Proof: See Appendix D.

Corollary 1: The optimal solution Γtol can be obtained

from that of (52) as

Γtol = −
1

υTa
. (53)

Proof: Once the optimal dual variable υ⋆ is found, we

can obtain the optimal solution of Γtol from (49) by solving

the KKT condition in (51) as

∇Γtol
h̃(Γtol) + υ

Ta = Γ−1
tol + υ

Ta = 0. (54)

This completes the proof.

We now apply Broyden-Fletcher-Goldfarb-Shanno algorithm

[36] to solve the unconstrained optimization problem (52).

The BFGS method is a member of the quasi-Newton methods

which often shows superior convergence rate. A standard

method for solving the log concave function in (52) is to

consider the following equivalent optimization problem

min
υ

g̃(υ) = −g(υ). (55)

The BFGS algorithm can be described as

1. Compute ∆υ by ∆υ = −P∇g̃(υ),
where ∇υ g̃(υ) = ρ− a/(aTυ).

2. If ‖∇υ g̃(υ +∆υ)‖ < ǫ́ (tolerance), then stop.

3. Update the dual variables: υ := υ +∆υ.

4. Compute φ́ = ∇υ g̃(υ +∆υ)−∇υ g̃(υ).
5. Update P as [36]

P := P+

(

∆υT φ́+ (φ́)TPφ́
)(

∆υ∆υT
)

(∆υT φ́)2

−
Pφ́∆υT +∆υ(φ́)TP

∆υT φ́
. (56)

6. Go back to Step 1.

However, the cost of computation of these steps is rela-

tively high when the first gradient on υ is computed many

times. To reduce the computational complexity, we choose

φ = −∇g̃(υ) and store it for the next iteration. The overall

iterative algorithm based on the BFGS method, but customized

to our problem to solve (47) is given in Algorithm 2 and it

can be summarized as follows. For a given υ, Γtol in (53)

is computed, (48) (or equivalently (13)) is solved based on

Algorithm 1 to obtain (w, U̇,D,λ, µ); then update υ from

line 5 until ‖φ‖ is below a specified accuracy level (i.e., the

tolerance ǫ́ ).

C. Complexity Comparison

The complexity of the proposed method mainly comes from

Algorithm 1. In particular, solving (35), (36), and (45) requires

a complexity of O((N − 1)3), O(N3), and O((N + M +
1)3), respectively, while a generic method has complexity

of O(N6). That is to say, the proposed algorithm requires

much less complexity, compared to the generic method. As

Algorithm 2 Main algorithm to solve (47)

Initinalization: υ := 1,φ := −∇υ g̃(υ), φ́ := 0,P := I ,

ś := 1, and tolerance ǫ́ > 0
1: loop

2: Solve (48) based on Algorithm 1 to obtain (w, U̇,D,λ,
µ).

3: Compute φ := φ− φ́ and ∆υ = Pφ.
4: Stop, if ‖φ‖ < ǫ́.
5: Update υ, φ́, and P in the strict order:

υ := υ + ś∆υ
φ́ := φ+∇υ g̃(υ)
P as the result in (56).

6: end loop

7: Output: (υ, w, U̇,D,λ, µ)

mentioned in Section III, a semidefinite program (SDP) can

be applied to solve the relaxed problem of P6, i.e., using

a specific interior point method which is called the primal-

dual path following method [37]. However, such a method

has complexity of O((2N−1)4) per iteration, which is higher

than that of our proposed method, especially when N becomes

large.

V. NUMERICAL RESULTS

In this section, we provide numerical results to validate the

performance of the proposed optimal approach. The entries of

the channel vectors are all generated as independent circularly

symmetric complex Gaussian (CSCG) random variables with

zero-mean and unit variance. To guarantee secure communi-

cation, we set the probability κ = 0.99. For simplicity, we

assume that the interference thresholds at the PUs are equal,

i.e., Im = I for all m, and the number of Eves is fixed to

K = 3. The resulting power constraint for each antenna is

Pn = P/N for all n, where P is the total transmit power at the

ST. We also compare the performance of the proposed scheme

with existing schemes, namely, the “Isotropic JN scheme” [9],

[22] and “No JN scheme” [5]. In the “Isotropic JN scheme,”

the covariance matrix of the jamming beamforming is chosen

as U = puV̄V̄
H

N−1 where the variable pu is used to control

interference to the PUs and Eves. In the “No JN scheme,” the

optimization problem with no JN is considered as a benchmark

where the optimal solution can be obtained from (47) by

setting U to 0. The results obtained from (47) are referred

to as the “Optimal JN scheme.” The results of the average

secrecy rate are shown by averaging over 1,000 simulation

trials.

