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Abstract

We wish to match sets of images to sets of images where
both sets are undergoing various distortions such as view-
point and lighting changes.

To this end we have developed a Joint Manifold Dis-
tance (JMD) which measures the distance between two
subspaces, where each subspace is invariant to a desired
group of transformations, for example affine warping of
the image plane. The JMD may be seen as generaliz-
ing invariant distance metrics such as tangent distance
in two important ways. First, formally representing pri-
ors on the image distribution avoids certain difficulties
which, in previous work, have required ad-hoc correction.
The second contribution is the observation that previous
distances have been computed using what amounted to
“home-grown” nonlinear optimizers, and that more re-
liable results can be obtained by using generic optimiz-
ers which have been developed in the numerical analysis
community, and which automatically set the parameters
which home-grown methods must set by art.

The JMD is used in this work to cluster faces in video.
Sets of faces detected in contiguous frames define the sub-
spaces, and distance between the subspaces is computed
using JMD. In this way the principal cast of a movie can
be ‘discovered’ as the principal clusters. We demonstrate
the method on a feature-length movie.

1. Introduction

We would like to cluster instances of objects in a video
in an unsupervised manner in order to ‘discover’ the sig-
nificant characters, scenes, events etc. This requires that
our measure of distance between two imaged instances is

Figure 1:Matching image subspaces. Each row is a sequence
of images spanning a subspace, and the goal is to determine for
a pair of sequences, whether the subspaces spanned by the se-
quences are the same. The images within each subspace are
registered, but the transformation between the subspaces is un-
known. The distance between subspaces must be invariant to the
unknown registration between the sequences.

ideally invariant to the changes in viewpoint and lighting
that affect the image—so that our clustering is of the ob-
ject, not its image.

As an example of such clustering, in this paper our ob-
jective is to establish matches between the faces that occur
throughout a feature length movie. This is a very chal-
lenging problem: a film typically has 100-150K frames;
and in addition to changes of lighting and viewpoint, faces
also change expression and are partially occluded—for
example by hands, telephones or spectacles. In movies
in particular, lighting and viewpoint are intentionally dra-
matically varied. This makes the clustering problem sig-
nificantly more difficult than in traditional “mugshot” ap-
plications.

One way to proceed is to construct a distance function
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d(x1, x2) between two images instancesx1 andx2 which
is invariant to all such perturbations and deformations
that occur. For example invariance to viewpoint can be
achieved (to a first approximation) by designing the dis-
tance function to be invariant to an affine transformation
of xi, so that for exampled(x1, x2) = d(x1, T (x2;a2)),
whereT represents the affine transformation of the image.
Implementation of these measures via tangent distance
and its extensions [3, 5, 15, 16] allows efficient compu-
tation for classes of parametrized transformations. This
idea can be extended to any desired transformation, e.g.
for photometric changes or changes in expression, pro-
vided a parametrized model of the class of transforma-
tions is available.

An alternative is to define a distance functiond(x, S)
between a pointx and a (possibly infinite) set of pointsS,
whereS contains exemplars of the perturbations and de-
formations. Often this reduces to the distance between a
point and a linear subspace. For example consider pho-
tometric invariance. A widely used approximation is that
(under restricted conditions of no shadowing, Lambertian
reflectance etc), the space of all images under all light-
ing is spanned by a four dimensional linear space [1, 13].
Higher dimensional spaces can approximate other illu-
mination effects such as self-shadowing (attached shad-
ows) [2]. So photometric invariance could be achieved
if S is the space of lighting images, e.g. acquired by an
SVD of many registered images [17]. Given training ex-
amples which exercise these variations, a transformation-
aware principal component analysis [7, 14] can compute
the subspace even in the case of unregistered sets of im-
ages.

A third approach is to remove the variations before
matching, by projecting each image onto a space which
does not permit such deviations. For example, the photo-
metric variation problem can often be avoided by filtering
the images (e.g. by a high pass filter) to significantly ame-
liorate lighting effects, effectively collapsing the space to
a much lower dimension. In the limit the space is col-
lapsed to a single point and the approach reduces to com-
puting a point to point distanced(x1, x2).

