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Abstract

We propose a joint representation and classification

framework that achieves the dual goal of finding the most

discriminative sparse overcomplete encoding and optimal

classifier parameters. Formulating an optimization prob-

lem that combines the objective function of the classifica-

tion with the representation error of both labeled and un-

labeled data, constrained by sparsity, we propose an algo-

rithm that alternates between solving for subsets of parame-

ters, whilst preserving the sparsity. The method is then eval-

uated over two important classification problems in com-

puter vision: object categorization of natural images using

the Caltech 101 database and face recognition using the

Extended Yale B face database. The results show that the

proposed method is competitive against other recently pro-

posed sparse overcomplete counterparts and considerably

outperforms many recently proposed face recognition tech-

niques when the number training samples is small.

1. Introduction

Understanding natural images is a goal of much research

in both computer vision and image processing. This un-

derstanding facilitates efficient coding algorithms in image

processing and extraction of invariant features and classifi-

cation for object categorization. Of interest is an recent im-

portant concept in these areas: sparse overcomplete repre-

sentations. The work by Olshausen and Field [22, 23] high-

lights an interesting result from neuroscience that sparse

overcomplete representations appear to be the underlying

mechanism of the V1 sector of the primary visual cortex.

Since then there have been a number of published works in

this direction [18, 26]. Essentially, this spare overcomplete

mechanism enables the extraction of invariant features that

are well localized and suitable for classification. From the

coding point of view, the mechanism effectively encodes or

measures the similarity of a given pattern with a set of pre-

defined templates, subject to transformations such as rota-

tion, scaling, etc. Recently, cortex-like architectures for ob-

ject recognition have been proposed with encouraging re-

sults [21, 25, 27].

Simultaneously, researchers in signal and image process-

ing have investigated sparse overcomplete representations

for a number of applications [8] under the concept Sparse-

Land [9]. Examples of successful applications that achieve

state-of-the-art performance include image denoising [9],

image inpainting [19], and image compression [4]. Starting

from the principle of linear superposition, it was found that

overcomplete basis functions give several advantages over

the complete counterpart, such as flexibility, robustness to

noise, and most importantly, the number of basis function to

represent the underlying signal or image is very small (i.e.

sparse). A recent interesting result [12] on the equivalence

between sparse approximation and the support vector ma-

chine indicates that sparsity is closely related to the number

of support vectors. We note that though there exists a set

of overcomplete basis functions for a particular class of im-

ages or signals, a randomly constructed overcomplete basis

functions might not be well matched to the structure of the

class [18]. This has led to recent research into the dictio-

nary construction [1] as well as the theoretical study of the

dictionary from an information theory perspective [8, 29].

Whilst the focus in this area is only on the representation

aspect, it motivates us to exploit these advances in solving

the classification problem.

We propose a new approach for pattern recognition us-

ing sparse overcomplete representations. Our approach is

markedly different from previous work in that we propose

to jointly construct the overcomplete dictionary and find the

optimal classifier parameters This coincides with the idea of

deep learning, essentially a joint source and channel coding

from the information theory perspective [17]. In particu-

lar, we formulate a constrained optimization problem that

involves the classification’s objective function and the rep-

resentation error of both the labeled and unlabeled data.

Intuitively, this achieves the dual goal: reducing the reg-

ularized empirical risk under the statistical learning frame-

work for the selection of the classifier [30], whilst maintain-

ing small, overcomplete representation error with bounded
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sparsity constraints. We propose an algorithm that achieves

a suboptimal solution of the formulated optimization prob-

lem, by alternating between solving for subsets of param-

eters while preserving the sparsity. By including the unla-

beled data in the above formulation, we seek to exploit the

intrinsic information found across object categories that is

otherwise limited by the labeled data, especially with small

training samples. Our proposed method is evaluated over

two important classification problems in computer vision:

object categorization using the Caltech 101 database and

face recognition using the Extended Yale B face database.