Fig. 2 depicts the typical convergence behavior of the

proposed Algorithm 1 where the network parameters are given

in the caption. Particularly, we plot the typical convergence

behavior of the proposed barrier method as a function of the

number of transmit antennas at the ST in Fig. 2(a), and a

function of the number of PUs in Fig. 2(b). The initial values

for the primal and dual variables in Algorithm 1 are randomly

generated. It is observed that Algorithm 1 exhibits a fast

convergence rate, which is slightly sensitive to the network

configurations.



10

2 4 6 8 10 12 14 16
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Number of iterations

R
e
s
id

u
a
l

e
rr

o
r

N = 5

N = 10

N = 15

(a) Convergence behavior of the proposed Algorithm 1 for different number
of transmit antennas at the ST. The number of PUs is M = 1.
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(b) Convergence behavior of the proposed Algorithm 1 for different number
of PUs. The number of transmit antennas at the ST is N = 5.

Fig. 2. Convergence behavior of the proposed Algorithm 1, (a) for different
number of transmit antennas at the ST, and (b) for different number of
PUs. Each curve is obtained for one channel realization. The parameters of
Algorithm 1 are as follows. The tolerance is set to ǫ = 10−5. The barrier
parameters ℓ and t0 are set to 1 and 50, respectively. The backtracking line
search parameters in Algorithm 1 are set as α = 0.01 and β = 0.5. In this
example, we set the network parameters as P = 10 dB and I = 1 dB.

Fig. 3 shows the convergence rate of the proposed Algo-

rithm 2. We also compare the convergence rate of the proposed

algorithm with the damped Newton method. The damped
Newton method can easily be applied to solve the considered

problem following similar steps as in [33, Section 9.5.2] which

also shows a fast convergence. The initial value of Γtol is set

to 0 dB. As seen, the duality gap of the Algorithm 2 drops

fast to minimum when the number of iterations increases,

and shows a faster convergence than that of the damped
Newton method algorithm. This is mainly due to the fact that

the BFGS algorithm approximates the inverse of the Hessian

matrix by using rank-one updates [36], which means that the

Hessian matrix is not computed directly. We recall that this

result significantly reduces the complexity of the considered

problem since the major computational complexity comes
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Fig. 3. Convergence behavior of the proposed Algorithm 2. Each curve is
obtained for one channel realization. The tolerance ǫ́ is set to 10−5. The
network configuration is N = 5, M = 3, P = 10 dB, and I = 1 dB.
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Fig. 4. Average secrecy rate of the secondary system versus the total transmit
power at the ST. In this example, we set the network parameters as I = 5
dB, N = 5, and M = 3.

from Algorithm 1.

Fig. 4 illustrates the average secrecy rate of the secondary

system versus the transmit power at the ST. As seen, the

curves coincide in low power regime. The reason is that in

such a case, the ST mainly focuses on maximizing the secrecy

rate, as the interference constraints are likely satisfied for all

PUs. This indicates that JN may not be necessary in this

regime. However, in high power regime, the schemes using JN

outperform the scheme with no JN in terms of the secrecy rate.

In addition, for the “Optimal JN scheme,” the ST is allowed

to transmit with nearly full power, whereas the performance

of the “Isotropic JN scheme” and “No JN scheme” tends to

saturate. This is because the “Optimal JN scheme” controls the

interference to the PUs more efficiently than the other schemes

thanks to the optimized transmission.

The average secrecy rate of the secondary system is plotted

versus the number of antennas at the ST and the number

of PUs in Fig. 5(a) and Fig. 5(b), respectively. From Fig.