Here we partition the deformations into those that can
be modelled or removed to some approximation (view-
point by affine transformations, photometric filtering),
and use a set of images to span the residual: the parts of
viewpoint not modelled by affinity, errors in computing

Figure 2:Affine registration. (Top) Sequence of faces obtained
by the face detector. (Bottom) Affine registered sequence. There
is an overall unresolved affine transformation which must be ac-
counted for when comparing this with other such sequences.

registration, and—in the face case—changes in expres-
sion. Figure 2 shows a set before and after affine reg-
istration. In video sets of this type are readily available
because objects do not arbitrarily disappear between con-
tiguous frames, but can be easily tracked so that clustering
over consecutive frames is straightforward [8].

There is one further development that is clearly moti-
vated by figure 1: to determine the distance between two
finite sets of sizen, it is not necessary to compute the
n2 distances between each point in one set and each in
the other—instead the distance between the setsd(S1, S2)
can be measured directly. This paper explores these three
distance functions,d(x1, x2), d(x, S), d(S1, S2) includ-
ing an extension of incorporating learnt priors on the vari-
ous transformations, describes efficient implementations,
and demonstrates their performance in the face clustering
application.

2. Classes of distance functions

In this section we discuss the three classes of distance
function: point to point, point to set, and set to set. First,
however, let us consider the observation model.

We have samplesx each associated with a “true” da-
tum x̃ which are drawn independently from the density
described byp(x|x̃). Given observationsx1 andx2 our
objective is to determine the likelihoodp(x1, x2) that both
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Figure 3:Several definitions of manifold distance between sample pointsx1 andx2. The distance from a datum to the hidden ‘true’
point x̃ is measured as the distance to the manifoldM = {T (x̃;a)∀a ∈ Rm}. (a) Transfer distance. Whenx̃ is approximated
by one of the sample points, herex2, this is the “one-sided” manifold distance. (b)Two-sided manifold distance. This definition
can sometimes make distances between disparate objects arbitrarily small, for example by mapping each image to a single point.
(c) Symmetric transfer distance. Sometimes called “two-sided” manifold distance. (d)Manifold distance. The hidden variable
x̃ is explicitly included, so the manifold to which distance is measured must move during the optimization. Section 2.1 shows how
to compute a tangent approximation which accounts for the manifold movement.

are samples of the samẽx:

p(x1, x2) =
∫

dx̃ p(x1|x̃)p(x2|x̃)p(x̃) (1)

wherep(x̃) is the prior distribution oñx.
An observationx is generated by applying a transfor-

mationa to a true datum̃x and then adding noise. The
family of transformations is parametrized by a vector of
parametersa, and the transformation is given by

x → T (x;a).

For example, if the observationsx aren-D points then for
a transformation for scaling about the origin,a will have
exactly one elementa1 representing the scale and points
will transform asT (x;a) = xa1. The densityp(x|x̃) may
be expanded as

p(x|x̃) =
∫

da p(x|a, x̃)p(a|x̃) (2)

wherep(a|x̃) is the prior probability of the transforma-
tion a givenx̃, and it will be assumed thatp(a|x̃) = p(a),
i.e. that the prior is independent of the datumx̃. Theman-
ifold itself is encoded in the priorp(a). If this prior were
completely unrestricting, we would have the standard pic-
ture of the manifold as a subset of the space of images in
which x lives, with the dimensionality of the manifold
equal to that of the parametersa. For an affine transfor-
mation ofn-pixel images, this would be a six-dimensional
manifold inRn. In practice, it is important to place priors

on a, so some points on that manifold are less likely to
be observed than others. For example, we might expect
that the transformation which shrinks the image down to
less than one pixel square is unlikely. Using (2), the joint
likelihood (1) may thus be expanded as

p(x1, x2) =
∫

dx̃ da1 da2 . . .

