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The introduction of mobile edge computing (MEC) in vehicular network has been a promising paradigm to improve vehicular
services by offloading computation-intensive tasks to the MEC server. To avoid the overload phenomenon in MEC server, the
vast idle resources of parked vehicles can be utilized to effectively relieve the computational burden on the server. Furthermore,
unbalanced load allocation may cause larger latency and energy consumption. To solve the problem, the reported works
preferred to allocate workload between MEC server and single parked vehicle. In this paper, a multiple parked vehicle-assisted
edge computing (MPVEC) paradigm is first introduced. A joint load balancing and offloading optimization problem is
formulated to minimize the system cost under delay constraint. In order to accomplish the offloading tasks, a multiple
offloading node selection algorithm is proposed to select several appropriate PVs to collaborate with the MEC server in
computing tasks. Furthermore, a workload allocation strategy based on dynamic game is presented to optimize the system
performance with jointly considering the workload balance among computing nodes. Numerical results indicate that the
offloading strategy in MPVEC scheme can significantly reduce the system cost and load balancing of the system can be achieved.

1. Introduction

As road traffic density continues to increase and traffic data
explodes, the limited computing capacity of onboard termi-
nals cannot meet the communication and computing
demand of computationally intensive onboard applications
[1, 2]. The introduction of mobile edge computing (MEC)
has become an effective solution to the problem of resource
scarcity in vehicular networks [3, 4]. Usually, MEC can
enhance network resources and enable localized data pro-
cessing by deploying computation and storage resources at
the edge of the network close to the users [5, 6]. Compared
with remote cloud computing, it can use resource-rich
servers at the roadside unit (RSU) to provide users with
low-latency, high-bandwidth application services [7].

However, onboard applications such as augmented reality
and autonomous driving are with higher demands on data
processing and storage capabilities and still requiremore avail-
able resources [8, 9]. When the number of offloading tasks is
large, the MEC server with limited resources will be over-

loaded and result in less efficient task execution. Moreover,
deployingmassiveMEC servers to augment vehicular network
resources would entail huge economic and time costs, which is
clearly not feasible. In order to address the problem, end
devices such as vehicles and gateways with limited resources
can be used as infrastructures to effectively extend the compu-
tational, communication, and storage capabilities of the edge
server. For example, the idea of using vehicles as communica-
tion and computing infrastructure to collaborate with other
edge devices to perform tasks has been proposed in [10],
which can meet the demand for considerable communication
and computation capabilities. The computing power of mobile
vehicles on the road has been used to assist in offloading tasks
and speed up the task execution process [11–13]. As mobile
vehicles are highly dynamic, it is difficult to guarantee the sta-
bility and reliability of task offloading.

Note that the PVs with vast idle resources in the roadside
and parking lots can act as static network infrastructures to
enhance vehicular network [14, 15]. According to a survey,
about 70% of vehicles are parked for more than 20 hours
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per day [16]. And most of the vehicles in the vehicular net-
work have been equipped with sensors, wireless devices, and
onboard units, which facilitates the vehicles to establish sta-
ble and reliable wireless communication and consequently
form a vehicular adhoc network (VANET) [17, 18].

In the existing studies of vehicular edge networks, the
data interaction between the driving vehicles and the road-
side units is mainly considered. Generally, it leads to low uti-
lization of the PV resources. Based on the above problems, a
multiple parked vehicle-assisted edge computing framework
is proposed in this paper, which has multiple parked vehicles
to assist the edge server to perform offloading tasks. And the
total system cost is minimized under the constraint of max-
imum allowable delay while taking load balancing and off-
loading optimization into account.

The main contributions of this work are summarized as
follows.

(i) The system model of multiple parked vehicle-
assisted edge computing is analyzed. And the joint
load balancing and offloading optimization problem
is formulated to minimize the total system cost
under the delay constraint. The offloading strategy
is proposed to solve the optimization problem,
which includes offloading node selection and work-
load allocation

(ii) Considering the parked probability and resource
availability of PVs, a multiple offloading nodes
selection algorithm is adopted to select several can-
didate offloading nodes among vehicles and MEC
server

(iii) Considering the sequential nature of offloading
decisions and the resource consumption during task
execution, an efficient workload allocation strategy
based on dynamic game is proposed to optimize
system utility while considering load balancing

The rest of this paper is organized as follows. In Section
II, related works about task offloading in vehicular networks
are firstly introduced. The system model for multiple parked
vehicle-assisted edge computing is described in detail in Sec-
tion III. In Section IV, the workload allocation problem
among multiple tasks and multiple computing nodes is
modeled as a dynamic game process. In Section V, an effi-
cient offloading strategy is proposed to solve the node selec-
tion and workload allocation problems. Simulation results
for proposed scheme and the related analysis for different
cases are provided in Section VI. Finally, the research work
is concluded in Section VII.

2. Related Work

In the last few years, the existing work in vehicular networks
is mainly utilizing MEC to provide offloading service. These
research works can be divided into two main categories: one
is only using MEC servers to handle task offloading requests,
and the other is using remote clouds or vehicles to assist
MEC servers.

