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Abstract

The emergence of low-cost sensing architectures for diverse modalities has made it possible to deploy

sensor networks that capture a single event from a large number of vantage points and using multiple

modalities. In many scenarios, these networks acquire large amounts of very high-dimensional data. For

example, even a relatively small network of cameras can generate massive amounts of high-dimensional

image and video data. One way to cope with such a data deluge is to develop low-dimensional data

models. Manifold models provide a particularly powerful theoretical and algorithmic framework for

capturing the structure of data governed by a low-dimensional set of parameters, as is often the case

in a sensor network. However, these models do not typically take into account dependencies among

multiple sensors. We thus propose a new joint manifold framework for data ensembles that exploits such

dependencies. We show that joint manifold structure can lead to improved performance for a variety of

signal processing algorithms for applications including classification and manifold learning. Additionally,

recent results concerning random projections of manifolds enable us to formulate a network-scalable

dimensionality reduction scheme that efficiently fuses the data from all sensors.

I. INTRODUCTION

The emergence of low-cost sensing devices has made it possible to deploy sensor networks that capture

a single event from a large number of vantage points and using multiple modalities. This can lead to a

veritable data deluge, fueling the need for efficient algorithms for processing and efficient protocols for

transmitting the data generated by such networks. In order to address these challenges, there is a clear

need for a theoretical framework for modeling the complex interdependencies among signals acquired by

these networks. This framework should support the development of efficient algorithms that can exploit

this structure and efficient protocols that can cope with the massive data volume.
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Consider, for example, a camera network consisting of J video acquisition devices each acquiring

N -pixel images of a scene simultaneously. Ideally, all cameras would send their raw recorded images

to a central processing unit, which could then holistically analyze all the data produced by the network.

This naı̈ve approach would in general provide the best performance, since it exploits complete access

to all of the data. However, the amount of raw data generated by a camera network, on the order of

JN , becomes untenably large even for fairly small networks operating at moderate resolutions and frame

rates. In such settings, the amount of data can (and often does) overwhelm network resources such as

power and communication bandwidth. While the naı̈ve approach could easily be improved by requiring

each camera to first compress the images using a compression algorithm such as JPEG or MPEG, this

modification still fails to exploit any interdependencies between the cameras. Hence, the total power and

bandwidth requirements of the network will still grow linearly with J .

Alternatively, exploiting the fact that in many cases the end goal is to solve some kind of inference

problem, each camera could independently reach a decision or extract some relevant features, and then

relay the result to the central processing unit which would then combine the results to provide the solution.

Unfortunately, this approach also has disadvantages. First, the cameras must be “smart” in that they must

possess some degree of sophistication so that they can execute nonlinear inference tasks. Such technology

is expensive and can place severe demands on the available power resources. Perhaps more importantly,

the total power and bandwidth requirement will still scale linearly with J .

In order to cope with such high-dimensional data, a common strategy is to develop appropriate models

for the acquired images. A powerful model is the geometric notion of a low-dimensional manifold. We

will provide a more formal definition of a manifold in Section II, but informally manifold models arise

in cases where (i) a K-dimensional parameter θ can be identified that carries the relevant information

about a signal and (ii) the signal f(θ) ∈ R
N changes as a continuous (typically nonlinear) function of

these parameters. Typical examples include a one-dimensional (1-D) signal shifted by an unknown time

delay (parameterized by the translation variable), a recording of a speech signal (parameterized by the

underlying phonemes spoken by the speaker), and an image of a 3-D object at an unknown location

captured from an unknown viewing angle (parameterized by the 3-D coordinates of the object and its

roll, pitch, and yaw). In these and many other cases, the geometry of the signal class forms a nonlinear

K-dimensional manifold in R
N ,

M = {f(θ) : θ ∈ Θ}, (1)

where Θ is the K-dimensional parameter space. In recent years, researchers in image processing have
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become increasingly interested in manifold models due to the observation that a collection of images

obtained from different target locations/poses/illuminations and sensor viewpoints form such a man-

ifold [1]–[3]. As a result, manifold-based methods for image processing have attracted considerable

attention, particularly in the machine learning community and can be applied to diverse applications

as data visualization, classification, estimation, detection, control, clustering, and learning [3]–[5]. Low-

dimensional manifolds have also been proposed as approximate models for a number of nonparametric

signal classes such as images of human faces and handwritten digits [6]–[8].