The results show that the proposed method is competitive

against other recently proposed sparse overcomplete coun-

terparts using either ℓ1-norm regularization [24] or cortex-

like mechanism [27] over natural images. It also consider-

ably outperforms many recently proposed face recognition

techniques, especially when the number of training samples

is small.

The novel aspect of our proposed frame work is that the

sparse encoding coefficients are obtained in a supervised

manner so as to match classification. In other words, the

two stages work jointly, leading to the most discriminative

sparse overcomplete representation that is suitable for the

set of classifiers being considered. We note importantly,

that this general principle has been seen in previous work,

such as using cortex-like mechanism to obtain sparse en-

coding [27] or in the use of direct ℓ1-norm regularization

[24]. These methods, like the K-SVD algorithm [1], con-

struct an overcomplete dictionary in an unsupervised man-

ner, hence sparse overcomplete encoding in the representa-

tion stage is separated from finding the suitable classifier in

the classification stage. Whilst this clearly helps simplify

the task in each stage, the sparse overcomplete features ex-

tracted might not always be optimal in terms of discrimina-

tive power relative to the set of classifiers being considered.

The layout of this paper is as follows. Section II de-

tails our proposed method. Section III presents experimen-

tal results on the two classification problems. Concluding

remarks are given in Section IV.

2. Proposed Method

Our starting point in this work is the availability of the

following:

• A set of labeled images which we write in matrix

form Xl = [xl
1, . . . ,x

l
Nl

] and unlabeled images Xu =
[xu

1 , . . . ,xu
Nu

]. Like many other approaches to create

dictionary in an unsupervised manner, the set of unla-

beled images enables the exploitation of intrinsic struc-

ture hidden within the class of natural images. We note

that importantly in our formulation, the images can be

the originals or pre-processed with low-level computer

vision algorithms versions. Such pre-processing steps

Figure 1. A system view of the two-stage process.
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would certainly make the classification task easier.

• The embedding of the labels of the corresponding la-

belled images in a suitable space Y = [y1, . . . ,yNl
].

This embedding is used to generalize a regression tech-

nique to the multivariate version [28] so that it can

be directly used for classification. An example of the

choice of embedding is to use with multivariate ridge

regression [14] as a symmetric simplex in K-1 dimen-

sions where K is the number of classes [2].

Our proposed method consists of two components that work

jointly (see Fig. 1). First, in the representation stage, an

input image x is converted to a sparse overcomplete repre-

sentation z. Next this sparse overcomplete representation is

used for classification. In particular, we use a linear classi-

fier for the second stage for its computational advantages.

The objective functions in each stage are combined in one

unified optimization problem so that a suitable sparse en-

coding strategy and the matching classifier can be jointly

found.

The sparse overcomplete encoding is obtained un-

der the availability of an overcomplete dictionary D =
[d1, . . . ,dk],di ∈ R

p, which means that the number of

columns is much more than the number of rows k ≫ p.

Each column of the dictionary, which is a unit norm vec-

tor is called an atom. The concept of dictionary and atoms

are analogous to code book and code words in information

theory. Each image x is a linear combination of the atoms

in the dictionary, with the coefficients in vector z. Ideally,

we seek a representation such that the representation er-

ror ‖ x − Dz ‖2 is small, whilst ensuring the sparsity is

bounded by ‖ z ‖0< ǫ. However, it is known that such a

direct solution will be computationally expensive. A more

practical approach is to relax the original ℓ0-norm regular-

ization to a ℓ1-norm regularization [8]

z = arg min
z

‖ x − Dz ‖2 +λ ‖ z ‖1 . (1)

Recent works have addressed the stability of the above re-

laxation and when such a relaxation can yield the exact ℓ0-

norm regularization. Essentially, this depends on the mini-

mum distance between any two different atoms of D, which



is known as the coherence of the dictionary, and the true

sparsity. For details, please see [8, 29].