2.1. Vehicular Edge Computing. Researches in the first cate-
gory aim to solve the offloading problem in the vehicular
work by only using edge servers. The MEC server has more
computing power and can provide a large amount of
resources for offloading services. The existing work mainly
focused on improving the efficiency of task execution and
avoiding server overload by optimizing resource allocation.
For example, a collaborative computing offload and resource
allocation optimization scheme, based on the scalable nature
of tasks in driver assistance applications, was presented in
[19]. In order to balance resource consumption and user
experience with limited computing and spectrum resources,
edge computing and social networking were combined to
propose a new network system—vehicular social edge com-
puting (VSEC) in [20]. Thus, the quality of service and qual-
ity of experience of drivers were improved by optimizing the
available network resources. Moreover, a multipath trans-
mission workload balancing optimization scheme was inves-
tigated in [21], which uses multipath transport to support
communication between vehicles and edge nodes. In [22],
the fiber-wireless (FiWi) technology was introduced to
enhance vehicular network, and a SDN-based load-
balancing task offloading scheme was also proposed to min-
imize the processing delay.

2.2. Collaborate Vehicular Edge Computing. The second cat-
egory of method for handling task offloading requests is to
use other infrastructure such as remote clouds, UAVs, and
vehicles to collaborate with MEC servers.

2.2.1. Remote Clouds Collaborate Vehicular Edge Computing.
The remote clouds are often introduced in edge computing
to provide more offloading services. For instance, a two-
tier offloading architecture for cloud-assisted MEC to
improve system utility and computational latency by using
collaborative computational offloading and resource alloca-
tion optimization schemes was discussed in [23]. A multi-
layer data flow processing system, i.e., EdgeFlow, was
presented in [24], to integrally utilize the computing capac-
ity throughout the whole network and optimally the trans-
mission resource allocation to minimize the system latency.
Furthermore, a cloud-based tiered vehicle edge computing
offloading framework that introduces nearby backup servers
to make up for the lack of computing resources of MEC
servers was presented in [25]. A game theoretic algorithm
was used to design the optimal multilevel offloading scheme
to improve the utility of vehicles and servers.

2.2.2. Mobile Vehicles or UAVs Collaborate Vehicular Edge
Computing. Moreover, many works have proposed solutions
for task offloading by using mobile vehicles or UAVs to
assist MEC servers. In [26], a UAV-MEC system was inves-
tigated based on the idea of utilizing the UAV as a comput-
ing node to improve the average user latency. In [27], a
cooperative UAV-enabled MEC network structure was pre-
sented to collaborate UAV offloading tasks, which the
long-term utility was maximized by deep reinforcement
learning-based algorithms. A distributed collaborative task
offloading architecture by treating mobile vehicles as edge
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computing resources was discussed to guarantee low latency
and application performance in [28]. A joint energy and
latency cost minimization problem was formulated while
using vehicles to assist task offloading. And an ECOS scheme
with three phases was proposed to effectively solve the opti-
mal problem in [29].

2.2.3. Parked Vehicles Collaborate Vehicular Edge
Computing. Task offloading via UAVs and mobile vehicles
is highly dynamic and lead to discontinuity in communica-
tion which is highly unstable [30]. In contrast, vehicles
parked on the roadside or in parking lots are relatively static
and can provide a more stable and reliable task offloading
service. Thus, another recent work introduces parked vehi-
cles to extend edge computing capabilities. For instance,
serving PVs as static nodes to extend vehicular network
resources and the concept of parked vehicle assistance
(PVA) was proposed in [31, 32]. In addition, using PVs to
assist edge servers in handling offloading tasks was presented
in [33], by organizing PVs into parking clusters and
abstracting them as virtual edge servers. Eventually, the task
offloading performance was effectively improved by a task
scheduling strategy and an associated trajectory prediction
model. In [34], a three-stage contract-Stackelberg offloading
incentive mechanism was developed to optimize the system
utility by making full use of the large amount of free
resources in the parking lot. The computing resources were
also classified to provide different contracts, and the problem
was solved using backward induction. In [35], the system
task allocation was optimized according to the collaborative
vehicle edge computing (CVEC) framework by designing a
contract-based incentive mechanism to schedule PVs to
handle offloading tasks. And an optimal contract that maxi-
mizes subjective utility under information asymmetry was
formulated to optimize user utility.

The related works discussed above in parked vehicle-
assisted vehicular network rarely consider the load balance
among computing nodes or just allocate the load between
MEC server and single parked vehicle. Compared with them,
in this paper, a MPVEC framework with multiple parked
vehicles collaborating MEC server while executing offload-
ing tasks is presented. The computing framework with dis-
tributed characteristics increases computing capacity of
task offloading and provides users with more efficient and
flexible offloading options. To ensure the reliable and stable
task execution, a multiple offloading node selection algo-
rithm based on the parking behavior and resource availabil-
ity is proposed to select multiple appropriate PVs to
accomplish the offloading tasks. Considering that the
resource states of MEC servers and PVs are time-varying
during task execution, an efficient workload allocation strat-
egy is developed to optimize system performance and keep
the load balancing.

3. System Model

3.1. Network Entities. In this section, the MPVEC system
with network entities is mainly composed of requesting
vehicles, service provider, MEC server, and several PVs, as

shown in Figure 1. More details of the function of the net-
work entities in the system are described as follows.

Requesting vehicle: the requesting vehicle makes task
offloading decisions based on the information provided by
the service provider. Part of the task is processed by request-
ing vehicles locally, and the other part is uploaded to the
nearby RSU through vehicle to infrastructure (V2I) commu-
nication and reasonably distributes the workloads to corre-
sponding edge nodes.

Service provider: based on the computational and stor-
age capacity of the MEC server, the service provider can col-
lect global information, including task information as well as
the computational capacity and unit energy consumption of
the requesting vehicles, MEC server, and PVs. Simulta-
neously, according to the offloading decision, it can dispatch
the MEC server and PVs to execute the corresponding work-
load on demand.