In sensor networks, multiple observations of the same event are often acquired simultaneously, resulting

in the acquisition of interdependent signals that share a common parameterization. Specifically, a camera

network might observe a single event from a variety of vantage points, where the underlying event is

described by a set of common global parameters (such as the location and orientation of an object of

interest). Similarly, when sensing a single phenomenon using multiple modalities, such as video and

audio, the underlying phenomenon may again be described by a single parameterization that spans all

modalities (such as when analyzing a video and audio recording of a person speaking, where both are

parameterized by the phonemes being spoken). In both examples, all of the acquired signals are functions

of the same set of parameters, i.e., we can write each signal as fj(θ) where θ ∈ Θ is the same for all j.

Our contention in this paper is that we can obtain a simple model that captures the correlation between

the sensor observations by matching the parameter values for the different manifolds observed by the

sensors. More precisely, we observe that by simply concatenating points that are indexed by the same pa-

rameter value θ from the different component manifolds, i.e., by forming f(θ) = [f1(θ), f2(θ), . . . , fJ(θ)],

we obtain a new manifold, which we dub the joint manifold, that encompasses all of the component

manifolds and shares the same parameterization. This structure captures the interdependencies between

the signals in a straightforward manner. We can then apply the same manifold-based processing techniques

that have been proposed for individual manifolds to the entire ensemble of component manifolds.

In this paper we conduct a careful examination of the topological and geometrical properties of joint

manifolds; in particular, we compare joint manifolds to their component manifolds to see how properties

like geodesic distances, curvature, branch separation, and condition number are affected. We then observe

that these properties lead to improved performance and noise-tolerance for a variety of signal processing

algorithms when they exploit the joint manifold structure. As a key advantage of our proposed model,

we illustrate how the joint manifold structure can be exploited via a simple and efficient data fusion

algorithm based on random projections. For the case of J cameras jointly acquiring N -pixel images of a
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common scene characterized by K parameters, we demonstrate that the total power and communication

bandwidth required by our scheme is linear in the dimension K and only logarithmic in J and N . This

technique resembles the acquisition framework proposed in compressive sensing (CS) [9], [10]; in fact,

prototypes of inexpensive sensing hardware that directly acquires random projections of images have

already been built [11].

Related prior work has studied manifold alignment, where the goal is to discover maps between datasets

that are governed by the same underlying low-dimensional structure. Lafon et al. proposed an algorithm

to obtain a one-to-one matching between data points from several manifold-modeled classes [12]. The

algorithm first applies dimensionality reduction using diffusion maps to obtain data representations that

encode the intrinsic geometry of the class. Then, an affine function that matches a set of landmark

points is computed and applied to the remainder of the datasets. This concept was extended by Wang

and Mahadevan, who applied Procrustes analysis on the dimensionality-reduced datasets to obtain an

alignment function between a pair of manifolds [13]. Since an alignment function is provided instead of

a data point matching, the mapping obtained is applicable for the entire manifold rather than for the set

of sampled points. In our setting, we assume that either (i) the manifold alignment is implicitly present,

for example, via synchronization between the different sensors, or (ii) the manifolds have been aligned

using one of these approaches. Our main focus is an analysis of the benefits provided by analyzing the

joint manifold versus solving the task of interest separately on each of the manifolds. For concreteness,

but without loss of generality, we couch our analysis in the language of camera networks, although much

of our theory is sufficiently generic so as to apply to a variety of other scenarios.

This paper is organized as follows. Section II introduces and establishes some basic properties of

joint manifolds. Section III provides discussion of practical examples of joint manifolds in the camera

network setting and describes how to use random projections to exploit the joint manifold structure in such

a setting. Sections IV and V then consider the application of joint manifolds to the tasks of classification

and manifold learning, providing both a theoretical analysis as well as extensive simulations. Section VI

concludes with a brief discussion.

II. JOINT MANIFOLDS: THEORY

In this section we develop a theoretical framework for ensembles of manifolds that are jointly param-

eterized by a small number of common degrees of freedom. Informally, we propose a data structure for

jointly modeling such ensembles; this is obtained simply by concatenating points from different ensembles

that are indexed by the same articulation parameter to obtain a single point in a higher-dimensional space.
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First we recall the definition of a general topological manifold. Specifically, a K-dimensional manifold

M is a topological space that is (i) second countable, (ii) Hausdorff, and (iii) locally homeomorphic to

R
K . The first two conditions are rather technical, but they are always satisfied when M is embedded

in R
N . The heart of the definition is the third requirement, which essentially says that any sufficiently

small region on the manifold behaves like R
K . A comprehensive introduction to topological manifolds

can be found in [14].