5(a), it can be observed that the average secrecy rate of the

“Isotropic JN scheme” increases with N and approaches that
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(a) Average secrecy rate of the secondary system for different number of
transmit antennas at the ST. The number of PUs is M = 3.
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(b) Average secrecy rate of the secondary system for different number of
PUs. The number of transmit antennas at the ST is N = 5.

Fig. 5. Average secrecy rate of the secondary system, (a) for different number
of transmit antennas at the ST, and (b) for different number of PUs. The
network parameters are set to P = 10 dB and I = 5 dB.

of the “No JN scheme” for large N . This means that for

the “Isotropic JN scheme,” we need little or no JN when N
is sufficiently large. The “Optimal scheme” still achieves a

better performance than the other schemes in all the range of

N . As expected, the average secrecy rate is improved as the

number of transmit antennas increases in all schemes, since

more degrees of freedom are added to the ST. From Fig. 5(b),

the performance of the three schemes degrades significantly

when the number of PUs increases. The reason is that when

the transmit power becomes sufficiently large, the ST needs

to avoid transmitting its signals over the spatial space of PUs.

Therefore, the degrees of freedom left for the ST are reduced

when the number of PUs increases.

In this numerical example, we plot the average secrecy

rate of the secondary system for the “Optimal JN scheme”

under several different assumptions of sharing equally the

resources, i.e., transmit power at the ST and interference

thresholds at the PUs. In particular, for total transmit power

at the ST, the information and JN beamforming are assumed
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Fig. 6. Average secrecy rate of the secondary system versus the total transmit
power at the ST, P , for different interference thresholds at the PUs, I (I =
Im,m = 1, 2, · · · ,M ). The network conguration is N = 5 and M = 3.
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Fig. 7. Average secrecy rate of the secondary system versus the total transmit
power at the ST, P , for different number of PUs, M . We set the network
parameters as N = 5 and I = 5 dB.

to share 50% of the power resource, i.e., [W]n,n ≤ Pn/2 and

[V̄ŪV̄H ]n,n ≤ Pn/2, which is referred to as equal transmit

power (ETP). Likewise, the information and JN beamforming

are assumed to share 50% of the interference threshold, i.e.,

tr(FmW) ≤ Im/2 and tr(F̄mŪ) ≤ Im/2, which is referred

to as equal interference threshold (EIT). Consequently, we

compare the performance of the proposed design with three

other suboptimal methods, namely ETP, EIT, and EIT-ETP, and

we present the results in Fig. 6. A general observation is that

the joint optimization design outperforms the other designs in

terms of the secrecy rate of the secondary system, especially

when compared to the ETP design. In addition, decreasing

the interference threshold I significantly degrades the secrecy

rate of the secondary system. The performance gain achieved

for higher interference threshold is due to the fact that more
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Fig. 8. Average sum rate of the primary system versus average secrecy rate
of the secondary system. For both systems, the network parameters are set to

Ñ = N = 5, P̃ = P = 15 dB, and M = 3.

transmit power can be used when the interference threshold

constraints are set to be high. Interestingly, the secrecy rate

of the EIT design approaches the optimal one when the

interference threshold is relatively small.

According to Remark 4, we now investigate the effect of two

different types of power constraints on the performance of the

secondary system, i.e., SPC and PAPCs. As can be seen from

Fig. 7, the secondary system achieves a better performance

by using the SPC than the PAPCs. The gaps between the two

types of power constraints are negligible for a large M and

high transmit power at the ST, P . We recall that for large

M and high P , the secondary system lacks the degrees of

freedom to leverage multiuser diversity.

