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4Université de Lyon, Laboratoire Magmas et Volcans, UJM-UCA-CNRS-IRD, F-42023 Saint-Étienne, France
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S U M M A R Y

Muography is a relatively new geophysical imaging method that uses muons to provide esti-

mates of average densities along particular lines of sight. Muography can only see above the

horizontal elevation of the detector and it is therefore attractive to attempt a joint inversion of

muography data with gravity data, which is also responsive to density but generally requires

combination with another geophysical data set to overcome issues related to non-uniqueness

and poor depth resolution. Some previous work has investigated this joint inverse problem

and demonstrated the potential improvements to be gained by jointly inverting muography

and gravity data. However, there has yet to be a thorough investigation of different numerical

approaches for formulating the joint inverse problem. Particularly important is how to account

for the fact that even though the two data types are sensitive to the same physical quantity,

density, they respond through different response functions. Moreover, the two measurements

are affected by different systematic uncertainties that are difficult to model. In this work, we

considered an approximation where the two density quantities, inferred from the two data

types, can be related by an unknown scalar offset. We considered various existing and new

joint inversion methods that might solve this problem and we applied them to a synthetic

volcano imaging scenario based on the Puy de Dôme volcano in the Central Massif region of

France. We used unstructured meshes in our modelling to adequately honour the significant

topography in that scenario. Our experiments indicated that the most successful joint inver-

sion method for this type of geological scenario was one in which the data misfit function

is reformulated to automatically determine the best-fitting offset following a least-squares

minimization argument. However, other approaches showed merit and we suggest several of

the investigated methods be applied and compared for any specific joint inversion scenario.

Key words: Gravity anomalies and Earth structure; Inverse theory; Joint inversion; Numer-

ical modelling; Tomography; Remote sensing of volcanoes.

1 I N T RO D U C T I O N

Muography is a natural source imaging method that uses muons,

subatomic particles generated through interactions between cos-

mic particles and the Earth’s atmosphere. The number of muons

transmitted through a body of rock is, to first order, inversely re-

lated to the integrated density (total mass) along the path. Muons

are counted as they pass through a muon detector, which provides

direction information and, after processing, estimates of average

densities along particular lines of sight. Several muographic im-

ages can then be combined to perform muon tomography, which

involves 3-D density reconstruction from muographic data. In this

sense, muon tomography might be compared to seismic tomography

with straight rays.

Muography is a relatively new imaging method to be employed in

geophysics. Atmospheric muons, produced high in the atmosphere,

travel downwards at some angle before reaching the detector. There-

fore, muography can effectively only see upwards from the detector,
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that is, above the horizontal elevation of the detector. Hence, geo-

physical studies using muography have typically involved targets

with large and steep topographic relief, for example, human-built

pyramids (e.g. Tanaka et al. 2010; Morishima et al. 2017) and vol-

canos (e.g. Cârloganu et al. 2013), but some work suggests the

feasibility of deploying muon detectors inside mine workings or

even boreholes (e.g. Liu et al. 2012; Schouten & Ledru 2018).

Collection of muography data in the field is usually limited by

cost, land and power access, and time. The required exposition time

increases with an object’s thickness and density; for objects less

than a kilometre thick and small muon telescopes (∼1 m2), data

are typically recorded over several months at each detector loca-

tion. Because of those survey considerations, and the limitation of

muography data to only see upwards from the detector, it is attrac-

tive to attempt a joint inversion of muography data with another

complimentary geophysical data type. A clear choice is gravity,

which is responsive to the same physical property, density.

Some previous work has investigated joint inversion of those

two data types through either synthetic (Davis & Oldenburg 2012;

Jourde et al. 2015; Barnoud et al. 2019) or both synthetic and real

data studies (Nishiyama et al. 2014, 2017; Rosas-Carbajal et al.

2017). Those studies demonstrated the potential improvements to

be gained by jointly inverting muography and gravity data. However,

there has yet to be a thorough investigation of different numerical

approaches for formulating the joint inverse problem to account for

the fact that the two data sets respond to density through different

mathematical response functions, which results in some generally

unknown offset. The work of Davis & Oldenburg (2012), Jourde

et al. (2015), Nishiyama et al. (2017) and Barnoud et al. (2019)

considered joint inversion methods that assumed both data sets were

responsive to the same density quantity, which requires an accurate

manual relative shifting of the two data sets prior to inversion,

for example, as guided by prior information. Instead of relying on

such prior information, Rosas-Carbajal et al. (2017) included an

additional scalar model parameter in the inversion representing the

unknown relative density offset.

In this paper we first explain the basics of forward modelling

for muography and gravity data. We then develop the mathematics

for various joint inversion approaches, with the primary goal of

assessing the relative offset between the two density quantities. We

test our methods on a volcano imaging problem based on the Puy de

Dôme volcano in the Central Massif region of France. While the

test scenario is synthetic, it uses a fully 3-D model of the volcano

built from existing geological and geophysical information, and

it includes data measurement locations at which preliminary field

survey data has already been collected.

2 M E T H O D S

2.1 Forward modelling

We discretize the Earth volume of interest into a 3-D unstructured

mesh of space-filling tetrahedra. Rectilinear meshes could also be

used but we chose unstructured meshes for this work because they

are better able to honour complicated a priori surfaces, for example

significant topography, without requiring large numbers of mesh

cells. To calculate the gravity response of a density model, we use

the methods of Okabe (1979) (see also Lelièvre et al. 2012).

We now provide a layperson’s description of the phenomena that

control the path and scattering of the subatomic particles involved

in muography. Please refer to Nagamine et al. (1995), Procureur

(2018) and Tanabashi et al. (2018) for more details. Raw muogra-

phy data comprises muon hits against different panels in the muon

detector assembly. From this information, one can separate the high

energy muons that propagated straight through the imaging target

(volcano for example), which carry the density information, from

all the other charged particles that give signals in the detector. The

physical phenomena that control the subatomic particles as they

travel through the atmosphere and target are stochastic processes.

Details on the production of atmospheric muons and their energy

loss can be found in Tanabashi et al. (2018). The muon transport

problem can be efficiently solved by Monte-Carlo simulation, for

example as described in Niess et al. (2018a). After various process-

ing steps (see Niess et al. 2018b), one arrives at the final muography

data that will be input into the geophysical inversion; that data com-

prises average densities along solid angles, by which we mean small

bins across the azimuthal and polar angles, for example in one de-

gree increments.

The mathematics of the forward modelling solution required is

relatively simple compared to the stochastic physical modelling that

provides the average density estimates. Given a modelling mesh

(a discretization of the Earth volume of interest) and the detector

location, one must integrate the densities in the mesh across each

solid angle bin corresponding to each muography data value (each

average density):

ρav =

∫

�

∫

r
ρ drd�

∫

�

∫

r
drd�

, (1)

where

(1) ρav is the average density

(2) � is the solid angle bin

(3) r is distance from the detector

(4) ρ is absolute density.

The numerator in eq. (1) is the integrated density (total mass) in

the volume of the mesh subtended by the solid angle. The denomi-

nator divides by the volume to provide the average density.