MEC server: the MEC server is richer in computing
resources and can provide offloading services for requesting
vehicles. The task requests are transmitted wired to the MEC
server for processing via the RSU.

Parked vehicle: RSUs are wired to each other, and wire-
less connections are established between PVs and RSU via
V2I communication. PVs in the parking lot can use the idle
computing resources to perform offloading tasks.

3.2. System Model. As shown in Figure 1, it is assumed that a
one-way road is within the coverage of RSU, and there are N
requesting vehicles moving on the road. Each vehicle gener-
ates a computation task, which can be described as Di = f
di, ci, tmax

i g and i ∈N = f1, 2,⋯,Ng. Here, di, ci, tmax
i

denotes the data size of task, the number of CPU cycles
needed for executing task, and the maximum allowable time
delay of the task, respectively.

To ensure uninterrupted communication during task
execution, the task offloading process needs to be completed
before the vehicle leaves the RSU coverage area. Assuming
that the length of the road section covered by the RSU is L,
the requesting vehicle moves on the one-way road at a con-
stant speed of v, and its position is away from the starting
position of the road section by li. Then, the maximum allow-
able time delay tmax

i of the task can be represented as tmax
i

= ðL − liÞ/v.
The task generated by the requesting vehicle can be exe-

cuted locally or offloaded to edge computing nodes. The set
of J = f1, 2,⋯, jg represents the edge computing nodes.
Among them, j = 1 represents the MEC server, j > 1 repre-
sents PVs, and the offloading part of the task can be off-
loaded to multiple edge computing nodes for parallel
processing. The parameter of xij ∈ f0, 1g represents the node
selection variable. If the j-th edge computing node is selected
to execute the i-th offloading task, xij = 1 is set; otherwise,
xij = 0: Let kij ð0 ≤ kij ≤ 1Þ denotes the allocation workload
ratio of the i -th offloading task to the j -th edge computing
node. And (1−∑J

j=1xijkij) represents the unoffloading ratio of
the i -th task and should be executed locally. As the comput-
ing resource of the system is time-varying, and the resource
consumption cost of each node is different, it is a key
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challenge to balance the workload of each node while mini-
mizing the whole system cost. The communication and
computation model in the MPVEC framework will be
described in the following sections. And the rest main
parameters that will be used in this paper are listed in
Table 1.

3.3. Communication Model. For the convenience of analysis,
it is assumed that the network topology and wireless chan-
nels remain unchanged during the task execution. When
the vehicle moves into the RSU coverage area, it can estab-
lish a V2I communication connection with the RSU based
on IEEE 802.11p. If the task is partially or completely off-
loaded, the offloading part of the task is firstly transmitted
to the RSU. And the MEC server, which establishes wired
connection with RSU, calculates the corresponding offload-
ing tasks. Simultaneously, the remaining offloading part is
forwarded to the RSU at the parking lot, and the RSU will
issue the task to the PVs for processing. Finally, the task exe-
cution result is returned. Since the size of task execution
result is small, its transmission delay and energy consump-
tion can be ignored, and only the task distribution process
is considered in this paper.

(1) Requesting vehicle to RSU: when the i-th requesting
vehicle who generate a computation task Di is
occurred in the coverage of RSU, the uplink trans-
mission rate between the i-th requesting vehicle
and RSU can be expressed as

Ru
i = B log2 1 +

pui h
u
i

N0

� �
, ð1Þ

where pi
u is the transmission power of the i-th request-

ing vehicle, and hi
u is the power gain between the i-th

requesting vehicle and RSU. B and N0 are the channel band-
width and the background noise power, respectively.

The transmission time and energy consumption of
the uplink are related to the size of the task, which

can be calculated by

Tu
i = 〠

J

j=1

xijkijdi
Ru
i

,

Eu
i = ρutrans 〠

J

j=1
xijkijdi,

ð2Þ

where ρutrans is the uplink cost coefficient and repre-
sents the cost to calculate the unit data volume in the
uplink.

(2) RSU to MEC server (j = 1): since the connection
between RSU and MEC server is in a wired manner,
the transmission rate is relatively high, and the data
transmission time and energy consumption are
negligible

(3) RSU to PV (j > 1): there is a RSU near the parking lot,
and the RSU is connected with the roadside RSU by
wire. The transmission time and energy consumption
can be neglected. The RSU will send the received off-
loading task requests to the PVs for processing via
V2I communication, and the downlink transmission
rate between the RSU and the j-th PV is

Rd
rsu,j = B log2 1 +

pdrsuh
d
rsu,j

N0

 !
, ð3Þ

where pdrsu is the transmission power of the RSU, and
hdrsu,j is the power gain between the RSU and the j-th PV.

Furthermore, the tasks can be offloaded in parallel trans-
mission; thus, the data transmission time of the downlink is
the maximum task transmission time of each offloading
part. And the transmission energy consumption is the sum
of the transmission energy consumption of each offloading
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Figure 1: Multiple parked vehicle-assisted edge computing for task offloading.
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part, which are defined as

Td
i =max

kijdi
Rd
rsu,j

( )
,

Ed
i = ρdtrans 〠

J

j=2
xijkijdi:

ð4Þ

We let ρdtrans as the downlink cost coefficient and rep-
resents the cost to calculate the unit data volume in the
uplink.