Finally, the interference from the ST to a PU is consid-

ered in several schemes. Thus, it is interesting to investigate

how different schemes of interference constraints affect the

performance of the primary system. In particular, we consider

a primary system where the primary transmitter is equipped

with Ñ antennas and adopt zero-forcing beamforming with

PAPCs [29]. The interference from the ST is basically treated

as background thermal noise at the PUs. The total transmit

power at the primary transmitter is limited by P̃ . For this

setup, the average achieved sum rate of the primary system is

considered as a performance metric to evaluate the effective-

ness of each scheme. As can be seen from Fig. 8, the primary

system achieves a higher sum rate with the “Optimal scheme”

than with the other schemes. The gap between the schemes

diminishes for a lower sum rate of the primary system. This

is because in such a case, the interference at the PUs is higher,

and thus the “Isotropic JN scheme” and “No JN scheme”

can manage the interference more effectively. Interestingly, the

proposed optimal solution is quite robust even when the sum

rate of the primary system is high, whereas the secrecy rate of

the “Isotropic JN scheme” and “No JN scheme” drop to zero.

VI. CONCLUSION

We studied the secrecy rate maximization problem of MISO

CRN in the presence of multiple passive eavesdroppers and

primary users. The problem design is subject to per-antenna

power constraints at the secondary transmitter and interfer-

ence constraints at the PUs. By assuming the eavesdroppers’

channel i.i.d. Rayleigh fading, we first convert a nonconvex

constraint to a linear matrix inequality convex constraint. For

an optimal beamforming design, we transformed the problem

of secrecy rate maximization into that of finding a saddle point

of a minimax program where a rank relaxation method is

shown to be tight. We further developed a computationally

efficient algorithm based on a barrier method to find the

optimal solution of the mimimax problem. For the global op-

timal solution, the BFGS algorithm was employed to solve an

unconstrained optimization problem based on a dual problem.

Numerical results illustrated the superior convergence behavior

of the proposed algorithm, which is robust to the problem

size. Through numerical examples, we evaluated the tradeoff

between the secrecy rate of the secondary system and the sum

rate of the primary system. We concluded that the proposed

approach offers a better performance and is quite robust when

compared to the existing approaches [5], [9], [22].

APPENDIX A

PROOF OF LEMMA 1

The probability in (10b) for the k-th Eve link can be

rewritten as

Pr
(

tr
(

Gk

(

W − ΓtolV̄ŪV̄H
))

≤ Γtol

)

. (57)

Let Q , W−ΓtolV̄ŪV̄H . The probability in (57) cannot be

computed directly unless specific properties of Q are satisfied.

For N × N Hermitian matrices Gk and Q, the following

inequality holds [32]

tr(GkQ) ≤
N
∑

i=1

λi(Gk)λi(Q)

(a)
= λmax(Gk)λmax(Q)

(b)
= tr(Gk)λmax(Q)

(58)

where λi(X) denotes the i-th eigenvalue of matrix X ∈
H

N×N and its orders are arranged as λmax(X) = λ1(X) ≥
λ2(X) ≥ · · · ≥ λN (X) = λmin(X). In addition, the equalities

(a) and (b) in (58) are obtained because Gk is a rank-one

positive semidefinite matrix. Substituting (58) into (57), we

have

Pr
(

tr
(

Gk

(

W − ΓtolV̄ŪV̄H
))

≤ Γtol

)

≥ Pr
(

tr(Gk)λmax(Q) ≤ Γtol

)

. (59)

Since the channel gk, ∀k, is modeled as i.i.d. Rayleigh fading,

we have

Pr
(

max
k∈K

tr(GkW)

tr(GkV̄ŪV̄H) + 1
≤ Γtol

)

≥ Pr
(

tr(G)λmax(Q) ≤ Γtol

)

≥ κ1/K

⇔ Pr
(λmax(Q)

Γtol
≥

1

tr(G)

)

≤ 1− κ1/K

(c)
⇔ λmax(Q) ≤ Φ−1

N (1− κ1/K)Γtol

⇔ Q � I
(

Φ−1
N (1− κ1/K)Γtol

)

(60)
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where without loss of generality, we have removed the index

of Eves and (c) is obtained similarly to the steps of Lemma

2 in [23]. Φ−1
N (·) denotes the inverse cumulative distribution

function of an inverse central chi-square random variable with

2N degrees of freedom, and tr(G) = tr(|g|2) is the sum of

the squares of N independent Gaussian random variables. This

completes the proof.