We now define the joint manifold for the setting of general topological manifolds. In order to simplify

our notation, we will let M = M1 ×M2 × · · · ×MJ denote the product manifold. Furthermore, we

will use the notation p = (p1, p2, . . . , pJ) to denote a J-tuple of points, or concatenation of J points,

which lies in the Cartesian product of J sets (e.g., M)

Definition 1. Let {Mj}J
j=1

be an ensemble of J topological manifolds of equal dimension K. Suppose

that the manifolds are homeomorphic to each other, in which case there exists a homeomorphism ψj

between M1 and Mj for each j. For a particular set of {ψj}J
j=2, we define the joint manifold as

M∗ = {p ∈ M : pj = ψj(p1), 2 ≤ j ≤ J}.

Furthermore, we say that {Mj}J
j=1

are the corresponding component manifolds.

Note that M1 serves as a common parameter space for all the component manifolds. Since the

component manifolds are homeomorphic to each other, this choice is ultimately arbitrary. In practice

it may be more natural to think of each component manifold as being homeomorphic to some fixed

K-dimensional parameter space Θ. However, in this case one could still define M∗ as is done above by

defining ψj as the composition of the homeomorphic mappings from M1 to Θ and from Θ to Mj .

As an example, consider the one-dimensional manifolds in Figure 1. Figures 1(a) and (b) show two

isomorphic manifolds, where M1 = (0, 2π) is an open interval, and M2 = {ψ2(θ) : θ ∈ M1} where

ψ2(θ) = (cos(θ), sin(θ)), i.e., M2 = S1\(1, 0) is a circle with one point removed (so that it remains

isomorphic to a line segment). In this case the joint manifold M∗ = {(θ, cos(θ), sin(θ)) : θ ∈ (0, 2π)},

illustrated in Figure 1(c), is a helix. Notice that there exist other possible homeomorphic mappings from

M1 to M2, and that the precise structure of the joint manifold as a submanifold of R
3 is heavily

dependent on the choice of this mapping.

Returning to the definition of M∗, observe that although we have called M∗ the joint manifold, we

have not shown that it actually forms a topological manifold. To prove that M∗ is indeed a manifold,
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(a) M1 ⊆ R: line segment (b) M2 ⊆ R
2: circle segment (c) M∗ ⊆ R

3: helix segment

Fig. 1. A pair of isomorphic manifolds M1 and M2, and the resulting joint manifold M∗.

we will make use of the fact that the joint manifold is a subset of the product manifold M. One can

show that M forms a JK-dimensional manifold using the product topology [14]. By comparison, we

now show that M∗ has dimension only K.

Proposition 1. M∗ is a K-dimensional submanifold of M.

Proof: We first observe that since M∗ ⊂ M, we automatically have that M∗ is a second countable

Hausdorff topological space. Thus, all that remains is to show that M∗ is locally homeomorphic to R
K .

Suppose p ∈ M∗. Since p1 ∈ M1, we have a pair (U1, φ1) such that U1 ⊂ M1 is an open set containing

p1 and φ1 : U1 → V is a homeomorphism where V is an open set in R
K . We now define for 2 ≤ j ≤ J

Uj = ψj(U1) and φj = φ1 ◦ ψ−1

j : Uj → V . Note that for each j, Uj is an open set and φj is a

homeomorphism (since ψj is a homeomorphism).

Now set U = U1 × U2 × · · · × UJ and define U∗ = U ∩ M∗. Observe that U∗ is an open set and

that p ∈ U∗. Furthermore, let q be any element of U∗. Then φj(qj) = φ1 ◦ ψ−1

j (qj) = φ1(q1) for each

2 ≤ j ≤ J . Thus, since the image of each qj ∈ Uj in V under their corresponding φj is the same, we

can form a single homeomorphism φ∗ : U∗ → V by assigning φ∗(q) = φ1(q1). This shows that M∗ is

locally homeomorphic to R
K as desired.

Since M∗ is a submanifold of M, it also inherits some desirable properties from {Mj}J
j=1.

Proposition 2. Suppose that {Mj}J
j=1 are isomorphic topological manifolds and M∗ is defined as above.

1) If {Mj}J
j=1 are Riemannian, then M∗ is Riemannian.

2) If {Mj}J
j=1

are compact, then M∗ is compact.

Proof: The proofs of these facts are straightforward and follow from the fact that if the component

manifolds are Riemannian or compact, then M will be as well. M∗ then inherits these properties as a
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submanifold of M [14].

Up to this point we have considered general topological manifolds. In particular, we have not assumed

that the component manifolds are embedded in any particular space. If each component manifold Mj

is embedded in R
Nj , the joint manifold is naturally embedded in R

N∗

where N∗ =
∑J

j=1
Nj . Hence,

the joint manifold can be viewed as a model for sets of data with varying ambient dimension linked

by a common parametrization. In the sequel, we assume that each manifold Mj is embedded in R
N ,

which implies that M∗ ⊂ R
JN . Observe that while the intrinsic dimension of the joint manifold remains

constant at K, the ambient dimension increases by a factor of J . We now examine how a number of

geometric properties of the joint manifold compare to those of the component manifolds.