As a result, the total transmission time and energy
consumption for data transmission to the edge computing
node for the offloading part of Di are expressed, respec-
tively, as

Ttrans
i = Tu

i + Td
i = 〠

J

j=1

xijkijdi
Ru
i

+max
kijdi
Rd
rsu,j

( )
,

Etrans
i = Eu

i + Ed
i = ρutrans 〠

J

j=1
xijkijdi + ρdtrans 〠

J

j=2
xijkijdi:

ð5Þ

3.4. Computation Model

(1) Compute task locally: the unoffloading part of the
task is calculated by the requesting vehicles locally.
And the delay and energy consumption are related
to the number of CPU cycles required by the task
Di, which can be calculated by

Tloc
i =

1 −∑J
j=1xijkij

� �
ci

f loci
,

Eloc
i = ρloccal 1 − 〠

J

j=1
xijkij

 !
ci,

ð6Þ

where f i
loc is the computing capability of the i-th

requesting vehicle, and ρloccal is the energy consumption
required to calculate the unit CPU cycle.

(2) Compute task by edge computing nodes: when the
task Di is offloaded partially to the j − th (j∈J) edge
computing node, the task processing delay is related
to the computing capability of the edge computing
node

The computing resources of the j -th edge node are lim-
ited and changed with time during the task Di execution,
which can be described as f ij ∈ ½0, f ijmax�, and f ij

max is the
max computing power of the j-th edge node.

When the computing resources occupancy rate of the
edge nodes in a certain period of time is greater than its
own threshold of rmax, the tasks in the node will not be proc-
essed in parallel and need to be stored in the waiting queue
and executed in sequence according to the delay constraint.
Therefore, the task processing delay at the edge node mainly
includes two parts: task calculation time and task waiting
time, which can be written as

Tij =
kijci
f ij

+ Twait
ij ,

Eij = ρoffcalkijcij:

ð7Þ

Table 1: Main parameters.

Parameters Description

di, ci, ti
max Task data size, task required computing resource, and the maximum allowable time delay of the task.

xij, kij The node selection variable and the workload ratio of the i-th offloading task to the j-th edge computing node.

B, N0 Wireless channel bandwidth and white Gaussian noise power.

pi
u, pi

d Uplink and downlink transmission power.

hui , h
d
rsu,j The power gain between the i-th requesting vehicle and RSU and the power gain between RSU and the j-th PV.

f i
loc, f ij

max CPU computing power of the i-th requesting vehicle and the max CPU computing power of the j-th edge computing node.

ρutrans, ρ
d
trans Uplink and downlink cost coefficient.

ρloccal , ρ
off
cal Energy consumption per CPU cycle of requesting vehicle and edge computing nodes.

rmax The maximum allowable computing resources occupancy rate of the edge computing nodes in a certain period of time.

ki
∗ The optimal strategy of the i-th requesting vehicle.

T Time span of the time period.

δ tð Þ, χ tð Þ Probability density function and accumulative distribution function of the PV parking durations t.

Pij, aqij
The probability value of the j-th PV remaining parked at the execution time period of the i-th task and accumulative parking

durations of the j-th PV.

5Wireless Communications and Mobile Computing



Let ρoffcal represents the energy consumption required to
calculate the unit CPU cycle of the edge node, where the
ρoffcal of the PV is smaller than that of the MEC server.

The offloading part of the task request Di generated by
the i -th requesting vehicle can be processed in parallel by
multiple edge computing nodes. Therefore, the task offload-
ing delay is mainly composed of the task transmission delay
and the task processing delay. And the largest processing
latency among edge computing nodes is used as the task off-
loading latency

Tof f
i = T trans

i +max Tij

� �
: ð8Þ

Task offloading energy consumption is the sum of the
transmission energy consumption and processing energy
consumption of each offloading part

Eof f
i = Etrans

i + 〠
J

j=1
Eij ð9Þ

3.5. Problem Formulation. For the task Di generated by the i
-th requesting vehicle, there is a delay and energy consump-
tion during processing, which mainly contain two aspects:
the local processing part and the offloading processing part.
Due to the parallel processing of tasks, the total task process-
ing latency is the maximum latency for local processing and
task offloading processing, which can be expressed as

Ti =max Tloc
i , Tof f

i

n o
: ð10Þ

The total energy consumption of the task processing can
be written as

Ei = Eloc
i + Eoff

i : ð11Þ

A cost function for task Di is defined as the combination
of executing time and energy consumption.

Ui = αTi + βEi, ð12Þ

where α + β = 1. The goal in this paper is to minimize the
whole cost of all distributed tasks with the latency constraint,
while joint consider load balancing and offloading decision.
The optimizing problem for all tasks can be formulated as

min
xij,kijf g

U = min
xij ,kijf g

〠
N

i=1
Ui, ð13Þ

s:t 0 ≤ kij ≤ 1,∀i ∈N , j ∈ J , ð14Þ
Ti ≤ tmax

i ,∀i ∈N , ð15Þ
xij ∈ 0, 1f g,∀i ∈N , j ∈ J , ð16Þ

0 ≤ 〠
J

j=1
xijkij ≤ 1,∀i ∈N , j ∈ J , ð17Þ

α + β = 1, α ≥ 0, β ≥ 0: ð18Þ

In the above optimization model, constraint (14) denotes
the workload ratio kij is a continuous variable, which cannot
exceed to 1. And each requesting vehicle can offload its task
to multiple computing nodes according to the workload
ratio of kij. Constraint (15) ensures that the task execution
delay cannot exceed the maximum allowable task delay
tmax
i . Constraint (16) indicates the offloading node selection
variable, and if the i-th requesting vehicle selects the j-th
edge computing node to offload part of the task, then xij =
1; otherwise, xij = 0. Constraint (17) presents the total off-
loading task of the i-th requesting vehicle cannot exceed to
1 and makes the problem a mixed integer nonlinear optimi-
zation problem. In constraint (18), α and β are the weights
of time delay and energy consumption in the total cost,
respectively, which can be dynamically adjusted according
to the task type to meet the computing requirements of dif-
ferent tasks.