APPENDIX B

PROOF OF LEMMA 2

In this appendix, we prove that the rank of the optimal

solution W⋆ to (12) is less than or equal to one. The

Lagrangian of the relaxed version of (12) can be defined with

respect to W as

L(W,D, {λn}, {µm},Λw) = log(1 + hHWh)− tr(DW)

−
N
∑

n=1

λntr(WB(n))−
M
∑

m=1

µmtr(FmW) + tr(WΛw) + Ω

(61)

where B(n) , THT, T = [0T
n−1 1 0T

N−n], Fm , fmfHm ,

and Ω denotes the summation of terms that only involve

variables not related to the structure of W⋆. {λn ≥ 0} and

{µm ≥ 0} are the Lagrange multipliers of P.6 associated

with the constraints (12c) and (12d), respectively. The matrices

D � 0 and Λw � 0 are the Lagrange multiplier matrices as-

sociated with the constraint (12b) and the positive semidefinite

matrix constraint W � 0, respectively.

Let Σ , D+ B̄+
∑M

m=1 µmFm, where B̄ = diag(λ) and

λ = [λ1, λ2, . . . , λN ]T . Then (61) can be rewritten as

L(W,Σ,Λw) = log(1 + hHWh)− tr(ΣW)

+ tr(WΛw) + Ω. (62)

The optimality conditions for (62) are directly related to W⋆,

which should satisfy the necessary conditions for optimality

[33]

hhH

1 + hHW⋆h
−Σ⋆ +Λ⋆

w = 0

Λ⋆
wW

⋆ = 0

W⋆ � 0.

(63)

By multiplying the first equation in (63) with W⋆ and applying

the result to the second equation in (63), we get

hhH

1 + hHW⋆h
W⋆ = Σ⋆W⋆. (64)

Since Σ⋆ is invertible,2 rank(Σ⋆) = N . In addition,

rank(hhH) ≤ 1, and it follows from (64) that rank(W⋆) ≤ 1.

Lemma 2 is thus proved.

2We remark that {λn}, or D and {µm} must be positive. This is because
the total power at the ST should be used up or the interference constraints
should be met at optimum, i.e., {λ⋆

n
} > 0, or D⋆ ≻ 0 and {µ⋆

m
} > 0. In

other words, the inequality constraint in (12c), or (12b) and (12d) hold with
equality at optimality.

APPENDIX C

PROOF OF THEOREM 1

Here, we prove that P7 is the dual problem of the relaxed

problem of P6. In particular, we follow the same steps as in

[29] while customizing them to our considered problem. The

partial Lagrangian function of the relaxed version of P6 can

be defined as

L(W, Ū,D, {λn}, {µm}) = log(1 + hHWh)

−tr(D(W − ΓtolV̄ŪV̄H − Iξ))

−
N
∑

n=1

λn

(

tr(WB(n)) + tr(ŪE(n))− Pn

)

−
M
∑

m=1

µm

(

tr(FmW) + tr(F̄mŪ)− Im

)

(65)

where E(n) , T̄HT̄, T̄ = [0T
n−1 1 0T

N−n]V̄, and F̄m ,

f̄mf̄Hm . Next, the dual objective of P6 is given by

D(D, {λn}, {µm}) = max
W,Ū�0

L(W, Ū,D, {λn}, {µm}).

(66)

For a given set (D, {λn}, {µm}), we first rewrite the partial

Lagrangian function as

L(W, Ū,D,λ,µ) = log(1 + hHWh)− tr(ΣW)

−tr(ΩŪ) + ξtr(D) + p̄Tλ+ Ī
T
µ (67)

where Ω , −ΓtolV̄
HDV̄+

∑N
n=1 λnE

(n)+
∑M

m=1 µmF̄m =

V̄H
(

−ΓtolD+ diag(λ) +
∑M

m=1 µmFm

)

V̄,

p̄ = [P1, P2, · · · , PN ]T , λ = [λ1, λ2, · · · , λN ]T ,

Ī = [I1, I2, · · · , IM ]T , and µ = [µ1, µ2, · · · , µM ]T .