. . . p(x1|x̃,a1)p(x2|x̃,a2)p(a1)p(a2)p(x̃)

The terms in this expression are summarized as follows:
p(x1|x̃,a1) is the likelihood ofx1, given the true point
x̃, transformed by the transformation parametersa1. The
likelihood of x2 is p(x2|x̃,a2). p(ai) is the prior prob-
ability of transformationai—this will be estimated from
training examples.p(x̃) is the prior distribution on the
true pointx̃. Here we set this to a broad Gaussian, which
yields a term analogous to the “spring” tangent distance
regularizer [15].

It will be assumed here that the image likelihoods can
be approximated by a distribution whose density func-
tion is of the formp(x|x̃,a) = e−ρ(z) wherez is the
difference imagex − T (x̃;a), and ρ is a kernel func-
tion. Choices of the kernelρ include the Gaussian model
ρ(z) = ‖Σ− 1

2 z‖2 or a robust distribution, and the choices
will be discussed later in the paper.

The MAP estimate is obtained from the joint likelihood



as:

p(x1, x2) ≈ pMAP(x1, x2)
= max

a1,a2,x̃
p(x1|x̃,a1)p(x2|x̃,a2)p(a1)p(a2)p(x̃)

and then the distance is defined as the negative log like-
lihood d(x1, x2) := − log pMAP(x1, x2). We will refer to
this as themanifold distancebetween two points.

Having derived manifold distance from a generative
model as above, we relate it to the several different defi-
nitions in the literature. The primary distinction made is
between “one-sided” and “two-sided” distances, but we
show here that neither is equivalent to the true manifold
distance. The discussion is clearer if the manifold dis-
tance is rewritten as a sum of negative log likelihoods1

d(x1, x2) = min
a1,a2,x̃

E(x1 − T (x̃;a1))+
E(x2 − T (x̃;a2))+
E(a1) + E(a2) + E(x̃).

Computation of the true manifold distance includes an
optimization over the hidden variablẽx as well as the
transformation parameters(a1,a2). In the case of image
matching,̃x is the underlying true image which is warped
and noise-corrupted to give the captured imagesx1 and
x2. A number of alternative definitions in the literature
have eliminated̃x in various ways.
Variations on manifold distance: In the first, illustrated
in figure 3a,̃x is chosen to be equal to one of the two data
points, sayx1. The manifold distance of the second point
x2 is then

d1(x1, x2) = min
a

E(x2 − T (x1;a))

This formulation—called “transfer” or “one-sided”
distance—is easy to compute, but has the disadvantage
that it causesd(., .) to fail to be a metric, asd1(x1, x2) 6=
d1(x2, x1). It also means that priors oñx cannot be incor-
porated, as̃x is fixed to be one of the data points.

Symmetry is addressed by defining the “two-sided” dis-
tance (figure 3b)

d2(x1, x2) = min
a1,a2

E(T (x2;a2)− T (x1;a1)) (3)

1To avoid clutter, there is an overloading of notation here:E(·) is not
the same negative log-likelihood function for each variable, but indicates
that the appropriate likelihood for the argument type is being computed
as above.

in which both images are transformed before comparison.
However this can yield spurious solutions, the canonical
example being that images under affine transformations
can be mapped to a single point by scaling, yielding a
low distance for any pair(x1, x2). A variant that does not
suffer this collapse, but appears not to be widely used, is
the “symmetric transfer distance” (figure 3c)

ds(x1, x2) = min
a1,a2

E(x2−T (x1;a1))+E(x1−T (x2;a2)).

Again, however, priors oñx are not readily included. We
show in this paper that these approximations are not nec-
essary, and that the general formd(., .) may be optimized
overx̃ and the transformations(a1,a2) directly.
The effect of priors: Suppose for the moment there are
no priors on the transformation, and thatx̃ is known. Then
in the single-sided case, the distance is minimized by the
closest point tox on the orbit through̃x. Similarly the
manifold distance is minimized by the points closest to
x1 andx2 respectively on the orbit through̃x, but there
is a freedom (symmetry) to choosex̃ as any point on the
orbit, since it is only the orbit that defines the distances.
Introducing the priors on the transformation breaks this
symmetry—the point̃x must now lie “between”x1 andx2