4. Multitask Multinode Dynamic Game

In this section, the workload allocation for multiple tasks in
multiple computing nodes is modeled as a dynamic game
process. Considering that offloading decisions are sequential,
the requesting vehicle who makes the former decision will
have an impact on the requesting vehicle who makes the
subsequent decision. Thus, to ensure the sequential rational-
ity of the game process, each requesting vehicle is required to
make the optimal decision, so that the overall strategy of the
system is optimal.

The service provider in the proposed framework can
provide requesting vehicles with global information
(including the available computing capability of edge
nodes and task queuing sequence). To optimize the total
system cost of task execution, sequential decisions for dif-
ferent requesting vehicles are made to offload part or all
tasks to edge computing nodes. At the same time, both
sides of the game complete distributed autonomous deci-
sion making in the game process, which can obtain the
optimal utility and effectively relieve the computational
pressure of the MEC server.

The dynamic game process with multiple tasks and mul-
tiple computing nodes can be defined by G ðN , K ,UÞ, while
the three elements of the game can be described as

(1) N = f1, 2,⋯, i,⋯, ng represents the requesting vehi-
cle players in the game that generates the tasks and
makes task offloading decisions

(2) Kn = fk1, k2,⋯, ki,⋯, kng means the task offloading
decision of the requesting vehicle players, where ki
= fki1, ki2,⋯, kijg. And kij represents the workload
proportion of task Di performed by j -th the edge
node

(3) The cost function Ui represents the cost required for
requesting vehicle players to perform tasks, includ-
ing task execution time and energy consumption
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Therefore, the offloading decision for requesting vehi-
cle players other than the i-th requesting vehicle player
can be described as k−i = fk1,⋯, ki−1, ki+1,⋯, kng, and the
i-th player needs to choose a strategy to minimize the task
execution time and energy consumption, which can be
expressed as

min
ki∈ 0,1ð Þ

Ui ki, k−ið Þ,∀i ∈N: ð19Þ

Next, the existence of the Nash equilibrium point in
the dynamic game process is discussed.

Definition 1. There exists a strategy set K∗
n = fk∗1 , k∗2 ,⋯, k∗i ,

⋯, k∗ng in the dynamic game G ðN , K ,UÞ and if

Ui k
∗
i , k

∗
−ið Þ ≤Ui ki, k

∗
−ið Þ,∀ki ∈ Kn, ð20Þ

then strategy set Kn
∗ is the Nash equilibrium of game G. At

the Nash equilibrium point, it is impossible for any player to
change the strategy to obtain greater utility; that is, each
requesting vehicle has made the optimal offloading decision
to minimize the task execution cost.

Meanwhile, for the i -th requesting vehicle, in order to
minimize its own cost, the optimal strategy k∗i needs to be
obtained by solving the following problem.

μ kið Þ = arg min
kif g

Ui = αTi + βEi: ð21Þ

The optimal strategy of k∗i can be obtained by solving the
following formula:

∂2Ui kið Þ
∂2ki

= 0: ð22Þ

It can be easily concluded that the formula for solving
the optimal strategy is convex, and there is an optimal solu-
tion. Hence, there is an optimal strategy in the dynamic
game process between multiple tasks and multiple comput-
ing nodes.

5. Efficient Workload Allocation Strategy

In this section, an efficient offloading strategy is proposed to
minimize the total cost of task execution, which joint con-
sider load balancing and offloading optimization. In the task
scheduling problem formulated in this paper, the value of
the offloading selection variable is 0 or 1, while the task off-
loading ratio can be any value between 0 and 1. Therefore,
the optimization problem is a mixed integer nonlinear opti-
mization problem. We divide it into two subproblems to
solve, namely, offloading node selection and workload
allocation.

5.1. Offloading Node Selection. Different form the reported
works that mainly use single computing node to collaborate
MEC server in task processing, in this paper, the task Di gen-
erated by the i -th requesting vehicle is considered to decom-

pose into multiple subtasks, and then it is offloaded to
multiple edge computing nodes for joint execution. And a
multiple offloading nodes selection algorithm is designed
to select several appropriate computing nodes for parallel
processing tasks, which is described in Algorithm 1.

It is assumed that the maximum computing power of the
i-th requesting vehicle and the j-th edge computing node are
fmax
ij and f loci , respectively. The maximum computing power
of each node is fixed, but the computing resources of each
node change dynamically during task execution process.
Part of the computing resources are occupied during task
execution, and released after the task execution is completed.
When the i -th requesting vehicle selects offloading nodes,
the MEC server must be used as one of the offloading nodes
to prevent overloading at the PVs, considering that it can
provide strong computing power. As a result, the appropri-
ate offloading nodes are mainly selected among the PVs
within the coverage area of RSU.

The appropriate offloading nodes in the PVs are selected
to minimize the system cost by evaluating the execution cost
of subtasks. As shown in Algorithm 1, the computation task
is first divided into several subtasks with equal size, and the
workload ratio of the single offloading task ω is set to 0.1.
Then, the local and each edge node processing cost incre-
ment required for this subtask Δuloci and Δuij is calculated
and compared according to equation (12). The additional
waiting time Twait

ij caused by resource consumption is also
considered. The PV that satisfies the parking probability
constraint Pij ≥ Pth will be selected while its cost increment
is lower than the local ðΔuij < ΔulocÞ. Simultaneously, if the
j-th edge node is selected to executing part of the task Di,xi
j is set to 1, and the workload ratio kij and computing power
f ij will be updated during task execution.