The source transform or sparse feature z is used for clas-

sification. Under the statistical learning framework we find

the best classifier structure f(z) from a set in the hypothe-

sis space H. Conventionally, the regularized version of the

empirical risk is used to avoid overfitting and improve gen-

eralization ability, and thus

f = arg min
f∈H

{Remp[f ] + Rreg[f ]} . (2)

For simplicity, we consider the class of linear classifiers and

in particular, the multivariate version f(z;W,b) = WT z+
b, with the quadratic loss and ℓ2-norm regularization. The

above optimization is equivalent to the following problem:

[W,b] = arg min
W,b

Nl
∑

i=1

‖ yl
i − WT zl

i − b ‖2 +γ ‖ W ‖2
F , (3)

which is essentially a multivariate ridge regression problem.

When the simplex of yi is symmetric and the input is cen-

tralized, we can set the intercept b = 0 and the ridge re-

gression yields

W = (ZlZ
T
l + γI)−1ZlY

T
l (4)

where Zl = [zl
1, . . . , z

l
Nl

] and Yl = [yl
1, . . . ,y

l
Nl

] are the

sparse encoding coefficients and multivariate labels of the

training labeled data. We allow the dictionary D to be learnt

to meet the dual goal:

• First, it should be adaptive to the pattern found in the

data sets (for both labeled and unlabeled data). The

K-SVD algorithm [1] is an example of finding such a

suitable dictionary structure. When being adaptive to

the data, the feature z is likely to be mostly sparse.

• Second, the dictionary D created should generate

sparse overcomplete features z such that it carries the

most discriminative information on the basis of the

given hypothesis space H where the classifier structure

is being specified.

It is noted that when one extracts discriminative features,

the representation error may not necessarily be minimum.

Such an example can be clearly seen with the difference be-

tween principal component analysis (PCA) and linear dis-

criminant analysis (LDA).

When combined with the learning problem, our pro-

posed approach leads to the following requirements

• The regularized empirical risk is small,

• The sparse overcomplete representation error is as

small as possible but not necessary minimum, for a

given upper bound on the sparsity of z.

Though such a global solution of the optimization problem

is difficult to obtain, we seek a local solution. To this end,

we propose to combine the above requirements into a single

optimization problem as:

arg min
D,Z

‖ Yl − WT Zl ‖2
F +γ ‖ W ‖2

F

+ρl ‖ Xl − DZl ‖2
F

+ρu ‖ Xu − DZu ‖2
F

s.t. ‖ zi ‖0≤ ǫ. (5)

The parameters ρl, ρu control the trade-off between the rep-

resentation of the labeled and unlabeled data and classifi-

cation. Loosely speaking, a large value of ρ places most

emphasis on minimizing the representation error, whilst a

small value of ρ would lose much representative ability. A

suitable value of ρ would balance the goal of both objec-

tives and improve classification performance. Another way

to view of the above joint formulation is that the representa-

tion error terms act as the regularization on the parmeters D

(hence Z) of the classification problem. Though it is possi-

ble to set different values for the labeled and unlabeled data,

in this work we simply consider the case ρl = ρu = ρ.

We also note that our formulation does not reduce the

universality of a representative dictionary. Indeed, our

method starts from a universal representative dictionary that

can be used for a wide range of image classes. It then ob-

tains a discriminative dictionary for a specific classification

task by gradually altering the entries in a representative dic-

tionary under sparsity constraints and to minimize the regu-

larised risk functions. Our method is also general in a sense

that when setting the values of ρl and ρu to ∞ we obtain or-

dinary methods directly using a representative dictionary.

We also note that a previous work [15] also attempts to

adjust the trade-off between sparsity and Fisher discrimi-

nation power by setting up a related optimization problem.

However, their formulation uses a fixed representative dic-

tionary, hence it restricts them from exploiting the useful

information found in the unlabeled data. When there are

few training samples, their approach is clearly limited as it

is more likely to lose generalization ability.

Solving (5) is a challenging task and it appears that

such a global solution might not be analytically available.

What we propose in the following is an iterative algorithm

that alternates between variables such that the updates are

tractable.

Algorithm.

• Step 1: Initialize the dictionary D and spare encod-

ing coefficients Z using the K-SVD algorithm so that it

satisfies the sparsity constraints.

• Step 2: Fix the dictionary D and Z and learn the lin-

ear classifier, i.e. W, using (4).