in order to reduce the prior termsE(a1)+E(a2). Also the
estimated pointx is no longer given by the closest point
on the orbit.
Discussion:Many existing variants amount to supplying
different forms for the priors and likelihoods, although to
our knowledge, no work has included all simultaneously,
or optimized over̃x. Previous authors have added priors
to the one and two sided distances. The regularizing term
in Schwenket al’s constraint tangent distance[11] may
be seen as imposing a uniform prior using this term, and
Keyserset al’s probabilistic tangent distance [6] shows
how a Gaussian prior can be included. Jojic et al [5] derive
the form of the two-sided tangent distance (3) with priors
on the transformation parameters, but do not include pri-
ors on x̃. They do include priors oñx in a generative
model learning framework, not in the distance function,
but even there only draw̃x from a discrete set of cluster
centres and assume zero variance.

2.1. Computing the point distance
ApproximatingT (x;a) by a first-order Taylor expansion
converts the manifold distance into the tangent distance.



Specifically, ifa is them-dimensional parameter vector,
then the transformation of pointx under transformationa
is

T (x;a) ≈ x +
∂T

∂a1
(x;a)a1 + · · ·+ ∂T

∂am
(x;a)am

= x + La

where the columns ofL are the derivatives of the trans-
formation atx. If x itself is unknown,L is often approxi-
mated by computing tangents at a convenient nearby point
(of which more in§3).

In the case of Gaussian priors, a solution to the mini-
mization ind(x1, x2) can be obtained directly. The equa-
tion to be minimized is

min
x,a1,a2

|x1 − (x + L1a1)|2︸ ︷︷ ︸
− log p(x1|x,a1)

+ |x2 − (x + L2a2)|2︸ ︷︷ ︸
− log p(x2|x,a2)

+

|D[a1a2]> + d|2︸ ︷︷ ︸
− log p(a1)p(a2)

+ |Sx + s|2︸ ︷︷ ︸
− log p(x)

whereD andd encode the parameters of a single normal
distribution describing the prior probability of the trans-
formation parameters, andS ands represent the prior on
the unwarped imagex. Specifically, if the prior on the

transformation parameters isN (Σa, µa), thenD = Σ− 1
2

a

andd = −Dµ. For clarity, the pixel valuesx are assumed
to have been scaled so that their noise is drawn from a
unit-variance Gaussian per pixel, although spatially vary-
ing noise is easily incorporated.

Gathering the terms to be minimized into a single vec-
tor x = [x, a1, a2]> gives the quadratic form

min
x,a1,a2

∣∣∣∣∣∣
(
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)
−
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This is of the formminz |Gz + g|2 for which a closed-
form solution is readily found. Naively implemented, this
would be computationally very expensive, requiring the
pseudo-inversion of a matrix whose side length is of the
order of the number of pixels. However, the special struc-
ture ofG means that the minimum can be computed with
no more complexity than the two-sided tangent distance.

2.2. Point to subspace distance
A linear subspace of images is defined by a mean image
m and a set of basis vectorsM. An image in the space is
linearly parametrized by vectoru yielding the set

S = {m + Mu | u ∈ U}

The distance from a query pointx1 to the space is then

d(x1, S) = min
y∈S

d(x1, y)

= min
u

‖m + Mu− x1‖2

which is easily computed as minimization of a quadratic
form. In real examples,y will be subject to an unknown
transformationT (y,a), and there will be priors ona
andu. Adding these terms gives the one-sided point-to-
subspace distance

d(x1, S) = min
u,a

‖T (m + Mu;a)− x1‖2 + E(a) + E(u)

Note here that the prior onu acts as a prior on the latent
imagey. Denoting this prior byp(y), the subspace dis-
tance becomes

d(x1, S) = min
y,a

‖T (y;a)− x1‖2 + E(a)− log p(y)

which is an analogue of the one-sided manifold distance
wherex1 is drawn from the prior distribution overy.