We begin with the following simple observation that Euclidean distances1 between points on the joint

manifold are larger than distances on the component manifolds. The result follows directly from the

definition of the Euclidean norm, so we omit the proof.

Proposition 3. Let p,q ∈ M∗ be given. Then

‖p − q‖ =

√√√√
J∑

j=1

‖pj − qj‖2.

While Euclidean distances are important (especially when noise is introduced), the natural measure of

distance between a pair of points on a Riemannian manifold is not Euclidean distance, but rather the

geodesic distance. The geodesic distance between points p, q ∈ M is defined as

dM(p, q) = inf{L(γ) : γ(0) = p, γ(1) = q}, (2)

where γ : [0, 1] → M is a C1-smooth curve joining p and q, and L(γ) is the length of γ as measured by

L(γ) =

∫
1

0

‖γ̇(t)‖dt. (3)

In order to see how geodesic distances on M∗ compare to geodesic distances on the component manifolds,

we will make use of the following lemma.

Lemma 1. Suppose that {Mj}J
j=1

are Riemannian manifolds, and let γ : [0, 1] → M∗ be a C1-

smooth curve on the joint manifold. Denote by γj the restriction of γ to the ambient dimensions of M∗

1In the remainder of this paper, whenever we use the notation ‖ · ‖ we mean ‖ · ‖ℓ2 , i.e., the ℓ2 (Euclidean) norm on R
N .

When we wish to differentiate this from other ℓp norms, we will be explicit.
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corresponding to Mj . Then each γj : [0, 1] → Mj is a C1-smooth curve on Mj , and

1√
J

J∑

j=1

L(γj) ≤ L(γ) ≤
J∑

j=1

L(γj).

Proof: We begin by observing that

L(γ) =

∫
1

0

‖γ̇(t)‖dt =

∫
1

0

√√√√
J∑

j=1

‖γ̇j(t)‖2 dt. (4)

For a fixed t, let xj = ‖γ̇j(t)‖, and observe that x = (x1, x2, . . . , xJ) is a vector in R
J . Thus we may

apply the standard norm inequalities

1√
J
‖x‖ℓ1 ≤ ‖x‖ℓ2 ≤ ‖x‖ℓ1 (5)

to obtain

1√
J

J∑

j=1

‖γ̇j(t)‖ ≤

√√√√
J∑

j=1

‖γ̇j(t)‖2 ≤
J∑

j=1

‖γ̇j(t)‖. (6)

Combining the right-hand side of (6) with (4) we obtain

L(γ) ≤
∫

1

0

J∑

j=1

‖γ̇j(t)‖dt =

J∑

j=1

∫
1

0

‖γ̇j(t)‖dt =

J∑

j=1

L(γj).

Similarly, from the left-hand side of (6) we obtain

L(γ) ≥
∫

1

0

1√
J

J∑

j=1

‖γ̇j(t)‖dt =
1√
J

J∑

j=1

∫
1

0

‖γ̇j(t)‖dt =
1√
J

J∑

j=1

L(γj).

We are now in a position to compare geodesic distances on M∗ to those on the component manifold.

Theorem 1. Suppose that {Mj}J
j=1

are Riemannian manifolds. Let p,q ∈ M∗ be given. Then

dM∗(p,q) ≥ 1√
J

J∑

j=1

dMj
(pj , qj). (7)

If the mappings ψ2, ψ3, . . . , ψJ are isometries, i.e., dM1
(p1, q1) = dMj

(ψj(p1), ψj(q1)) for any j and

for any pair of points (p,q), then

dM∗(p,q) =
1√
J

J∑

j=1

dMj
(pj, qj) =

√
J · dM1

(p1, q1). (8)

Proof: If γ is a geodesic path between p and q, then from Lemma 1,

dM∗(p,q) = L(γ) ≥ 1√
J

J∑

j=1

L(γj).
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By definition L(γj) ≥ dMj
(pj , qj); hence, this establishes (7).

Now observe that lower bound in Lemma 1 is derived from the lower inequality of (5). This inequality

is attained with equality if and only if each term in the sum is equal, i.e., L(γj) = L(γk) for all j and

k. This is precisely the case when ψ2, ψ3, . . . , ψJ are isometries. Thus we obtain

dM∗(p,q) = L(γ) =
1√
J

J∑

j=1

L(γj) =
√
JL(γ1).