• Step 3: Fix W and update the dictionary D and the

sparse coefficients Z in a atom-by-atom fashion such

that the regularized empirical risk is further reduced

whilst making sure of good sparse representation (de-

lineated below).

• Step 4: Check for convergence of the objective func-

tion in (5), otherwise repeat Steps 2 and 3.

All steps in the above algorithm are obvious except for

Step 3 which we explain next. In Step 3, as we fix W it

reduces to solving:

arg min
D,Z

‖ Yl − WT Zl ‖2
F

+ρl ‖ Xl − DZl ‖2
F

+ρu ‖ Xu − DZu ‖2
F

s.t. ‖ zi ‖0≤ ǫ. (6)

Following the spirit of the K-SVD algorithm, we shall up-

date each atom di of the dictionary D at a time and its corre-

sponding sparse encoding, so that sparsity is under control.

Suppose that we are updating the atom di, we first rewrite:

D = [D1 di D2], (7)

ZT = [R1 ri R2], (8)

so that the second and third terms of (6) can be generally

expressed in the following form:

‖ X − DZ ‖2
F = ‖ E − dir

T
i ‖2

F (9)

where E = X − D1R
T
1 − D2R

T
2 . Note that each row rT

i

involves many ith entries of the columns of Z. Due to spar-

sity, many entries of rT
i are also zero1. Let r̃i

T denote the

result of removing zero entries in rT
i and the corresponding

effect on E is Ẽ. Then,

‖ X − DZ ‖2
F =‖ Ẽ − dir̃

T
i ‖2

F +const (10)

where the constant is with respect to the optimization over

di. Note that Equation (10) equally applies to both the la-

beled and unlabeled data and we have removed the subscript

for notational simplicity.

Next, we simplify the term for the classifier. In a similar

fashion, let WT = [C1 ci C2] and let H = Yl−C1R
T
l1−

C2R
T
l2 then

‖ Yl − WT Zl ‖2
F = ‖ H − cir

T
li ‖2 . (11)

After discarding the zero entries in ri, we have

‖ Yl − WT Zl ‖2
F =‖ H̃ − cir̃

T
li ‖2

F +const. (12)

1We note importantly that in practice some ℓ1 solver will generate truly

sparse solution, i.e. many entries are zero, but some solvers generate ap-

proximately sparse solution, i.e. many entries are not zero but very small

in magnitude. In that case, one can discard entries whose magnitude is less

than a certain threshold.

Using (12) and (10), to update atom di and the correspond-

ing sparse encoding in Zl and Zu, we need to solve:

min
di,r̃li,r̃ui

‖ H̃ − cir̃
T
li ‖2 +ρl ‖ Ẽl − dir̃

T
li ‖2

F

+ρu ‖ Ẽu − dir̃
T
ui ‖2

F . (13)

Note that due to the nature of discarding the zero entries in

Z, its sparsity is always under control. We first consider the

case when ‖ ci ‖= 0. In this case, the first term becomes a

constant with respect to the optimization problem. Hence it

reduces to a standard rank-1 approximation

min
di,r̃li,r̃ui

‖
[ √

ρ
l
Ẽl

√
ρ

u
Ẽu

]

−

d
[ √

ρ
l
r̃T

li

√
ρ

u
r̃T

ui

]

‖2
F . (14)

More precisely, suppose that the SVD of

Ξ =

[ √
ρ

l
Ẽl√

ρ
u
Ẽu

]

= UΣVT (15)

then d is the eigenvector corresponding to the largest eigen-

values and
[ √

ρ
l
r̃T

li

√
ρ

u
r̃T

ui

]

is equal to the correspond-

ing row of VT multiplied by the largest eigenvalue.