To numerically integrate eq. (1) we utilize straight ray tracing,

for example as would be used for a seismic tomography problem.

If rays are traced across a grid of angles that subdivide the solid

angle � then we are in essence calculating eq. (1) numerically in a

spherical coordinate system:

ρav =

∑A

i=1

∑P

j=1

∑R

k=1 ρkdkδ�
∑A

i=1

∑P

j=1

∑R

k=1 dkδ�
, (2)

where

(1) δ� is a sub-bin, a division of the solid angle �

(2) the first sum is over the azimuthal angles that subdivide the

solid angle �

(3) the second sum is over the polar angles that subdivide the

solid angle �

(4) the third sum is over the cells in the mesh encountered by a

ray traced along the centre of a particular solid angle sub-bin δ�

(5) ρk is the density in one of the traced cells

(6) dk is the distance that the traced ray passed through the cell.

The procedure is therefore to trace each ray along the centre of

each solid angle sub-bin to determine the cells encountered and

then calculate the sums above. We can reduce the numerical error

by increasing the number of sub-bins in the azimuthal and polar

directions that subdivide each solid angle �. However, because of

the geometrical spreading of the rays away from a muon detector, the
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errors in this calculation increase with distance from the detector.

Therefore, the number of sub-bins required to adequately reduce

the modelling error must be determined by the size of the cells on

the far side of the mesh from the detector.

2.2 Joint inversion for a single density model for both data

types

2.2.1 Deterministic inversion

The term joint inversion has been used in many different ways in

the literature (see Moorkamp et al. 2016). Here we use the term

to denote any inversion that simultaneously uses two types of geo-

physical data. In this work we formulated the joint inverse problem

in many ways, all of them as deterministic formulations where we

minimized an objective function using a Gauss–Newton minimiza-

tion algorithm. The simplest form of the objective function that we

considered was

Φ = λ1Φd1(m) + λ2Φd2(m) + Φm(m), (3)

where

(1) Φ is the total objective function to be minimized

(2) m is a model vector containing the density values in each cell

of the inversion mesh

(3) Φd1 measures the misfit between the observed gravity data

and the gravity response of the candidate model m

(4) Φd2 measures the misfit between the observed muography

data and the muography response of the candidate model

(5) Φm is a regularization term, referred to in the literature as a

‘model objective’ or ‘model norm’ term, that measures the amount

of structure in the candidate model

(6) λ1 and λ2 are termed ‘trade-off parameters’ because changing

them represents a trade-off between the two goals of an inversion:

recover a model that fits the data and that contains geologically

realistic features.

For most inversions we used the standard data misfit form

Φd =
1

N

N
∑

i=1

(

d
pred
i − dobs

i

)2

σ 2
i

, (4)

where

(1) N is the number of data observations

(2) dobs
i are the observed data measurements

(3) d
pred
i are the predicted data synthesized for the candidate

model

(4) σ i are uncorrelated uncertainties assigned to the observed

data.

For some inversions we altered the form of the data misfit that

will be discussed later.

Both the gravity and muography forward problems can be written

as

dpred = Gm, (5)

where

(1) dpred is a vector containing all the predicted (synthetized) data

(2) G is a linear matrix operator usually termed the ‘sensitivity

matrix’.

The element in the ith row and jth column of G is the contribution

of the density in the jth mesh cell to the ith data value.

Our model norm term, Φm , can contain a smallness and smooth-

ness component:

Φm = αs

M
∑

j=1

ws, j m
2
j + αm

F
∑

k=1

wm,k (mk− − mk+)2
, (6)

where

(1) M is the number of cells in the mesh

(2) F is the number of internal cell faces in the mesh

(3) mj is the density value in the jth mesh cell

(4) mk − and mk + denote the cells adjacent to the kth internal face

in the mesh

(5) the weights ws, j and wm, k can be used to counteract the decay

of the sensitivity kernels

(6) the scalar weights αs and αm can be set pre-inversion to in-

crease or decrease the importance of the smallness and smoothness

terms, respectively.

To compensate for the decay of the gravity data sensitivity ker-

nels, we employed a distance weighting strategy following Li &

Oldenburg (2000) with a weighting power of 2.0 to account for the

distance-squared fall-off of the gravity kernels:

w j =

⎛

⎝

N
∑

i=1

(

∫

	V j

dv
(

Ri j + R0

)2

)2
⎞

⎠

1/2

, (7)

where

(1) wj is the distance weight applied to the jth mesh cell

(2) 	Vj is the volume of the jth mesh cell

(3) Rij is the distance between the ith observation location and a

point within the jth mesh cell

(4) R0 is some small constant chosen to avoid numerical insta-

bility (possible division by zero).

For muography data, Rosas-Carbajal et al. (2017) used a distance-

to-detector weighting. We took a similar approach and used the dis-

tance weighting strategy of Li & Oldenburg (2000) with a weighting

power of 2.0 to account for the geometrical spreading of the solid

angles with distance away from the detectors.

We used a discrepancy principle approach to determine the trade-

off parameters λ1 and λ2 in eq. (3): we defined target misfits equal

to one, which is the expected value for the χ 2 misfit function in

eq. (4), and we sought values of λ1 and λ2 that yield those tar-

gets. See Lelièvre et al. (2012) for the algorithmic details on how

we determined appropriate values for the two trade-off parame-

ters. This approach requires an accurate knowledge of data errors,

and the problem formulation and algorithmic approach of Lelièvre

et al. (2012) avoids the possibility of underfitting one data type and

overfitting the other: both will be fit to their target misfits.

2.2.2 Relative density offset correction

The complication with using a single density model for both data

types in a joint inversion, for example as in eq. (3), is that the two

data sets are effectively responsive to different density quantities.

Gravity data respond to relative density with respect to a background

value associated with the Bouguer and terrain corrections. There

are various methods that one can use to determine a reasonable

background density (e.g. see Linsser 1965; Yamamoto 1999; Tontini

et al. 2007) but one generally accepts that there is some uncertainty

here. For muography data, the modelling methods that translate

muon counts to average densities are generally biased towards lower
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average densities, caused by the diffusion of low-energy muons

(Nishiyama et al. 2014; Rosas-Carbajal et al. 2017), but quantifying

the bias is difficult. Hence, a systematic relative offset between

the density distributions inferred from the two measurements must

be taken into account. In this work we assumed that the relative

offset could be approximated to first order as a single constant

for all measurements; in practice, it may vary somewhat between

measurements but we leave treatment of that more complicated

scenario for future work. Below we discuss methods to estimate a

constant relative offset.

2.3 Methods to automatically estimate a constant offset

2.3.1 Automatic least-squares minimization for the offset

For some of our inversions we considered an alteration to the stan-

dard misfit function in eq. (4). We added an additional scalar quan-

tity, c, which is, in effect, removed from the observed data:

Φd2 =
1

N

N
∑

i=1

(

d
pred

2,i − dobs
2,i + c

)2

σ 2
2,i

. (8)

We applied this in the data misfit term for the muography data only,

simply because it is easier to do so there than in the gravity data term.