During the task scheduling process, the i-th requesting
vehicle evaluates the current resource availability status of
the j-th PV, which can be described by the probability value
Pij of the j-th PV remaining parked state at the execution
time period of the i-th task [16]. And the Pij can be calcu-
lated by

Pij =
ðtmax

aqij+T

δ tð Þ
1 − χ aqij

� � dt = 1 − χ aqij + T
� �

1 − χ aqij
� � , ð23Þ

where t ∈ ½0, tmax� indicates the parking durations, δðtÞ
denotes the probability density function of the j-th PV park-
ing duration, and χðtÞ is the cumulative distribution func-
tion of δðtÞ. T is time span of the time period. The qij
denotes the time interval detecting the parking behavior of
the j-th PV, and the parameter of a is constant. The accumu-
lative parking durations until now is recorded as aqij. Thus,
the probability that the PV will continue to stay parked for at
least T time slots can be predicted.

When the PV stays for a specified period of time with a
higher probability, it can provide more stable and reliable
resources for task execution. If the task is assigned to the
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PV, the extra task retransmission overhead caused by the
departure of the PV can be effectively avoided. Thus, the
probability that the PV keeps parked state during the task
execution period is used as an important indicator to mea-
sure the availability of PV resources.

In Algorithm 1, the PVs satisfying Pij ≥ Pth can be hope-
fully selected as offloading nodes to execute the workload,
where Pth is a predefined threshold value in the PV selection
process. Furthermore, when selecting a suitable PV as an off-
loading node, it is necessary to consider the computing
power of the corresponding PV itself and the energy con-
sumption per unit. The PVs that satisfy both the parking
probability constraint of Pij ≥ Pth, and the less task executing
cost of Δuij < Δuloc will be selected as the candidate offload-
ing nodes. According to Algorithm 1, stable and reliable off-
loading nodes can be obtained to meet the task workload
allocation requirements.

5.2. Workload Allocation. The workload allocation between
multiple tasks and multiple nodes is modeled as a dynamic
game process. Since the requesting vehicles can obtain global
information according to the service provider, the game pro-
cess can be regarded as a complete information game. The
requesting vehicles need to make sequential decisions based
on the priorities defined by task delay constraints. Consider-
ing the resource consumption in the system, a workload
allocation algorithm based on dynamic game is proposed,
and the backward induction is used to assist requesting vehi-
cles in formulating their strategies. When all requesting
vehicles make the optimal decision, the Nash Equilibrium
is reached and the game ends. The specific steps are
described in Algorithm 2 as follows.

Assuming that the task set generated by the request-
ing vehicles has been prioritized according to the delay

constraint, that can be given as tmax
1 < tmax

2 <⋯<tmax
i , i ∈

N . According to the proposed algorithm, the requesting
vehicles allocate the workload among the local and the
selected offloading nodes and makes offloading decisions
in turn.

Among them, the (i + 1)-th requesting vehicle who
makes the later decision develops an offloading strategy
ki+1 based on the former decision ki of the i -th requesting
vehicle, and then it feeds the developed strategy ki+1 to the
i -th requesting vehicle. If the former i -th requesting vehicle
has a lower-cost strategy k’i in this case, the strategy ki is
updated and the later strategy ki+1 changes accordingly. Iter-
ation keeps until the strategies and costs are both no longer
changed, and then the optimal solution ki

∗ and k∗i+1 are
obtained. This step is repeated until all requesting vehicles
obtain the optimal strategy K∗

n = fk∗1 , k∗2 ,⋯, k∗i ,⋯, k∗ng,
which results in the minimum total system cost and joint
consider the load balancing.

6. Numerical Results

In this section, the performance of the proposed MPVEC
scheme through numerical research is evaluated. By formu-
lating an efficient offloading strategy, the requesting vehicles
allocate the task requests to the local and multiple edge com-
puting nodes for joint execution.

6.1. Parameter Setting. We consider a unidirectional road
with a section of length L = 600m in the coverage of RSU,
and the RSU is equipped with a MEC server which can pro-
vide offloading services. On the road section, there are [10-
50] requesting vehicles driving at a constant speed of v =
40 km/h, and each vehicle generates a delay-sensitive task
request. And there are [5–15] vehicles parking in the parking
lot nearby, which can provide idle resources. The data size of

Input: Task Di = {di, ci, ti
max}; the offloading task workload ω; the computing power fi

lo, fij; the parking probability Pij.
Output: The node selection variable xij (j =1 denotes MEC server, j >1 denotes PV).
1: Initialization:Δu = 0, Δt = 0, Δe = 0 and xi1 = 1.
2: calculate the execution time Tloc

i and Tij, the energy consumption Eloc
i and Eij.

3: setΔui
loc = Ti

loc + Ei
loc

4: if kij ≥ rmaxfij
maxthen

5: CalculateTij
wait

6: setΔtij = Tij + Tij
wait

7: else
8: setΔtij = Tij
9: end if
10: setΔeij = Eij
11: then calculate Δuij = Δtij + Δeij
12: ifPij ≥ Pth and Δuij < Δulocthen
13: setxij =1
14: update kij = kij +ω, fij = fij - ω
15: else
16: setxij = 0
17: end if
18: returnxij

Algorithm 1: Multiple offloading node selection algorithm.
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the task is di = ½100, 1000� KB, the number of CPU cycles
required for computing ci is [500,1500] megacycles, and
the maximum allowable task delay ti

max = ðL − liÞ/v is related
to the location of the moving vehicle. We set the location li
= ½0, 300�m, where the requesting vehicle is located to
ensure that the vehicle can complete the task offloading pro-
cess before leaving the RSU coverage area.