2.3. Distance between subspaces
Finally, the problem which faces this paper is to compute
the distance between two subspaces. Defining subspaces
S andT as

S = {m + Mu | u ∈ U}
T = {n + Nv | v ∈ V} ,



then probability density from which examples are drawn
is defined by priors over the parameter vectorsu andv.
These distributions in turn induce distributions of images
in the image space, denotedp(s) andp(t), say. In pre-
vious work, Shakhnarovichet al [12] define the distance
between these subspaces as the Kullback-Leibler diver-
gence between the image-space distributions, but do not
incorporate the transformation manifold. Incorporating
this manifold is the subject of the next section.

3. Joint manifold distance
Finally, the problem which faces this paper is to com-
pute the distance between two subspaces, represented as
above, where points in the subspaces may be subject to
an unknown image-space transformation parametrized by
parameter vectorsa. Defining subspacesS andT as

S = {m + Mu | u ∈ U}
T = {n + Nv | v ∈ V} ,

the joint manifold distance is defined as the infimum of
manifold distance between points in the two subspaces.

d(S, T ) = min
x∈S,y∈T

d(x, y).

Including priors on the transformation parametersa and
b, and on the parameter vectorsu andv, and expressing
in terms of negative log likelihoods yields

d(S, T ) =

min
u,v,a,b

‖T (m + Mu,a)− T (n + Nv;b)‖2+

E(a) + E(b) + E(u) + E(v) (4)

This distance could be computed as above by comput-
ing the Taylor expansion ofT (·, ·), yielding the sub-
space analogue of tangent distance. This superficially
appears attractive, as it provides a closed-form solution
to the minimization. However, as other authors have
noted [3, 14, 16], the accuracy of the tangent distance
depends on the point about which the Taylor expansion
is performed, and practical implementations require iter-
ative refinement of the computation. Incorporating this
iterative refinement is equivalent to a Newton minimiza-
tion of the original expression (4).

However, Newton optimization is but one of a panoply
of available optimization techniques, and has been super-
seded in recent decades by several more effective tech-
niques, notably the trust-region strategies derived from
the original Levenberg-Marquardt algorithm [9]. In this
work we leverage such strategies and directly minimize
the various cost functions with no more reference to
the linearizations than is implied by efficiently comput-
ing the derivatives. If the kernelρ is quadratic, then
the quadratic optimization problems which previous au-
thors have solved explicitly (and which this paper solves
in §2.1) are constructed implicitly within the nonlin-
ear minimizer, which employs well honed bookkeeping
strategies to ensure fast and accurate optimization. Ifρ is
a robust kernel, the linearizations are more complex than
for the quadratic case, but this complexity is all encapsu-
lated in the computation of the error Jacobian.

4. Practice
The application of the above principles to a hard real-
world problem offers some useful insights into this class
of techniques. The implementation issues which we have
found to be most important are: the use of a high-quality
nonlinear optimizer to estimate the distances, good choice
of priors on transformation parameters, and careful pre-
processing to mitigate the worst lighting effects. The ap-
plication we consider is the automatic clustering of faces
in feature-length movies. By running a face detector over
the movie, we reduce the input to a set of several thousand
faces. Temporal segmentation of the face sequences pro-
duces a few hundred sequences of 10 to 50 frames. Ag-
glomerative clustering using the subspace to subspace dis-
tance reduces this to a small number of clusters, roughly
corresponding to the cast list. The following sections dis-
cuss this application, dwelling on the areas of difficulty.
Face detection and processing:Faces were detected in-
dependently in every fifth frame of the input movie using
a local implementation of the Schneiderman and Kanade
detector [10]. The use of every fifth frame is purely
in order to reduce the volume of data, detection in ev-
ery frame would be preferable. Faces were sequentially
matched using the manifold distance (see§2.1). A con-
servative global threshold on the distances yields a seg-
mentation into sequences of the same character. In the
test movie, 5582 faces were detected in 166510 frames,



of which 2710 were in the 200 longest sequences. The
transformation parameters recovered in the computation
of manifold distance are used to align the faces to the first
frame in the sequence.

In order to mitigate the effects of lighting variation,
the faces are high-pass filtered by subtracting a Gaussian
smoothed copy (σ = 5 pixels).