For muography data, which are average densities integrated along

solid angles, if one adds or subtracts a constant from the density

model then the data response changes by that same constant, for all

data values. To clarify, we write

d
pred

2 = G2 (m + ec) = G2m + G2ec = G2m + ec, (9)

where e is a vector of ones and G2e = e because each row of G2 is

normalized to sum to one (recall that muography data are average

densities). However, for gravity data we have G1e = dunit �= e where

dunit is the response of a unit density filling the modelling mesh. That

response is only constant if the mesh has infinite lateral dimensions

and flat topography, and the data observations are on a horizontal

surface, conditions that are not met in practice.

Returning to eq. (8), we propose to take a value of c that minimizes

the altered muography data misfit in a least-squares sense:

c = −
1

N

N
∑

i=1

(

d
pred

2,i − dobs
2,i

)

= −
1

N
eT

(

G2m − dobs
2

)

, (10)

which is the average data residual. The misfit in eq. (8) then be-

comes

Φd2 =

N
∑

i=1

(

d
pred

2,i − dobs
2,i − 1

N

∑N

i=1(d
pred

2,i − dobs
2,i )

)2

σ 2
2,i

, (11)

or written in matrix-vector form we have

Φd2 =
∥

∥Wd2

(

G2m − dobs
2 + ec

)
∥

∥

2

=

∥

∥

∥
Wd2

(

G2m − dobs
2 − e 1

N
eT(G2m − dobs

2 )
)
∥

∥

∥

2

=
∥

∥Wd2

(

I − 1
N

eeT
)(

G2m − dobs
2

)∥

∥

2

, (12)

where Wd2 is a diagonal matrix that holds the assigned uncertain-

ties, σ i, and eT multiplied by a vector sums the elements of that

vector. Hence, the only change required to the inversion algorithm

is to insert the operator (I − 1
N

eeT) when calculating the muog-

raphy data misfit. The effect is to effectively ignore a constant

shift in the muography data, with the best-fitting shift determined

automatically. We will refer to this automatic least-squares misfit-

reformulation approach as the ‘LSM’ approach in the remainder of

this manuscript.

2.3.2 Additional offset parameter in the inversion

Another approach is to write the misfit as in eq. (8) but treat c

as an unknown scalar parameter in the inversion. For some of our

inversions, we added a term to the objective function to penalize

large values of c:

Φ = λ1Φd1(m) + λ2Φd2(m, c) + Φm(m) + αcc2, (13)

where the scalar weight αc can be set pre-inversion to increase or

decrease the importance of the additional term. This is in essence

the approach of Rosas-Carbajal et al. (2017) but our numerical

formulation is slightly different.

2.4 Joint inversion for two density models

Here, we dispense with the complication of having to find a relative

offset by treating the two density models separately. With two mod-

els, we must add an additional term, Φjoint, to the objective function

to encourage the two models to be similar:

Φ = λ1Φd1(m1) + λ2Φd2(m2)

+ Φm(m1) + Φm(m2)

+ γ Φjoint(m1, m2),

(14)

where γ is treated as a parameter to be heated (iteratively increased)

following the approach of Lelièvre et al. (2012). Moorkamp et al.

(2016) and Lelièvre et al. (2012) discuss some of the various ‘cou-

pling measures’ for this purpose. We considered two coupling mea-

sures that assume linear relationships between the two density mod-

els.

2.4.1 Coupling via an explicit linear relationship

With enough prior information, one might assume an explicit linear

relationship between the two models, m1 and m2:

m2 = am1 + b, (15)

where a and b are some linear parameters. In the case of inverting

gravity and muography data, we write a = 1 and b = c so

m2 = m1 + c (16)

and a simple joint coupling measure is

Φjoint = ‖m1 − m2 + c‖2. (17)

However, c is treated as a prior here and, considering eq. (9), in the

limit γ → ∞ this formulation of the joint inverse problem becomes

identical to a joint inversion for a single density model and some

prior relative offset c between the two data sets. Hence, we do not

consider this coupling approach any further. However, the methods

developed in the next subsection follow directly from eq. (16).

2.4.2 Coupling via equal gradients

If D is a spatial gradient or difference operator, for example one

of the options mentioned by Lelièvre & Farquharson (2013), then
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De = 0 (a vector of zeros) and from taking spatial derivatives of

eq. (16) it follows that

Dm1 = Dm2. (18)

This effectively specifies that the two models have similar structure

(equal spatial gradients). We can now dispense with any constant

offset parameter c and use the joint coupling measure

Φjoint = ‖D(m1 − m2)‖2. (19)

For D we elected to use a simple difference operator that mea-

sures differences across neighbouring cells (see Günther et al. 2006;

Lelièvre & Farquharson 2013).

This approach allows us to specify an explicit linear relationship

between the two density models with a slope of one and some

unknown vertical axis intercept, which corresponds to the relative

offset parameter. The cross-gradient coupling measure (e.g. Fregoso

& Gallardo 2009) could be applied here but that coupling uses

spatial information only and is unable to specify anything about

the linear relationship between the two density models. The power

of the cross-gradient approach is in its general applicability but in

our scenario we have powerful constraining prior information that

can and should be used: the two density models are linearly related

with a slope of one. Lelièvre et al. (2012) introduced a coupling

measure for use when some linear relationship is assumed to exist

but the exact linear parameters are unknown. Lelièvre et al. (2012)

called this an ‘implicit linear coupling’ and used a cross-correlation

from statistics. That coupling is only able to specify that the linear

relationship between the two density models has a positive slope.

The coupling measure that we propose in eq. (19) is based on

the spatial gradient but should, in theory, provide a more forceful

constraint than cross-gradient or implicit linear coupling.

3 T E S T S A N D R E S U LT S

3.1 Puy de Dôme

Puy de Dôme is a volcano located in the French Massif Central

ancient volcanic zone. It belongs to the Chaı̂ne des Puys, composed

of about 80 monogenetic volcanoes built on a granitic basement.

The Puy de Dôme is a 11 000 yr old trachytic dome, formed by two

distinct extrusions (Boivin et al. 2017).

Puy de Dôme has been imaged using classical geophysical meth-

ods: ERT, gravimetry and magnetometry (Portal et al. 2013, 2016).

Those methods have a rapidly decreasing sensitivity with depth.

Muographic experiments have been conducted (Cârloganu et al.

2013; Ambrosino et al. 2015) with the potential of improving the

imaging of structures inside the dome, hence improving our knowl-

edge of the construction of this edifice.

The primary objective of this study is to determine which meth-

ods might be most helpful for consistently accounting for a scalar

relative density offset when jointly inverting real gravity and muog-

raphy survey data for Puy de Dôme or other volcanoes with roughly

similar internal density structure. Within this scope, we test vari-

ous methods on a synthetic model based on the expected internal

structure of Puy de Dôme and real survey acquisition geometries.