We now conclude that L(γ1) = dM1
(p1, q1) since if we could obtain a shorter path γ̃1 from p1 to q1 this

would contradict the assumption that γ is a geodesic on M∗, which establishes (8).

Next, we study local smoothness and global self avoidance properties of the joint manifold.

Definition 2. [15] Let M be a Riemannian submanifold of R
N . The condition number is defined as

1/τ , where τ is the largest number satisfying the following: the open normal bundle about M of radius

r is embedded in R
N for all r < τ .

The condition number controls both local smoothness properties and global properties of the manifold;

as 1/τ becomes smaller, the manifold becomes smoother and more self-avoiding, as observed in [15].

Lemma 2. [15] Suppose M has condition number 1/τ . Let p, q ∈ M be two distinct points on M,

and let γ(t) denote a unit speed parameterization of the geodesic path joining p and q. Then

max
t

‖γ̈(t)‖ ≤ 1

τ
.

Lemma 3. [15] Suppose M has condition number 1/τ . Let p, q ∈ M be two points on M such that

‖p− q‖ = d. If d ≤ τ/2, then the geodesic distance dM(p, q) is bounded by

dM(p, q) ≤ τ(1 −
√

1 − 2d/τ ).

We wish to show that if the component manifolds are smooth and self avoiding, the joint manifold

is as well. It is not easy to prove this in the most general case, where the only assumption is that there

exists a homeomorphism (i.e., a continuous bijective map ψ) between every pair of manifolds. However,

suppose the manifolds are diffeomorphic, i.e., there exists a continuous bijective map between tangent

spaces at corresponding points on every pair of manifolds. In that case, we make the following assertion.

Theorem 2. Suppose that {Mj}J
j=1 are Riemannian submanifolds of R

N , and let 1/τj denote the

condition number of Mj . Suppose also that the {ψj}J
j=2 that define the corresponding joint manifold
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M∗ are diffeomorphisms. If 1/τ∗ is the condition number of M∗, then

1

τ∗
≤ max

1≤j≤J

1

τj
.

Proof: Let p ∈ M∗. Since the {ψj}J
j=2

are diffeomorphisms, we may view M∗ as being diffeo-

morphic to M1; i.e., we can build a diffeomorphic map from M1 to M∗ as

p = ψ∗(p1) := (p1, ψ2(p2), . . . , ψJ (pJ)).

We also know that given any two manifolds linked by a diffeomorphism ψj : M1 → Mj , each vector

v1 in the tangent space T1(p1) of the manifold M1 at the point p1 is uniquely mapped to a tangent vector

vj := φj(v1) in the tangent space Tj(pj) of the manifold Mj at the point pj = ψj(p1) through the map

φj := J ◦ ψj(p1) , where J denotes the Jacobian operator.

Consider the application of this property to the diffeomorphic manifolds M1 and M∗. In this case,

the tangent vector v1 ∈ T1(p1) to the manifold M1 can be uniquely identified with a tangent vector

v = φ∗(v1) ∈ T ∗(p) to the manifold M∗. This mapping is expressed as

φ∗(v1) = J ◦ ψ∗(p1) = (v1,J ◦ ψ2(p1), . . . ,J ◦ ψJ(p1)),

since the Jacobian operates componentwise. Therefore, the tangent vector v can be written as

v = φ∗(v1) = (v1, φ2(v1), . . . , φJ(p1)).

In other words, a tangent vector to the joint manifold can be decomposed into J component vectors,

each of which are tangent to the corresponding component manifolds.

Using this fact, we now show that a vector η that is normal to M∗ can also be broken down into

sub-vectors that are normal to the component manifolds. Consider p ∈ M∗, and denote T ∗(p)⊥ as the

normal space at p. Suppose η ∈ T ∗(p)⊥. Decompose each ηj as a projection onto the component tangent

and normal spaces, i.e., for j = 1, . . . , J ,

ηj = xj + yj, xj ∈ Tj(pj), yj ∈ Tj(pj)
⊥.

such that 〈xj , yj〉 = 0 for each j. Then η = x + y, and since x is tangent to the joint manifold M∗,

we have 〈η,x〉 = 〈x + y,x〉 = 0, and thus 〈y,x〉 = −‖x‖2. But, 〈y,x〉 =
∑J

j=1
〈yj, xj〉 = 0. Hence

x = 0, i.e., each ηj is normal to Mj .

Armed with this last fact, our goal now is to show that if r < min1≤j≤J τj then the normal bundle

of radius r is embedded in R
N , or equivalently, for any p,q ∈ M∗, that p + η 6= q + ν provided that
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Fig. 2. Point at which the normal bundle for the helix manifold from Figure 1(c) intersects itself. Note that the helix

has been slightly rotated.