To solve for the case when ‖ ci ‖6= 0, we start with the

following result

Lemma 1 The solution of the optimizations problems:

P1 : min
b∈Rk

‖ M − abT ‖2
F (16)

P2 : min
a∈Rn,aT a=1

‖ M − abT ‖2
F (17)

are given as follows:

b =
1

‖ a ‖2
MT a, (18)

a =
1

‖ Mb ‖Mb (19)

provided that either ‖ a ‖6= 0 or ‖ Mb ‖6= 0

A proof of this result is given in Appendix I. Now, we come

back to problem (13) when ‖ ci ‖6= 0. We note that if we

fix r̃li, and di, then the problem is equivalent to

min
r̃ui

‖ Ẽu − dir̃
T
ui ‖2

F . (20)

On the other hand, if we fix r̃ui and di, then the problem is

equivalent to

min
r̃li

‖
[

H̃√
ρlẼl

]

−
[

ci√
ρldi

]

r̃T
li ‖2

F . (21)



Finally, if we fix r̃li and r̃ui, the problem reduces to

min
di

‖
[ √

ρlẼl√
ρuẼu

]

− di

[ √
ρlr

T
li√

ρur
T
ui

]

‖2
F . (22)

Together with Lemma 1, these observations suggest that

we can alternate between solving for r̃ui, r̃li, and di, so

that Step 3 of the proposed algorithm can be split into three

iterated sub-steps:

• Step 3a: We solve for r̃ui while fixing r̃li, and di. To

do so, we apply the result (18) for M = Ẽu, b = r̃ui

and a = di.

• Step 3b: We solve for r̃li while fixing r̃ui and di. To

do so, we apply the result (18) for

M =

[ √
ρlẼl

H̃

]

(23)

a =

[ √
ρld

ci

]

(24)

and b = r̃li.

• Step 3c: We solve for di while fixing r̃li and r̃ui. To

do so, we apply the result (19) for

M = =

[ √
ρlẼl√
ρuẼu

]

(25)

b =

[ √
ρlr̃li√

ρur̃ui

]

(26)

and a = di.

3. Experimental Results

In this section, we demonstrate the applicability of our

framework in two major image classification problems,

namely general object categorization and face recognition.

Whilst general object categorization deals with a large va-

riety of classes, each of which can have a large variety of

shapes and textures, face recognition deals with a particu-

lar type of image (face), but has different individuals. The

selection of these two problems is to demonstrate the wide

applicability of our proposed supervised dictionary learning

framework to various tasks.

3.1. Object categorization

The most widely used, yet challenging database for ob-

ject recognition is the Caltech 101 [10]. This dataset has

a total of 9,144 different images over 101 categories with

an additional background class. The categories here are not

totally separable in some sense. For example, there are cat-

egories referring to the whole animal body whilst there also

exist other categories that have only the animal heads. An-

other example is the category called faces easy and the

other category faces which differ mostly in the fact one

occupies most of the image region whilst the other only oc-

cupies a small region. The background category contains a

wide range of items. The images have variable aspect ratio

with an average size of about 300 pixels each dimension.

The number of images in each category also varies from 31

(inline skate) to 800 (airplanes). Following the

standard testing procedure in many works on this dataset,

we select randomly 30 images from each category and use

up to 15 random images for training and the rest for testing.

As our framework does not deal with the scaling issue, we

assume such pre-processing steps are available. In practice,

this can be justified using suitable segmentation techniques

to set a bounding box containing the object of interest. In

the experiment, we manually crop the region of interest and

convert the images to gray scale, use histogram normaliza-

tion, resize to 32 × 32, and use dimensionality reduction

technique (PCA) to convert the images to unit vectors of

size 144. We remove the background and faces categories,

thus using a total of 100 categories.

Figure 2. Typical sparse overcomplete encoding coefficients.
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The first step in the experiment is to obtain a initial esti-

mate of the dictionary. This step is unsupervised and hence

does not require the availability of class labels. We use the

standard K-SVD algorithm to perform this task. To obtain

the sparse overcomplete encoding coefficients zi described

in (1), we use the ℓ1 solver from [16] and set the regular-

ization parameter λ = 0.052. The redundancy factor for the

dictionary is set to 4 (i.e. the number of atoms in D is 4

times the dimension of each atom), which is hinted at from

previous work [4]. In this initialization step, we take all im-

2The choice of this value is clearly not optimal and only based on our

observation that this would lead to a reasonably sparse result.



ages in the database to compute the initial dictionary3. A

typical sparse overcomplete encoding example is illustrated

in Fig. 2. The rest of the experiment is conducted over a

total of 20 random splits of the data. In each split, for sim-

plicity, we take the testing data as unlabeled data4 and set

the parameter ρl = ρu = 104. We measure the average

error per class over these 20 runs as well as the standard

deviation.