3.2 Building the Puy de Dôme model

Four interpreted vertical cross-sections were taken from the work

of Portal (2015) and Portal et al. (2016), inferred from gravimetric

and magnetic data modelling. Those were digitized using the manual

Table 1. Absolute and relative densities (relative to 1.6 g cm−3) used for

the three units in our synthetic model. Colours used in Figs 1 and 2 are in

parentheses in the left column.

Unit Absolute density Relative density

(g cm−3) (g cm−3)

Background (blue) 1.6 0.0

Volcanic dome (green) 1.8 0.2

Conduit (red) 2.1 0.5

model-building program FacetModeller (Lelièvre et al. 2018). The

information in the cross-sections was interpolated throughout the

3-D volume of interest and combined with topography information

from a digital elevation model. The various resulting model surfaces

were sewn together into a watertight surface-based model using

FacetModeller. Such a model represents a polygonal linear complex

(PLC; see Miller et al. 1996; Si 2015) that can be passed into a

meshing program to fill the volume of interest with tetrahedra while

constraining the mesh to contain tetrahedral faces that honour the

polygonal facets in the PLC. For that purpose we used TetGen (Si

2017).

The interpreted cross-sections in Portal et al. (2016) consist of

various layered extrusive units with other intrusive units passing

vertically through them. For the purpose of testing the methods

presented above, we simplified the model somewhat. First, the in-

trusive units outside the main dome were removed because they do

not affect the muography response. Second, the gravity responses

of the near-horizontal units are minimal so we ignored any density

contrast between those. The result is an anomalously high density

unit that we refer to as the ‘volcanic dome’, a higher density ‘con-

duit’ unit passing through the dome vertically, and the rest of the

model taking the background density. The absolute densities used

are listed in Table 1. Three perspective views of the model are

shown in Fig. 1 and cross-sections through the model are shown

in Fig. 2. To simplify those figures, and others that follow, we do

not include axis labels. Instead, we provide the coordinate limits for

the model in Table 2: the volume is 2.1 km by 2.1 km laterally by

approximately 660 m vertically.

3.3 Gravity data

The 648 gravity observation locations were taken from a series

of real ground surveys undertaken on Puy de Dôme over several

years (Portal et al. 2013, 2016). They were placed 0.1 m above

the topography surface. We calculated the gravity response with

respect to a background density value of 1.6 g cm−3. We added

noise (synthetic measurement errors) from a normal distribution

with standard deviation equal to 0.039 mGal and mean of zero,

which corresponds to the estimated average noise level in the ground

survey data collected. Following Bijani et al. (2017), we made sure

that
∣

∣

∣

∣

∣

∣

1 −
1

N

N
∑

j=1

(

ǫ j

σ j

)2

∣

∣

∣

∣

∣

∣

≤ τ, (20)

where

(1) ǫj is the noise added to the jth data observation

(2) σ j is the standard deviation of the related normal distribution

(3) τ is some small tolerance; we used 0.01.

This means that the theoretical expected value of one for the

χ 2 misfit in eq. (4) was consistent with the actual noise added
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Figure 1. Three perspective views of the Puy de Dôme model used for our

synthetic modelling tests: (a) from overhead; (b) from the south; (c) from

the east. The model is semi-transparent to show the different units inside

the volume: the conduit is red, the volcanic dome green and the background

blue. The outline of the modelling region is drawn with black lines. The small

yellow dots indicate the location of gravity data and larger black squares

indicate the location of the four muon detectors.

Figure 2. Cross-sections through the Puy de Dôme model used for our

synthetic modelling tests: (a) a west–east section at northing 19 170 m,

viewed from the south (west at left); (b) a south–north section at easting

7080 m, viewed from the east (south at left). These cross-sections pass

through the approximate lateral centre of the conduit.

Table 2. Coordinate limits for our synthetic model volume in our local

coordinate system.

Direction Minimum (m) Maximum (m) Range (m)

Easting 6300 8400 2100

Northing 18 100 20 200 2100

Elevation 800 1459 659

Figure 3. An overhead view of the noisy synthetic gravity data plotted as

coloured points at their observation locations. The colour bar shows the

gravity response in mGal. The large black bounding square corresponds to

the outline of the modelling volume. The small black marks on that bounding

square indicate the locations of the cross-sections in Fig. 2.

and was therefore legitimate for analysing the synthetic inversion

results. The resulting noisy synthetic gravity data are shown in

Fig. 3.

3.4 Muography data

For the muography data, we used four muon detector locations. One

of those locations was used in the field for preliminary campaigns

on Puy de Dôme. The three others were selected to provide adequate

illumination of the dome from different angles. Jourde et al. (2015)

suggested that gravity data may not significantly improve the joint

inversion results when several muon detectors already provide ex-

cellent coverage of the geological target. However, their work also

suggests that if the muography data can recover the true density

distribution in the upper dome then the joint inversion may enable

the gravity data to better recover the true model at depth, below the

coverage of the muography data.

All detectors were treated as points located 1.0 m above

the topography surface. For each detector we used solid an-

gle bins every one degree and only used those bins that in-

tersected the model. We used the spherical integration frame-

work with each solid angle bin divided into 64 sub-bins (eight

in each angular direction). This provided 3400 muography data

measurements. Fig. 4 shows the calculated muography data

(average densities).

For muography data, generating synthetic noise that is consistent

with all the relevant physical phenomena comes with significant
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Joint inversion of muon and gravity data 1691

Figure 4. The synthetic muography data without noise added. Each panel shows a different perspective view looking from a single detector through the model:

(a) the southwest detector, (b) the southeast detector, (c) the northwest detector, (d) the northeast detector. For each panel, the data are plotted 3 km away from

the detector along their respective lines of sight. Each coloured point represents the average density value along a single one degree solid angle bin. The same

colour scale is used for each panel and shows average density relative to 1.6 g cm−3 on the range [0, 0.3] g cm−3. The opaque black lines are drawn connecting

the detector and each coloured data point to help aid the visualization.

challenges. Hence, we used an approximate noise model that cap-

tures the required flavour:

σ = 0.025 +
0.07

1 + e40(X̂−0.02)
+

0.05

1 + e8(0.9−X̂ )
, (21)

where

(1) σ is the statistical uncertainty

(2) X̂ is the integrated absolute density (mass) remapped on

[0, 1].

To arrive at this noise model, we manually fit an equation of the

form in eq. (21) to the lower envelope of statistical uncertainties

calculated for one particular set of muographic measurements from

Puy de Dôme (see Fig. 5). Those values were arrived at using the

simulation methods of Niess et al. (2018a,b). This noise model

captures two essential characteristics. First, for solid angle bins

that pass through smaller lengths of the Earth, for example those

that are approximately tangential to the topography surface, the

transmitted muon flux at the detector depends weakly on the density

and the statistical errors affecting the measurements are magnified.

Second, at large depths there are far fewer transmitted muons and

the statistical errors again increase.

The integrated densities for our simplified synthetic model are

significantly lower than those in the true Earth because we ignored

density contrast between near-horizontal units. According to the

work of Portal et al. (2016), the true Earth at Puy de Dôme is

Figure 5. A plot of our approximate noise model and the data used to arrive

at that model: σ is statistical uncertainty and X̂ is integrated absolute density.