‖η‖, ‖ν‖ ≤ r. Indeed, suppose ‖η‖, ‖ν‖ ≤ r < min1≤j≤J τj . Since ‖ηj‖ ≤ ‖η‖ and ‖νj‖ ≤ ‖ν‖ for all

1 ≤ j ≤ J , we have that ‖ηj‖, ‖νj‖ < min1≤i≤J τi ≤ τj . Since we have proved that ηj, νj are vectors in

the normal bundle of Mj and their magnitudes are less than τj , then pj + ηj 6= qj + νj by the definition

of condition number. Thus p + η 6= q + ν and the result follows.

This result states that for general manifolds, the most we can say is that the condition number of the

joint manifold is guaranteed to be less than that of the worst manifold. However, in practice this is not

likely to happen. As an example, Figure 2 illustrates the point at which the normal bundle intersects itself

for the case of the joint manifold from Figure 1(c). In this case we obtain τ∗ =
√
π2/2 + 1. Note that

the condition numbers for the manifolds M1 and M2 generating M∗ are given by τ1 = ∞ and τ2 = 1.

Thus, while the condition number in this case is not as good as the best manifold, it is still notably better

than the worst manifold. In general, even this example may be somewhat pessimistic, and it is possible

that in many cases the joint manifold may be better conditioned than even the best manifold.

III. JOINT MANIFOLDS: PRACTICE

As noted in the Introduction, a number of algorithms exploit manifold models for signal processing

tasks such as pattern classification, estimation, detection, control, clustering, and learning [3]–[5]. The

performance of these algorithms often depends on geometric properties of the manifold model, such as its

condition number and geodesic distances along its surface. The theory developed in Section II suggests

that the joint manifold preserves or improves these properties. In Sections IV and V we consider two

possible applications and observe that when noise is introduced, it can be extremely beneficial to use

algorithms specifically designed to exploit the joint manifold structure. However, before we address these

particular applications, we must first address some key practical concerns.
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A. Examples of joint manifolds

Many of our results assume that the component manifolds are isometric to each other. This may seem

an undue burden, but in fact this requirement is fulfilled by manifolds that are isometric to the parameter

space that governs them, a class of manifolds that has been studied in [2]. Many examples from this

class correspond to common image articulations that occur in vision applications, including:

• articulations of radially symmetric images, which are parameterized by a 2-D offset;

• articulations of four-fold symmetric images with smooth boundaries, such as discs, ℓp balls, etc.;

• pivoting of images containing smooth boundaries, which are parameterized by the pivoting angle;

• articulations of K
2

discs over distinct non-overlapping regions, with K
2
> 1, producing a K-

dimensional manifold.

These examples can be extended to objects with piecewise smooth boundaries as well as to video

sequences corresponding to different paths for the articulation/pivoting.

B. Acceptable deviations from theory

While manifolds are a natural way to model the structure of a set of images governed by a small

number of parameters, the results in Section II make a number of assumptions concerning the structure

of the component manifolds. In the most general case, we assume that the component manifolds are

homeomorphic to each other. This means that between any pair of component manifolds there should

exist a bijective mapping φ such that both φ and φ−1 are continuous. This assumption assures us that

the joint manifold is indeed a topological manifold. Unfortunately, this excludes some scenarios that can

occur in practice. For example this assumption might not be applicable to a camera network featuring

non-overlapping fields of view. In such camera networks, there are cases in which only some cameras are

sensitive to small changes in the parameter values. Strictly speaking, our theory may not apply in these

cases (since the joint “manifold” as we have defined it is not necessarily even a topological manifold).

We provide additional discussion of this issues in Section V-B below, but for now we simply note that in

Sections IV and V we conduct extensive experiments using both synthetic and experimental datasets and

observe that in practice the joint manifold-based processing techniques still exhibit significantly better

performance than techniques that operate on each component manifold separately. Thus, this violation of

our theory seems to be more technical than substantive in nature.

Additionally, in our results concerning the condition number, we assume that the component manifolds

are smooth, but the manifolds induced by the motion of an object where there are sharp edges or
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occlusions are nondifferentiable [3]. This problem can easily be addressed by applying a smoothing

kernel to the image, which induces a smooth manifold. In fact, that there exists a sequence of smooth

(regularized) manifolds (with decaying regularization parameter) that converge to any non-differentiable

image manifold [3]. More generally, if the cameras have limited processing capabilities, then it may

be possible to perform some simple processing tasks such as segmentation, background subtraction, and

illumination compensation that will make the manifold assumption more rigorously supported in practice.