On the Caltech 101 database, for 15 training samples, the

average classification accuracy is 42%±1%. The confusion

matrix is shown in Fig. 3. The classes receive highest ac-

curacy are yin yang,faces easy and dollar bill

whilst lowest accuracy is observed over ant, leopards,

and llama. The most confusing pair is mayfly and

saxophone. Compared with recent work using simple

ℓ1-norm regularization approach [24] with the result for 1-

region of just 30%, our result is encouraging. It is impor-

tant to note that [24] and many other approaches use so-

phisticated classifier structures whilst we only use a simple

linear classifier. The recently published work using the cor-

tex type approach reports an average accuracy of 43% [27].

The highest recognition accuracy of 79.85% was reported

in [31] which uses sophisticated low-level vision techniques

and complex classifier. Our results are attractive as both the

choice of the classifier and pre-processing is markedly sim-

pler. The other point to mention is that other works also

assume high resolution images, whilst we only work with

a size of 32 × 32 and then convert them to a vector of 144,

which is much faster and more suitable for applications such

as in video surveillance. We envisage that it is possible to

extend our method to larger images in a similar spirit to [20]

so that performance improvement can be achieved.

3.2. Face recognition

We select a set of 2414 near frontal images for 38 indi-

viduals from Extended Yale B face database [11] for this

experiment5. This database addresses the issue of pose and

illumination, which are difficult problems in face recogni-

tion. Our pre-processing step is similar to the previous ex-

periment: the original images are cropped to 32×32 pixels,

converted to column vectors, normalized to unit norm, then

projected to a dimension of 144 using PCA. We divide the

database into two disjoint subsets, each containing 19 indi-

viduals. One is used for the labeled data and testing, whilst

3Even with the K-SVD itself, one needs to specify the initial value

of the dictionary, for example using an overcomplete DCT version. In this

experiment, we decide to initialize the dictionary from the data itself. After

a few iterations which allow for the algorithm to settle, we found that this

choice leads to a better sparse encoding.
4It is also possible to take images in other similar categories for unla-

beled data which we believe leads to no clear difference. Our choice here

is to simplify and lead to a reproducible result.
5Note: it is of common practice in face recognition to crop a particular

area of the face. For a pre-cropped version, this subset can be downloaded

from [5]

Figure 3. Confusion matrix on Caltech 101.
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for the other we discard the class information and use as un-

labeled data. In this experiment, we use γ = 1 and ρ = 1.

Other parameters are the same as used in the previous ex-

periment.

For comparison, we also run the test against the reg-

ularized version of some recently proposed techniques in

the face recognition literature [7]6 such linear discriminant

analysis (LDA) [3], local preservation projection (LPP) [13]

and orthogonal Laplacianfaces (OLPP) [6]. These regular-

ized versions have been demonstrated to achieve very good

classification performance even when the number of train-

ing samples is small [7]. In this experiment, we set the reg-

ularization parameter α = 0.1 as suggested in [7] and use a

simple quadratic regularizerJ (a) = aT a (for the technical

meaning please see Equation (11) in [7]).

To illustrate the advantage of our method over the com-

pared methods when the number of training samples is

small, we consider an extreme case of only 2 training

samples and report the average classification error over all

classes together with the standard deviation over 20 random

splits. The result is tabulated in Table 1. As can be seen,

the regularized versions R-LDA and R-LPP have outper-

formed the baseline PCA and OLPP as they are known to

be quite robust in the small training size case. However, our

proposed method clearly outperforms R-LDA by as much

as 8%. When we increase the number of training samples,

R-LDA and OLPP improve significantly and approximate

our method at 4 training samples. Of course, there is some

increase in the computational cost for our method, but this

gain in performance justifies our proposed method.