In addition, the probability density function of parking
durations of these PVs δ(t) is formulated by [16], and the
parking probability Pij can be calculated according to equa-
tion (23). In the simulation, the requesting vehicles prefer to
choose the PV as the candidate offloading node if its parking
probability is larger than 0.85. More simulation parameters
are shown in Table 2.

6.2. Performance Comparison. In this section, the proposed
offloading strategy in MPVEC is simulated, and the effec-
tiveness and feasibility of the proposed scheme is evaluated
under the same or different parameters and compared with
the following schemes.

(1) All task requests generated by the requesting vehicles
are computed locally (local computing, LC)

(2) There is only one MEC server in the system to provide
offloading services, and there is no PV to assist in the
computation. The workload is allocated between local
and MEC server (no parked vehicles, NP)

(3) The system has one MEC server and multiple PVs to
provide offloading services, but tasks can only be off-
loaded to single node for processing (single node
computing, SNC)

In Figure 2, the system cost of different offloading scenar-
ios with the same parameters is compared. We set the number
of tasks generated by the requesting vehicle is N = 10, the data
size of the requesting task is equal to 500KB, and the number
of required CPU cycles is equal to 1000 megacycles. And there
is one MEC server and 10 PVs in the scenario to provide off-
loading services. As is shown in Figure 2, the requesting vehi-
cle generates the largest system cost when choosing LC
scheme, due to that the requesting vehicle itself has weak com-
puting power and generates large computing latency. Com-
pared with the LC scheme, the tasks can be offloaded to the
MEC server and PVs, which have much larger resources than
the requesting vehicles. Hence, the system cost of the other
three schemes cut down as a result.

Input:The task Di = fdi, ci, tmax
i g, i ∈N ; the node selection variable xij; the offloading task workload ω.

Output:The final workload strategy K∗
n = fk∗1 , k∗2 ,⋯, k∗i ,⋯, k∗ng, k∗i = fki1, ki2,⋯, kijg, kij ∈ ½0, 1�, let j = 0 denotes local, j > 0

denotes edge node.
Initialization:kij = 0, ui =0.

Step 1. Workload allocation between nodes.
1: for each task Di
2: whileωi < cido
3: calculate the incremental cost of processing unit-sized tasks locally Δui0 = Tloc

i + Eloc
i

4: ifxij ≠ 0then
5: calculateΔuij = Tij + Twait

ij + Eij

6: end if
7: compareΔui0, Δui1,⋯, Δuij
8: allocate subtask to node j with the smallest cost increment，thenkij = kij + ω. ui = ui + Δuij
9: setωi = ωi + ω
10: end
11: setki = {ki0, ki1,ki2, …, kij}
Step 2. Iterative to NE based on backward induction.
12: leti = i + 1 and repeat step 1
13: calculateki+1 = {ki+1,0, ki+1,1,ki+1,2, …, ki+1,j}, ui+1
14: sendki+1 to user i and repeat step 1
15: calculatek’i, u

’
i

16: Ifu’i < uithen
17: updateki = k’i
18: Sendki to user i + 1 and repeat step 1
19: n = n+ 1
20: calculatek’i+1, u

’
i+1

21: repeat step 2 until uðnÞi+1 = uðn−1Þi+1 and uðnÞi = uðn−1Þi

22: setk∗i = kðnÞi and k∗i+1 = kðnÞi+1
23: end if
24: returnki

∗, k∗ i+1, ui, ui+1

Algorithm 2: Workload allocation algorithm based on dynamic game.
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Simultaneously, the MPVEC scheme shows the excellent
performance under the same parameters, which can signifi-
cantly reduce the system cost. As no PVs can provide off-
loading services in NP, by comparing NP with MPVEC, it
clearly proves that the introduction of PVs is beneficial to
the system performance. Moreover, compared with the
SNC scheme, the MPVEC decomposes the tasks to multiple
nodes for joint execution, the multinode distributed process-
ing can provide more node selectivity for users, and the sys-
tem cost is efficiently reduced. Numerical results show that
the system cost of the proposed MPVEC is 41.5%, 34.6%,
and 7.7% lower than of LC, NP, and SNC, respectively.

In Figure 3, the impact of the different number of tasks
generated by the requesting vehicle on the system cost is
illustrated. With the increasing number of tasks generated
by the requesting vehicles, the system cost of all schemes
presents an upward trend. Due to the limited resources of
the computing nodes, the number of tasks in the waiting
queue increases after the resource consumption reaches the
threshold value of the edge nodes themselves. It will generate
additional execution time costs and lead to the increasing
system cost. In addition, it can be concluded from Figure 3
that the MPVEC shows better performance than other
schemes under the same conditions. It is because that PVs
can provide more computing resources with lower cost for
offloading tasks execution. And the offloading strategy in
MPVEC can effectively optimize the task execution effi-
ciency by reasonably allocating load among computing
nodes. Results indicate that the system cost of LC, NP, and
SNC is 17.1%, 5.1%, and 2.6%, respectively higher than
MPVEC when the number of tasks reached to 50.