Let W̄ = Σ1/2WΣ1/2. Since Σ is invertible, (67) can be

rewritten as

L(W̄, Ū,D,λ,µ) = log(1 + hHΣ−1/2W̄Σ−1/2h)

−tr(W̄)− tr(ΩŪ) + ξtr(D) + p̄Tλ+ Ī
T
µ. (68)

Based on the results in [28, Appendix A], the dual objective

in (66) is equivalent to

D(D,λ,µ) = max
w≥0,Ū�0

log |I+Σ−1/2hwhHΣ−1/2|

−w − tr(ΩŪ) + ξtr(D) + p̄Tλ+ Ī
T
µ (69)

where the relationship between W̄ and w is given by

W̄ =
Σ−1/2hwhHΣ−1/2

hHΣ−1h
. (70)

Next, we can write D(D,λ,µ) in a more compact form as

D(D,ψ) = max
w≥0,Ū�0

log |I+Σ−1/2hwhHΣ−1/2|

− w − tr(ΩŪ) + ξtr(D) + pTψ

= max
w≥0,Ū�0

log
|Σ+ hwhH |

|Σ|

− w − tr(ΩŪ) + ξtr(D) + pTψ

(71)

where p = [p̄T Ī
T
]T and ψ = [λT µT ]T .
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The dual problem is obtained by minimizing D(D,ψ) as

min
ψ≥0,D�0

D(D,ψ). (72)

or equivalently as

min
ψ≥0,D�0

max
w≥0,Ū�0

log |Σ+hwh
H |

|Σ| − w − tr(ΩŪ)

+ ξtr(D) + pTψ.
(73)

To obtain an optimal point for the minimax problem in (73),

we introduce another optimization variable ϕ ≥ 0. Then, (73)

can be rewritten as

min
ψ≥0,D�0

max
ϕ≥0,w≥0,Ū�0

log |Σ+hwh
H |

|Σ| − ϕP

+ξtr(D) + pTψ

s. t. w + tr(ΩŪ) ≤ ϕP.

(74)

It is easy to see that (74) is equivalent to (73) since the

inequality must hold with equality at optimality; otherwise,

we can scale down ϕ to achieve a strictly larger objective.

Next we make a change of variables as

w̃ = w/ϕ, ψ̃ = ψ/ϕ, D̃ = D/ϕ, Ũ = Ū/ϕ. (75)

We now consider w̃, ψ̃, D̃, and Ũ as the new optimization

variables. Then, (74) can be equivalently expressed as

min
ψ̃≥0, D̃�0

max
ϕ≥0,w̃≥0,Ũ�0

log |Σ̃+hw̃h
H |

|Σ̃|

+ ϕ(ξtr(D̃) + pT ψ̃ − P )

s. t. w̃ + tr(ΩŨ) ≤ P

(76)

where Σ̃ = Σ/ϕ. It is easy to see that the optimal dual

variable ϕ⋆ can be obtained by considering the minimization

of (76) over ψ̃ and D̃. Hence, (76) is the dual of the following

problem:

min
ψ̃≥0, D̃�0

max
ϕ≥0,w̃≥0,Ũ�0

log |Σ+hw̃h
H |

|Σ|

s. t. w̃ + tr(ΩŨ) ≤ P

ξtr(D̃) + pT ψ̃ ≤ P.

(77)

Finally, from the derivations in (70), (75), (77) and W =

Σ−1/2W̄Σ
−1/2
k , the proof is finalized.

APPENDIX D

PROOF OF THEOREM 2

The dual objective of (49) is

g(υ) = inf
Γtol

L(Γtol,υ) = −ρTυ + inf
Γtol

(

h̃(Γtol) + υ
TaΓtol

)

= −ρTυ − sup
Γtol

(

(−aTυ)TΓtol − h̃(Γtol)
)

= −ρTυ − h̃∗(−aTυ) (78)

where h̃∗(·) is the convex conjugate of h̃(·).
For the convex conjugate h̃∗(−aTυ), we use the Legendre

Transform to a log function as: − log(x) → −(1+ log(−x∗))
[38]. Thus, the dual problem is

g(υ) = −ρTυ − 1− log(−aTυ) (79)

and the proof is completed.
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