The black dots are the data used to develop our noise model. The solid line

is our noise model, eq. (21), multiplied by two.

thought to have density values roughly between 1.6 and 2.5 g cm−3 in

those units. Consequently, to achieve an appropriate estimate of the

statistical uncertainties for our synthetic example, we used half the

estimate fit to the measured data, leading to a somewhat optimistic

treatment of the uncertainties. Several aspects of the detector used
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1692 P. G. Lelievre et al.

Figure 6. The synthetic muography data with noise added for each detector:

(a) the southwest detector, (b) the southeast detector, (c) the northwest

detector, (d) the northeast detector. Instead of the 3-D perspective views

used in Fig. 4, here we simply provide 2-D plots of the data with the

azimuthal angle (declination) on the horizontal axis and the polar angle on

the vertical axis. The polar angle is zero at horizontal and positive above.

The same colour scale is used for each panel and shows average density

relative to 1.6 g cm−3 on the same range as in Fig. 4: [0.0, 0.3] g cm−3.

in the real survey on Puy de Dôme could have been improved,

its size for example, and longer exposure time would also help

reduce uncertainty levels; therefore we feel our approach here is not

unrealistic.

We generated noise from normal distributions with zero mean and

standard deviations calculated following eq. (21). Again, we made

sure that eq. (20) was obeyed. Fig. 6 shows the noisy muography

data.

3.5 The inversion mesh

To invert, we used a different mesh to that used in the forward

modelling above so that the inversion mesh did not unfairly bias

the results towards a favourable outcome. The inversion mesh was

generated by removing all internal model features in the PLC (the

model in Fig. 1) so that only the surfaces on the boundary of the

model remained, including the topographic surface. The resulting

PLC was then meshed using TetGen. Hence, the mesh used for in-

version does not contain tetrahedral faces that honour the surfaces in

the true synthetic model. To generate the volumetric mesh of tetra-

hedra, we supplied TetGen with a maximum tetrahedron volume

constraint of 4 × 104 m3 in a 1000 m by 1000 m area surrounding

the conduit, and a volume constraint of 4 × 105 m3 outside of that

region. This provided a mesh with 27 671 tetrahedral cells.

Figure 7. Overhead view (a) and cross-sections (b and c) through the inver-

sion mesh showing gravity sensitivity information following eq. (22). The

cross-sections are those used in Fig. 2. The small black marks around the

outline of panel (a) indicate the locations of the cross-sections. The same

logarithmic colour scale is used for each panel. The white line in (a) indi-

cates the outcrop of the volcanic dome unit in the true model. The white

lines in (b) and (c) indicate the outlines of the volcanic dome and conduit

units in the true model.

3.6 Sensitivity analysis

Figs 7 and 8 show summed sensitivities for each cell in the inversion

mesh. For each cell we calculated the sum

s j =

√

∑N

i=1 G2
i j

v j

, (22)

where vj is the volume of the jth cell. We then normalized the

sj values so they lay on [0,1] before plotting. Fig. 7 shows the

fall-off in gravity sensitivity away from the observation locations.

Fig. 8 clearly shows the limited vertical resolution of the muography

survey, which can only see upwards from the detector elevations.

The lowest detector is at elevation 931 m, 131 m above the bottom

of the modelling volume (which is at elevation 800 m).

We wish to adequately image the bottom-most extent of the con-

duit within the modelling mesh. The conduit is approximately 110 m

wide at that location. The vertical gravity response of a spherical

mass with radius 110 m, anomalous density 0.5 g cm−3, measured

at a height of 660 m above the centre of the spherical mass, is

0.043 mGal. Hence, the signal from the bottom of the conduit is

just detectable above the noise level added to the gravity data.
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Figure 8. Overhead view (a) and cross-sections (b and c) through the inver-

sion mesh showing muography sensitivity information following eq. (22).

The cross-sections are those used in Fig. 2. The same logarithmic colour

scale is used for each panel. The white overlays are as described for Fig. 7.

3.7 Independent inversion results

Here we show the results of inverting the two data sets separately.

In these and all other inversions, we set αs = 0 and αm = 1 in

eq. (6), thereby removing the smallness term, because there is no

prior information suggesting the recovered density models should be

small, but keeping the smoothness term. We set the target misfit(s)

equal to the number of data, N, and the inversions stopped when

|Φd − N |

N
≤ ǫ, (23)

with ǫ = 0.05.

Figs 9 and 10 show the results of inverting the gravity data: Fig. 9

shows predicted and residual data maps; Fig. 10 shows the recovered

density model. Similarly, Figs 11 and 12 show the results of invert-

ing the muography data. Data maps are not shown for any future

inversions in this manuscript because the results are comparable

in character to those in Figs 9 and 11, that is, the predicted data

responses match the synthetic observed data responses well, and

the residual maps are random with no spatially correlated features,

other than as discussed below.

In Fig. 9, the only significant spatially coherent high magnitude

residuals are near the summit of the dome. Those likely result from

the proximity of the gravity data to the sharp density discontinuity

between the top of the conduit and the surrounding unit, and the

Figure 9. Predicted (a) and normalized residual (b) data maps for indepen-

dent inversion of our synthetic gravity data.

inability of the inversion mesh to reproduce the required sharp

features with the finite dimension cells used.

We indicate relative density contours at 0.1 and 0.3 g cm−3 on the

images of the recovered models (Figs 10 and 12). Those contour

values lie between the relative densities for the three values in

the true model (0.0, 0.2 and 0.5 g cm−3) and are provided to help

readers compare all inversion results in this manuscript when density

colour scales change. The black contours should not be compared

against the white overlays to assess each inversion result! Rather, the

contours provide a reference to help compare one inversion result to

another. Furthermore, we note that there is no one specific imaging

target here; rather, we are looking to accurately image the entire

structure of the volcano, including the depth extent, geometry and

densities of both volcanic dome and conduit units.

The independent inversion results are consistent with the sensi-

tivity analysis provided above. The gravity inversion result in Fig. 10

has a high amplitude positive density anomaly at the location of the

conduit but the recovery of that unit is poor at depth, despite the

applied distance weighting. Most of the largest positive densities are

inside the region corresponding to the volcanic dome but there are

significant positive densities at depth where no anomalous density

exists in the true synthetic model: this inversion result would likely

suggest to an interpreter a deeper volcanic dome unit than in the

true model.

The muography inversion result in Fig. 12 also has a high am-

plitude positive density anomaly at the location of the conduit but
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Figure 10. The density model recovered from independent inversion of our

synthetic gravity data. The densities shown are relative to 1.6 g cm−3. The

white overlays are as described for Fig. 7. The black lines in all panels indi-

cate density contours at 0.1 and 0.3 g cm−3, corresponding to intermediate

relative densities between the background and dome units, and between the

dome and conduit units (see Table 1). We emphasize that the black contours

should not be compared against the white overlays to assess each inversion

result; rather, the contours provide a reference to help compare one inversion

result to another.