Priors and covariances: Prior probabilities for the
transformation parameters were computed by manually
identifying eyes and mouth centre in 200 detected faces.
These were transformed to canonical points in the image
and the variation of the six parameter affine transform
modelled by a single Gaussian. This prior proved ade-
quate for experiments on a wide range of sequences.

Error metric—robustness: A significant advantage of
the explicit minimization is that noise distributions other
than Gaussian can be assumed for the imaging process. In
particular, a heavy-tailed distribution leading to a robust
error kernel can be incorporated without difficulty. Here
we use the Lorentzianρ(z) = log(1 + β‖z‖2). This con-
fers significantly improved resistance to occlusion, most
commonly caused in movies by objects such as telephones
and hands in front of the face. The estimation is concen-
trated on the centre of the image by assigning a per-pixel
variance which increases towards the edge of the image,
thereby tending to ignore the image periphery.

Subspace construction: Given a set of tracked images,
we wish to compute a subspace which spans these im-
ages, and allows some degree of extrapolation of the ob-
served deformations. In our implementation, the image
sets have been aligned using the manifold distance trans-
form parameters, so principal components analysis will
suffice to encapsulate the variation. To permit extrapola-
tion, we augment the set of images withx andy spatial
derivatives of the images [14] to allow some additional
small deformations. Examples of mapping faces onto this
subspace are shown in figure 4.

Clustering: Clustering using the sequence-to-sequence
distance is best performed using an agglomerative strat-
egy [4]. Sequence-to-sequence distances are computed
for all pairs of sequences, and the pairs for which the
distance is below a threshold are merged. Merging is
achieved by concatenating the original sequences, and re-
computing the PCA subspace for the merged set. The
process is repeated until the smallest distance exceeds a

(a) (b)

(c) (d)

(e) (f)

Figure 4: Projection onto a 5D subspace computed by auto-
matic registration and principal components analysis. (a) Orig-
inal image. (b) Projection removes the smile from the actor’s
face. (c) Original image. (d) Projection corrects for viewpoint-
related distortion. (e),(f) Another face, and its projection.

predefined threshold, or until a maximum number of it-
erations has been exceeded. This strategy means that the
subspace defined by each cluster becomes more expres-
sive as new, less similar clusters are merged. It does,
however, have the disadvantage that if clusters represent-
ing two different people are merged, the combined clus-
ter then represents both. The thresholds are therefore set
conservatively, so that the data is “underclustered”, with
several clusters representing each character.

Timing: All of the proposed distances take time of the
order of 100ms (5sec with finite-difference derivatives)
to compute in Matlab, so there is a clear advantage to
sequence-to-sequence matching over multiple image-to-
image matches. Given two average-length sequences, de-
termining the match score by image-to-image matching is
roughly 400 times more expensive than a single sequence-
to-sequence match. For clustering, the speed improve-



Figure 5: First images of clustered sequences. The main cast
members are present, but duplicates have not been entirely sup-
pressed. This remains a hard problem.

ments can be more dramatic. If using a technique which
requires all pairwise distances, then a movie with5000
faces requires roughly12× 106 image-to-image compar-
isons. The same movie arranged as300 sequences re-
quires45, 000 sequence-to-sequence matches.

5. Conclusions
Matching images while remaining invariant to irrelevant
changes such as lighting and viewpoint is a challenging
problem. This paper has considered the case where the
images are naturally segmented into slowly varying se-
quences, and the definition of invariant matching mea-
sures for such sequences. By representing each sequence
as a low-dimensional space of images, the matching prob-
lem is reduced to finding the distance between subspaces
under arbitrary, unknown, parametrized transformations.
We introduced the joint manifold distance to solve this
problem, and observe that an industrial-strength nonlinear
optimizer will provide superior performance to the New-
ton methods commonly used in the literature.

The joint manifold distance for matching image sets is
a superior approach to matching images independently for
two reasons: first, pragmatically, fewer matches need be
performed; second, computing the nearest point to a span
of a linear space allows interpolation (i.e. effectively ad-
ditional data is generated) over the image set, and this is
where the gain is compared to multiple individual nearest
neighbour matches.
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