C. Efficient data fusion via joint manifolds via random projections

Observe that when the number J and ambient dimension N of the manifolds become large, the ambient

dimension of the joint manifold — JN — may be so large that it becomes impossible to perform any

meaningful computations. Furthermore, it might appear that in order to exploit the joint manifold structure,

we must collect all the data, which we earlier claimed was a potentially impossible task.

Fortunately, we can transform the data into a more amenable form by obtaining random projections.

Specifically, it has been shown that the essential structure of a K-dimensional manifold with condition

number 1/τ residing in R
N is approximately preserved under an orthogonal projection into a random

subspace of dimension O(K log(N/τ)) ≪ N [16]. This result has been leveraged in the design of

efficient algorithms for inference applications, such as classification using multiscale navigation [17],

intrinsic dimension estimation [18], and manifold learning [18].

In a camera network, for example, an immediate option would be to apply this result individually for

each camera. In particular, if the ambient dimension N of each of the J component manifolds is large,

then the above result would suggest that we should project the image acquired by each camera onto a

lower-dimensional subspace. By collecting this data at a central location, we would obtain J vectors,

each of dimension O(K logN), so that we would have to collect O(JK logN) total measurements.

This approach, however, essentially ignores the joint manifold structure present in the data. If we instead

view the data as arising from a K-dimensional joint manifold in R
JN with bounded condition number

as given by Theorem 2, then we can then project the joint data into a subspace that is only logarithmic

in J as well as the largest condition number among the components, and still approximately preserve

the manifold structure. This is formalized in the following theorem, which follows directly from [16].

Theorem 3. Let M∗ be a compact, smooth, Riemannian joint manifold in a JN -dimensional space

with condition number 1/τ∗. Let Φ denote an orthogonal linear mapping from M∗ into a random M -

dimensional subspace of R
JN . Let M = O(K log(JN/τ∗)/ǫ2). Then, with high probability, the geodesic
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and Euclidean distances between any pair of points on M∗ are preserved up to distortion ǫ under Φ.

Thus, we obtain a faithful approximation of manifold-modeled data via a representation of dimension

only O(K log JN). This represents a significant improvement over the O(JK logN)-dimensional rep-

resentation obtained by performing separate dimensionality reduction on each component manifold and

a massive improvement over the original JN -dimensional representation consisting of all uncompressed

images. Note that if we were interested in compressing only a finite number P of images, we could

apply the Johnson-Lindenstrauss lemma [19] to obtain that M = O(logP ) would be sufficient to obtain

the result in Theorem 3. However, the M required in Theorem 3 is independent of the number of images

P , and therefore provides scalability to extremely large datasets.

Furthermore, the linear nature of Φ can be utilized to perform dimensionality reduction in a distributed

manner, which is particularly useful in applications when data transmission is expensive. Specifically,

given a network of J cameras, let xj ∈ R
N , 1 ≤ j ≤ J denote the image acquired by camera j, and

denote the concatenation of the images x = [xT
1 xT

2 · · · xT
j ]T . Since the required random projections are

linear, we can take local random projections of the images acquired by each camera, and still calculate

the global projections of x in a distributed fashion. Let each camera calculate yj = Φjxj , with the

matrices Φj ∈ R
M×N , 1 ≤ j ≤ J . Then, by defining the M × JN matrix Φ = [Φ1 Φ2 · · · ΦJ ], the

global projections y = Φx can be obtained by

y = Φx = [Φ1 Φ2 · · · ΦJ ][xT
1 xT

2 · · · xT
J ]T

= Φ1x1 + Φ2x2 + · · · + ΦJxJ .

Thus, the final measurement vector can be obtained by simply adding independent random projections of

the images acquired by the individual cameras. This gives rise to a novel scheme for a compressive data

fusion2 protocol as illustrated in Figure 3. Suppose the individual cameras are associated with the nodes

of a binary tree of size J , where the edges represent communication links between nodes. Let the root

of the tree denote the final destination of the fused data (the central unit). Then the fusion is represented

by the flow of data from the leaves to the root, with a binary addition occurring at every parent node.

The dimensionality of the data is M = O(K log JN), and the depth of the tree is R = O(log J); hence

the total communication bandwidth requirement is given by R×M ≤ O(K log2 JN) ≪ JN .

2These methods provide approximate data fusion for geometric models like manifolds, in the sense that we tolerate some

distortion in pairwise and geodesic distances.
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Fig. 3. Distributed data fusion using O(K log JN) random projections in a camera network.