Figure 11. Predicted (a) and normalized residual (b) data maps for inde-

pendent inversion of our synthetic muography data, plotted as in Fig. 6. Here

we show only the maps for the first muon detector, although all data were

inverted; the maps for the other detectors are comparable in character to

these.

Figure 12. The density model recovered from independent inversion of our

synthetic muography data. The densities shown are relative to 1.6 g cm−3.

The white and black overlays are as described for Figs 7 and 10.

Figure 13. A cross-plot of the density values in the recovered models from

independent gravity and muography inversion. Each black point represents

density values taken from both models for a single cell in the mesh. Larger

green circles indicate the values in the true model.
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places most of the largest positive densities at higher elevations than

for the gravity inversion. The muography inversion recovered the

volcanic dome unit better than the gravity data. However, the muog-

raphy sensitivity falls to zero at a similar depth to the bottom of the

volcanic dome unit and one must accept that any material below

that depth is controlled only by the regularization. The muography

inversion is unable to recover the correct background density, which

is completely expected considering the complete lack of sensitivity

at depth (see Fig. 8).

In Fig. 13 we show a cross-plot of the density values in the recov-

ered models from independent gravity and muography inversion.

These suggest a rough linear trend between the true values but there

is a high degree of scatter. It is a common result that unconstrained,

independent inversions are not able to adequately reproduce ex-

pected physical property relationships like this. In this case, it is

predominantly a consequence of the different sensitivities of the

two data types and of the smoothing regularization employed. One

hopes that by jointly inverting the two data sets, such cross-plots

will display a tighter linear relationship between the two models.

3.8 Joint inversion for a single density model for both data

types

3.8.1 Counteracting the sensitivity decay

For joint inversion, when a single density model is inverted for, as

the causative distribution for both data types, it is not immediately

clear what weighting strategy to use to counteract the distance de-

cay of the data sensitivity kernels. There is only one model and we

could apply a distance weighting using the gravity observation loca-

tions, the muon detector locations, or a combination of the two. For

brevity, we do not show the results, but our experiments indicated

that, just as one might expect, applying distance weighting using

only the muon detector locations was ineffective at counteracting

the decay of the gravity kernels and the joint inversion results were

similar to those without any distance weighting applied. However,

without distance weighting, the joint inversions still did a reasonable

job of pushing the dense material to depth, which perhaps counters

experience with most gravity data collected on an approximately

horizontal plane above a target: here we have gravity data collected

across a topographic surface that essentially wraps around half of

the volume of interest, so some sensitivity to depth can be expected.

However, significant improvements were obtained by applying dis-

tance weighting, and using the combined gravity and muography

observation locations provided similar results to using the gravity

observation locations alone. Hence, we used distance weighting us-

ing the combined locations in all of our joint inversions that follow.

To clarify, when jointly inverting, observation locations for both

gravity and muography were included in the summation in eq. (7).

3.8.2 The effect of the relative density offset on joint inversion

results

To aid in the comparison of our joint inversion results in the re-

mainder of this manuscript, we now introduce two new terms. The

‘offset estimate’ is the value suggested by any particular joint in-

version method, or by prior information before an inversion. This

estimated value is subtracted from the observed muography data,

either during or before an inversion, to attempt to correct for the

density offset; refer to eq. (8). The ‘offset remainder’ is calculated

as the actual relative offset between the two density distributions

Figure 14. The density model recovered from joint inversion for a single

density model and offset remainder of 0 g cm−3. The densities shown are

relative to 1.6 g cm−3.

sensed by the gravity and muography data (1.6 g cm−3 for our sce-

nario) minus the offset estimate; that is, it represents any offset

that remains after the inversion attempts to correct for the offset

(that correction not being perfect in general). Negative values of

the offset remainder mean the joint inversion method overestimates

the offset (leaving a net negative offset remainder); positive values

mean the joint inversion method underestimates the offset.

Fig. 14 shows the joint inversion result using the formulation

in eq. (3), and the standard misfit function in eq. (4), when the

relative offset of 1.6 g cm−3 was removed exactly before inversion;

the offset remainder is therefore 0.0 g cm−3, which is the ideal goal

of any joint inversion applied to these two data types. There is

an improved recovery of the depth extent of the volcanic dome

unit compared to the independent inversion results. The conduit is

clearly indicated as a positive density high within the volcanic dome

unit and there is a slight indication of the conduit at the far depth

extent of the mesh: although the densities there are not high enough

to suggest conduit material, the dip of the lower black contour in

Fig. 14 could suggest to an interpreter an extension of the conduit

to depth, particularly taking into account the low resolution at these

depths for the geophysical data involved and the smearing effect

of these minimum-structure style inversions. We take the result in

Fig. 14 to be the best possible for these data sets and we compare

all our other joint inversion results to those.

As we mentioned previously, the hope was that joint inversion

would better recover the true model at depth, below the coverage

of the muography data. With that in mind, the joint inversion result
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Figure 15. The density model recovered from joint inversion for a single

density model and offset remainder of +0.1 g cm−3. The densities shown

are relative to 1.6 g cm−3.

in Fig. 14 has indeed improved the recovery of the true model

below the coverage of the muography data in two ways. First, the

independent inversion results in Figs 10 and 12 contain significant

positive densities at depth where no anomalous density exists in

the true synthetic model. Second, while the location and width

of the conduit at depth is difficult to interpret from the smooth

inversion results, one would likely interpret a much wider conduit

from the independent gravity result in Fig. 10 than from the joint

inversion result in Fig. 14. Furthermore, when comparing the black

density contour overlays, the independent gravity inversion suggests

a location for the conduit at depth that is somewhat shifted laterally

from the true location, whereas the joint inversion indicates the

correct lateral position.

To assess the effect of the relative offset, we jointly inverted, again

using eqs (3) and (4), with various different offset estimates used to

shift the muography data before inversion. To demonstrate the effect

on the results for small and moderate offset remainders, we show

the results for offset remainders of ±0.03 and ±0.1 g cm−3 in Figs

15 through 18. These values represent 6 per cent and 20 per cent of

the density range in the true synthetic model (0.5 g cm−3).

When the offset remainder is positive, we have the scenario where

an offset estimate was too low, meaning an insufficient offset cor-

rection has been applied by subtracting too small a constant value

from the muography data. This could even correspond to a situation

where the original data has been used in the inversion without any

attempt at offset correction. The adjusted muography data then re-

lates to a higher background density value than the gravity data. For

Figure 16. The density model recovered from joint inversion for a single

density model and offset remainder of +0.03 g cm−3. The densities shown

are relative to 1.6 g cm−3.

the inversions with a positive offset remainder, Figs 15 and 16, there

is less dense material recovered at depth: the density is effectively

pushed upwards.

When the offset remainder is negative, we have the scenario

where an offset estimate was too low, meaning too large a correction

has been applied by subtracting too large a constant value from

the muography data. The adjusted muography data then relates to

a lower background density value than the gravity data. For the

inversions with a negative offset remainder, Figs 17 and 18, there

is more dense material recovered at depth: the density is effectively

pushed downwards.