In Figure 4, the impact of the number of CPU cycles
required for the task of requesting vehicle generation on
the system cost is illustrated. With the increase in number
of CPU cycles, the computational latency and energy con-
sumption of each node increases accordingly. Hence, the
system cost has maintained an upward trend of all schemes.
Moreover, it can be visualized from Figure 4 that the optimi-
zation performance of MPVEC scheme is more obvious than
other schemes. When the task requires a larger amount of
computing power, the task computing requirements can still
be met at a lower cost in MPVEC. The numerical results
indicate that the system cost increase with increasing CPU
cycles is 60.1%, 32.6%, and 6.1% higher for LC, NP, and
SNC than MPVEC, respectively. As a result, it can be

Table 2: Simulation parameters.

Parameters Description Value

di Task data size (KB) [100, 1000]

ci Task required computing resource (megacycles) [500, 1500]

B Wireless channel bandwidth (MHz) 10

pi
u Uplink transmission power (W) 1

pi
d Downlink transmission power (W) 5

hui , h
d
rsu,j Power gains 1

N0 White Gaussian noise power (dBm) -100

f i
loc Max computing power of requesting vehicle (GHz) [0.5, 1]

f ij
max

Max computing power of edge node (GHz) 8, [2, 3]

ρutrans Uplink cost coefficient (J/KB) 1 × 10−4

ρdtrans Downlink cost coefficient (J/KB) 1 × 10−4

ρloccal Energy consumption per CPU cycle of requesting vehicle (J/megacycles) 1:2 × 10−3

ρoffcal Energy consumption per CPU cycle of edge node (J/megacycles)
2 × 10−3
1, 2½ � × 10−3

α, β The weights of time delay and energy consumption in the total cost 0.5, 0.5

Pth Predefined threshold value. 0.85
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Figure 2: System cost under different scenarios.
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effectively proved that utilizing the large amount of idle
resources of multiple PVs and allocating workload reason-
ably can greatly expand the edge computing capacity while
providing offloading services to users at low cost.

In Figure 5, the impact of the different number of PVs on
the system cost and the workload borne by the MEC server
is illustrated. It can be seen the workload ratio of the MEC
server and system cost decrease significantly at the begin-
ning increase of the PV numbers. It is because that more
available resources are provided for the system to accom-
plish offloading tasks, and the workload ratio of MEC server
is reduced. It proves that the MPVEC scheme is feasible to
use PVs to assist edge computing and the computational
pressure on the server is considerably relieved. And the rea-
sons for the decrease of system cost can be explained
through two aspects: on the one hand, the PVs can execute

part of the offloading tasks at a lower energy consumption
per unit than the MEC server, and the system computing
energy consumption is reduced as the number of the PVs
becomes larger. On the other hand, as the number of PVs
assisted in offloading increased, the tasks can be offloaded
to more computing nodes for parallel processing, and the
tasks waiting time in MEC server and the tasks computing
time can be both reduced, which results in the reduction of
system cost. Therefore, the multiple PV-assisted MEC can
improve the system performance, and the workload of
MEC server can be effectively relieved.

In Figure 6, the impact of different numbers of PVs on
the load balancing of the system is illustrated. We set the
number of PVs in the parking lot to 5 and 10, respectively.
Comparing the load ratio of the selected computing nodes,
it can be clearly seen that when the number of PVs is 5,
except for individual nodes taking more workload, the work-
load ratio of the remaining computing nodes has a small dif-
ference, and load balancing of some nodes (except node 1)
can be achieved. And when the number of PVs increases
to 10, all the selected computing nodes can achieve load bal-
ancing. It can be easily concluded that through the proposed
efficient offloading strategy in MPVEC, the workload of each
node is reasonably distributed, which can effectively reduce
the overload phenomenon and realize the system load
balancing.

6.3. Complexity Analysis. The computational complexity of
the proposed offloading strategy in MPVEC is OðNMÞ,
where N and M are the number of requesting vehicles and
the total number of computing nodes (include requesting
vehicle itself and MEC server and PVs), respectively. In
[28], the collaborative task offloading strategy based on a
computation task and resource sharing mechanism between
vehicles and edge infrastructures was reported. Its computa-
tional complexity is OðNMÞ, where N and M are the total
number of edge infrastructures and the number of vehicles
in the task offloading subcloudlet, respectively. A cloud-
based mobile edge computing (MEC) offloading framework
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in vehicular networks was proposed, and an efficient compu-
tation offloading strategy based on contract theoretic
approach was introduced to maximize the benefit of the
MEC service provider and improve the utilities of the vehi-
cles in [36]. Its computational complexity was given as Oð
NMÞ, where N is the number of computation tasks types,
and M is the number of MEC servers. The computation
complexity of the proposed offloading strategy is similar to
that of the algorithms mentioned above.

7. Conclusion

In this paper, an offloading strategy in MPVEC is investi-
gated to optimize the system performance with jointly con-
sidering the workload balance among computing nodes.
First, a multiple offloading node selection algorithm is pro-
posed to select appropriate PVs to take part in computing
tasks. Furthermore, a workload allocation strategy based on
the idea of dynamic game is presented to optimize system
performance and consider the load balancing at the same
time. Numerical results have demonstrated that the pro-
posed offloading strategy in MPVEC can effectively reduce
the system cost under delay constraint while achieving the
load balancing of the system. In this work, only the comput-
ing resources of PVs are considered to optimize the system
performance. In the future work, the communication
resources allocation in multiple PV-assisted MEC will be
researched. This study can be reviewed as a reference for
task offloading in the vehicular network.
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