3.3. Selection of the regularization parameter

As we mentioned, the parameter ρ in the formulation (5)

controls the trade-off between representative error of both

the labeled and unlabeled data and discriminative power.

6The source code for these linear techniques is also obtained from [5]



Table 1. Error rate on Extended Yale B face database

Train 2 3 4

PCA 0.78 ± 0.02 0.76±0.02 0.74±0.02

R-LDA 0.58±0.02 0.43±0.03 0.36±0.03

R-LPP 0.62±0.03 0.54±0.03 0.50±0.02

OLPP 0.72±0.03 0.43±0.03 0.34±0.03

Proposed

method
0.50±0.02 0.41±0.03 0.36 ± 0.02

By considering this trade-off in the formulation, it is be-

lieved that generalization ability will be better for classifi-

cation than methods that are simply optimized for sparse

representation such as [24], which is equivalent to setting ρ
very large. A properly selected value for ρ can lead to bet-

ter performance. Model selection methods such as cross-

validation often examine the classification performance and

select the value of ρ that is optimal. To address how the

classification performance varies with different values of ρ,

we revisit the face recognition experiment with varying ρ.

The result is shown in Fig. 4. When ρ = 0.01, we lose

much representative capability and the classification error

jumps to about 62%. On the other hand, if we directly use

the overcomplete sparse encoding coefficients directly from

the K-SVD algorithm ( i.e. equivalent to setting ρ = ∞)

the classification error is 55%. Selecting a value of ρ in be-

tween these two extremes clearly leads to a better classifi-

cation performance. However, future work needs to address

a better selection of this parameter and an extension to the

case where ρl 6= ρu.

Figure 4. Effect of varying ρ.
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4. Conclusion

We have presented a new approach to pattern recogni-

tion using sparse overcomplete representations. The nov-

elty of our proposed approach lies in the formulation of

joint learning and dictionary construction that results in the

most discriminative sparse encoding and an optimal linear

classifier for the problem of interest. Our method solves

this joint problem by formulating an optimization problem

that involves both the objective function of the classification

stage and the representation error of both the labeled and

unlabeled data with sparsity constraint. A suboptimal algo-

rithm has also been proposed to solve this constrained op-

timization problem. Being formulated in a statistical learn-

ing framework and exploiting the information in unlabeled

data, our proposed method also achieves good generaliza-

tion. Experimental results for object categorization over the

Caltech 101 database show that with a very simple classi-

fier, our proposed method is already competitive with many

recently proposed alternatives. When being applied to face

recognition, our method clearly outperforms recently pro-

posed robust methods when the number of training samples

is small. These early results encourage further exploration

in this framework both theoretically and practically.
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Appendix I

The result of Lemma 1 is similar to the Power method

in finding the maximum eigenvalue. Here we seek a rank-

1 approximation abT of a (not necessarily square) matrix

M ∈ R
p×q . When both a and b are free, the standard

SVD algorithm yields the optimal solution in a sense of

minimising the squared distance. However, when there are

constrainst on a or b, Lemma 1 serves as a suboptimal way

to find the solution.

To prove (18), denote ci the ith column of M, then a bit

of algebra gives

f(b) = ‖ M − abT ‖2
F

=

q
∑

i=1

‖ ci − abi ‖2 . (27)

Minimising f(b) for b ∈ R
q yeilds bi = cT

i a/ ‖ a ‖2, or

equivalently

b =
MT a

‖ a ‖2
. (28)



To prove (19), we can expand the above expression

f(a) =

q
∑

i=1

(cT
i ci − 2bic

T
i a + aT a). (29)

From which minimising f(a) subject to aT a = 1 is equiv-

alent to

min
aT a=1

q
∑

i=1

−2bic
T
i a = min

aT a=1
−2aT Mb. (30)

The solution for a is then the unit norm vector in the direc-

tion of Mb which is

a =
Mb

‖ Mb ‖ . (31)
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