We explain these experimental observations by accepting that the

gravity inverse problem is more non-unique than the muography

problem and, hence, the gravity data has less power to influence

the joint inversion. However, the model volume is only sensitive to

the muography data in the top half of the model, above the muon

detector locations. With a positive offset remainder, the offset has

been underestimated and the muography data is higher than it should

be; the muography data forces the recovery of higher densities

in the top half of the model, and the inversion must then place

lower densities at depth to fit the gravity data. For a negative offset

remainder, the opposite occurs.

There are important differences in these results when even a small

offset remainder occurs. In Fig. 16 there is very little that might

suggest to an interpreter the extension of the conduit to depth;

in Fig. 17 the volume of significant densities recovered at depth

is significantly wider than in Fig. 14. Hence, obtaining accurate
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Figure 17. The density model recovered from joint inversion for a single

density model and offset remainder of −0.03 g cm−3. The densities shown

are relative to 1.6 g cm−3.

prior information about the relative density offset is critical when

performing joint inversions using this rather naive joint inversion

approach.

3.8.3 Automatic least-squares minimization for the offset

Here we inverted using our LSM method to determine an appropri-

ate offset, using the formulation in eq. (3) with the misfit defined

in eq. (12). The true offset is 1.6 g cm−3, the inversion provided

an offset estimate of 1.61 g cm−3, giving an offset remainder of

−0.01 g cm−3. We ran several other inversions, with different true

offsets between the density distributions used to calculate the muog-

raphy and gravity data responses, and all inversions had offset re-

mainders of −0.01 g cm−3; that is, the offset was overestimated by

the same amount regardless of the true offset.

Fig. 19 shows the model recovered from one of these inversions.

The LSM method provided an acceptable estimate of the offset

but we have shown above that even a small offset remainder can

lead to possible misinterpretations of the Earth’s subsurface from

subsequent joint inversions. In this case, however, the issue is minor.

Specifically, in Fig. 19 one might interpret a slightly larger width

for the conduit at depth than in the true synthetic model, or one

might interpret a slightly deeper depth for the volcanic dome unit,

but these misinterpretations are not particularly significant.

Figure 18. The density model recovered from joint inversion for a single

density model and offset remainder of −0.1 g cm−3. The densities shown

are relative to 1.6 g cm−3.

3.8.4 Additional offset parameter in the inversion

Here we incorporated an additional inversion parameter for the off-

set, following eq. (13), with the standard misfit function in eq. (4).

We performed several inversions with different values for the αc

parameter in eq. (13) over several orders of magnitude. Setting an

appropriate weight for the αc parameter was critical but simple to

achieve. Fig. 20 shows a plot of the recovered offset estimate, c,

versus the αc value. With too high a value for αc, large amplitude

values of c are penalized, resulting in a lower amplitude value re-

covered for c than the true offset, and the recovered model displays

similar but more severe issues to that in Fig. 15. With too low a

value for αc, the value of c is effectively unregularized and numer-

ical issues could result. However, no such issues were seen in the

inversions we ran, and with low enough values for αc, the inversions

provided a reasonable offset estimate of 1.62 g cm−3, meaning they

suggested removal of 1.62 g cm−3 from the muography data, giving

an offset remainder of −0.02 g cm−3. We do not show the recovered

models with low enough values of αc because they are intermediate

between those in Figs 17 and 19 for which the offset remainders

were −0.03 and −0.01 g cm−3, respectively.

3.9 Joint inversion for two density models and equal

gradient coupling

Here we formulated the joint inverse problem as in eq. (14) using

the coupling measure in eq. (19) and the standard misfit function
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1698 P. G. Lelievre et al.

Figure 19. The density model recovered from joint inversion for a single

density model and with the offset determined using our LSM method. The

densities shown are relative to 1.6 g cm−3.

Figure 20. Recovered offset estimate versus αc for joint inversion for a

single density model and an additional offset parameter in the inversion.

The black points indicate the data values from several joint inversions. A

black line is drawn between the points.

in eq. (4). We performed several inversions with different values

for the γ parameter in eq. (14). Setting an appropriate weight for

the γ coupling weight was critical but not too difficult to achieve

through a guess-and-check approach. With too low a value for γ ,

there is no coupling and the results mirror the independent inver-

sion results. With a high enough value, the models are encouraged

to have equal gradient and the cross-plot shows a more linear char-

acter. Hence, all practitioners must do is perform a few inversions

with different γ values across a fairly high range and compare the

recovered models and cross-plots against the independent inversion

results.

Figure 21. Cross-plots of the density values in the recovered models from

joint inversion for two density models, equal gradient coupling with γ =

1 × 106 in eq. (19). Each black point represents density values taken from

both models for a single cell in the mesh. The larger green circles indicate

the values in the true model.

Table 3. Summary of offset estimates and remainders recovered for our joint

inversion tests. The offset estimate is the value suggested by an inversion,

or by prior information before an inversion. The offset remainder equals the

true offset (1.6 g cm−3) minus the offset estimate.

Method Figure Offset Offset

estimate remainder

(g cm−3) (g cm−3)

No offset correction 14 0.00 0.00

” 15 1.50 0.10

” 16 1.57 0.03

” 17 1.63 −0.03

” 18 1.70 −0.10

LSM 19 1.61 −0.01

Additional parameter — 1.62 −0.02

Equal gradient

coupling

— 1.63 −0.03

Fig. 21 shows a cross-plot of the recovered densities for an inver-

sion with a relatively high value, γ = 1 × 106. A linear regression

performed on the recovered densities (black points in Fig. 21) pro-

vided a slope of 1.00 and intercept of 1.63 g cm−3, meaning the

inversion suggests removal of 1.63 g cm−3 from the muography

data, corresponding to an offset remainder of −0.03 g cm−3. We do

not show the results for this inversion because they are comparable

to those in Fig. 17.

To aid comparison of the various joint inversion methods applied

to our scenario, Table 3 provides a summary of the offset estimates

and remainders for all the joint inversion tests.

4 D I S C U S S I O N

Before concluding, we discuss the various assumptions we made

in our work so that our results and conclusions can be interpreted

within an appropriate scope. Any extensions to this work to reduce

these assumptions we leave for future work. Perhaps the most im-

portant assumption made in this work is that the relative density
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offset can be approximated to first order as a constant difference,

although it may in fact vary. For gravity data, the appropriate back-

ground density for the Bouguer and terrain corrections is expected

to be reasonably constant over relatively small distances represen-

tative of volcanic domes similar to Puy de Dôme, so the first-order

approximation should be reasonably valid. Also, a future generation

of muon detectors, and improved methodologies for the muography

inverse problem, should significantly reduce the systematic uncer-

tainties affecting muography data. For example, the work of Gómez

et al. (2017), which characterizes the dependence of muon scatter-

ing as a function of the relative angle between the detector and the

topography, suggests that a theoretical correction should be possi-

ble. We can therefore conclude that the approach developed in this

manuscript, approximating the offset as a constant, should become

even more suitable in the future.

Our 3-D synthetic volcano model was built from existing geolog-

ical and geophysical information. However, we simplified the model

somewhat to remove some extraneous features, but most of those

features did not cause significant anomalies in the gravity or muog-

raphy data. Also, we did not include any heterogeneity within the

rock units. Gravity and muography data sense bulk properties of the

Earth: gravity data are sensitive to the entire Earth but the sensitivi-

ties are somewhat diffusive, and muography data averages densities

along solid angles, so smaller scale random density heterogeneity

does not affect either type of data greatly.

We assumed that in a survey data scenario, the gravity data pro-

cessing will have adequately removed any regional gravity compo-

nents, that is, long wavelength responses from density outside the

modelling volume. In practice, this might not be the case and there

may be some effects on the recovered models and recovered offset

estimates. However, if padding cells are added to the mesh to allow

for deeper anomalous material then they may be able to deal with

the long wavelength responses from density outside the modelling

volume. Any coupling in the joint inverse problem should be lim-

ited to the central core volume of interest in the mesh, although

the muography survey data will be insensitive to any density in

the padding cells so this may not be necessary. A similar approach

would be to only apply any joint coupling to mesh cells where both

surveys have non-zero sensitivity.

If more padding cells were added, there would be a smaller per-

cent volume of the mesh supported by the muography data compared

to the gravity data. Our results might be expected to change if the

percent volume of the mesh supported by the muography data were

to increase or decrease. Future work should investigate the impor-

tance of the percent volume mesh support ratios for muography and

gravity data.

This synthetic study used four muon detectors, ensuring adequate

data coverage. It is likely that three appropriately located detectors

would have been enough. However, the conclusions in this study may

not apply for scenarios where there is only one or two detectors such

that the muography survey cannot adequately resolve the volume of

interest.

The noise model we used for the muography data was some-

what optimistic. We consider it a best case for muography, given

our experiences with survey data, but statistical uncertainties could

be reduced with an improved detector, a longer exposure time and

improved data processing approaches. In our synthetic scenario, the

noise levels on the gravity data and muography data were roughly

comparable, qualitatively, and the results of our tests might be ex-

pected to change if one data set were to dominate the other. How-

ever, gravity data will always suffer from poor depth resolution,

and muography data will likely always suffer from lateral resolution

issues resulting from the limited number of detectors that can be

placed in a practical survey campaign.

A smearing procedure (see Niess et al. 2018b) was performed

when converting muon counts to average densities, which calculated

statistics for a particular solid angle bin using muon count informa-

tion from neighbouring bins as well. The large plateau in our noise

model (see Fig. 5) is a result of this smearing procedure. Without

that procedure, we would expect the error to increase at much lower

integrated density values. Future work could investigate the effects

of different muography noise levels on the behaviour of the joint

inversion.

Another consequence of the smearing procedure is that in practice

the muography errors are correlated. Modelling this correlation

effect is a complicated undertaking and therefore we chose to neglect

it in this work. To include it, we could have used a more general

misfit expression in eq. (4) and included a full covariance matrix

instead of only diagonal terms. However, improvements to muon

detectors and increased exposure times can reduce the necessity to

perform this smearing so, again, we consider that neglecting the

muography data correlation is a best case for muography.

We considered the joint inversion results in Fig. 14 to be the best

possible for these data sets. There is a clear indication of the bottom

of the conduit but it is still poorly resolved. To resolve that feature,

it is probably necessary to reduce the magnitude of the noise added

to the synthetic data. We have modelled our noise based on realistic

noise levels in survey data. Hence, we go no further in this study

but we suggest that steps may need to be taken to reduce the noise

levels for survey data collected in similar scenarios.

Finally, we note that the muon counts could be inverted directly,

rather than using the average densities resulting from Monte-Carlo

simulation procedures; this alternative approach could possibly re-

duce the errors introduced by the average density conversion. That

would create a nonlinear inverse problem, which is a complication

but is certainly possible. However, it would have little impact on

the issue of how to handle the relative density offset. We leave a

comparison of the linear and nonlinear muon tomography inverse

problems to future work.

5 C O N C LU S I O N

We have investigated various numerical approaches for formulat-

ing the joint inverse problem of inverting muography and gravity

data. Specifically, we considered various approaches to ameliorate

the complication that muography and gravity data are effectively

responsive to different density quantities related by some unknown

offset. We considered existing methods from previous works by

other authors, and three new joint inversion methods that we de-

veloped. We applied those methods to a synthetic volcano imaging

problem based on the Puy de Dôme volcano in the Central Massif

region of France. We used unstructured meshes in our modelling to

adequately honour the significant topography in that scenario but

our conclusions below, relating to the joint inversion methods, ap-

ply to rectilinear meshes or other mesh-based representations of the

Earth.

The naive approach of performing a joint inversion for a single

density model, for both data types, and attempting to account for

the relative offset using prior information is not recommended.

Important differences were seen in the inversion results with even

a small error in the recovered offset estimate, which could lead to

possible misinterpretations about the Earth’s subsurface. However,

it may be possible that the sensitivity of such joint inversion results
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to the offset estimate varies for different Earth scenarios, data survey

configurations and inversion parameters.

We developed a new approach for estimating the offset automat-

ically in a joint inversion by reformulating the misfit function using

a least-squares minimization argument. We named this the LSM

method. This method provided an acceptable estimate of the offset

for our test example and we recommend this approach be applied

to similar scenarios to our synthetic.

Another joint inversion approach we considered, used previously

by other authors, was to use a single density model but include

an additional offset correction parameter in the inversion. This ap-

proach requires that an appropriate value is selected for a spe-

cific inversion parameter, a regularization weight associated with

the offset correction parameter, but doing so is simple in prac-

tice. For our test example, this approach also provided a reasonable

estimate for the offset and we recommend this approach be ap-

plied to similar scenarios to our synthetic in combination with the

LSM method.

The joint inverse problem can also be posed using two density

models, one for each data type, with an additional coupling term

used to encourage some similarity between the two. We investigated

a new coupling approach where the spatial gradients are encouraged

to be equal. This introduces a linear term into the objective function

so there is no increase in the computational requirements. This

approach also requires that an appropriate value be selected for a

specific inversion parameter, a joint coupling weight in this case,

but doing so is again simple in practice. For our test example, this

joint inversion approach provided a rough estimate of the offset and

may have some merit if applied to similar scenarios. Hence, we

suggest this approach be used in combination with the above two

approaches but with some caution.

We made several important assumptions in our work, which we

discussed in the previous section, and we stress that our results and

final conclusion here should be interpreted within an appropriate

scope. While our results and related conclusions are not likely to

change if some of our assumptions are broken, future work should

be performed to assess the importance of some of our larger as-

sumptions. Future work could also investigate the stability of the

recovered models and offset estimates for various parameters that

tune the inversion, for example regularization weights and target

misfit tolerance, ǫ in eq. (23), and when alternative regularization

functionals are used.

Our experiments indicated that the most successful gravity and

muography joint inversion method for the type of geological sce-

nario tested is our LSM method. However, many of the approaches

tested provided somewhat helpful results and may have some merit

for general scenarios. Hence, our conclusion is that several of the

methods should be applied to general problems and the results anal-

ysed for commonality.
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