The number of random measurements prescribed by Theorem 3 is a small factor larger than the

intrinsic dimensionality K of the data observed; however, it is far lower than its ambient dimensionality

N . In addition, the bandwidth required by this scheme is only logarithmic in the number of cameras

J ; this offers a significant improvement from previous data fusion methods that necessarily require

the communication bandwidth to scale linearly with the number of cameras. The joint manifold model

integrates the network transmission and data fusion steps, in a similar fashion to the protocols discussed

in randomized gossiping [20] and compressive wireless sensing [21].

IV. JOINT MANIFOLD CLASSIFICATION

We now examine the application of joint manifold-based techniques to some common inference

problems. In this section we will consider the problem of binary classification when the two classes

corresponds to different manifolds. As an example, we will consider the scenario where a camera network

acquires images of an unknown vehicle, and we wish to classify between two vehicle types. Since the

location of the vehicle is unknown, each class forms a distinct low-dimensional manifold in the image

space. The performance of a classifier in this setting will depend partially on topological quantities of the

joint manifold described in Section II, which in particular provide the basis for the random projection-

based version of our algorithms. However, the most significant factor determining the performance of

the joint manifold-based classifier is of a slightly different flavor. Specifically, the probability of error is

determined by the distance between the manifolds. Thus, we also provide additional theoretical analysis

of how distances between the joint manifolds compare to those between the component manifolds.
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A. Theory

The problem of manifold-based classification is defined as follows: given manifolds M and N , suppose

we observe a signal y = x + n ∈ R
N where either x ∈ M or x ∈ N and n is a noise vector, and we

wish to find a function f : R
N → {M,N} that attempts to determine which manifold “generated” y.

We consider a simple classification algorithm based on the generalized maximum likelihood framework

described in [22]. The approach is to classify by computing the distance from the observed signal y to

each manifold, and then classify based on which of these distances is smallest; i.e., our classifier is

f(y) = arg min [d(y,M), d(y,N )] . (9)

We will measure the performance of this algorithm for a particular pair of manifolds by considering the

probability of misclassifying a point from M as belonging to N , which we denote PMN .

To analyze this problem, we employ three common notions of separation in metric spaces:

• The minimum separation distance between two manifolds M and N , defined as

δ(M,N ) = inf
p∈M

d(p,N ).

• The maximum separation distance between manifolds M and N , defined as

∆(M,N ) = sup
x∈M

sup
y∈N

‖x− y‖.

• The Hausdorff distance from M to N , defined as

D(M,N ) = sup
p∈M

d(p,N ).

Note that while δ(M,N ) = δ(N ,M) and ∆(M,N ) = ∆(N ,M), in generalD(M,N ) 6= D(N ,M).

As one might expect, PMN is controlled by the separation distances. For example, suppose that x ∈ M;

if the noise vector n is bounded and satisfies ‖n‖ < δ(M,N )/2, then we have that d(y,M) ≤ ‖n‖ <
δ(M,N )/2 and hence

δ(M,N ) = inf
p∈M,q∈N

‖p− q‖ = inf
p∈M,q∈N

‖p− y + y − q‖

≤ inf
p∈M,q∈N

‖p− y‖ + ‖y − q‖ = d(y,M) + d(y,N ) < δ(M,N )/2 + d(y,N ).

Thus we are guaranteed that d(y,N ) > δ(M,N )/2. Therefore, d(y,M) < d(y,N ) and the classifier

defined by (9) satisfies PMN = 0. We can refine this result in two possible ways. A first possible

refinement is to note that the amount of noise that we can tolerate without making an error depends on
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x. Specifically, for a given x ∈ M, provided that ‖n‖ ≤ d(x,N )/2 we still have that PMN = 0. Thus,

for a given x ∈ M we can tolerate noise bounded by d(x,N )/2 ∈ [δ(M,N )/2,D(M,N )/2].

A second possible refinement is to ignore this dependence on x while extending our noise model to

the case where ‖n‖ > δ(M,N )/2 with non-zero probability. We can still bound PMN since

PMN ≤ P (‖n‖ > δ(M,N )/2). (10)

Thus, we now provide lower bounds on these separation distances. The corresponding upper bounds are

available in [23]. In the interest of space, the proof of this and subsequent theorems are omitted and can

be found in [23].

Theorem 4. Consider the joint manifolds M∗ ⊂ M and N ∗ ⊂ N . Then, the following bounds hold:

δ2(M∗,N ∗) ≥
J∑

j=1

δ2(Mj ,Nj) (11)

∆2(M∗,N ∗) ≥ max
1≤k≤J


∆2(Mk,Nk) +

∑

j 6=k

δ2(Mj ,Nj)


 . (12)

D2(M∗,N ∗) ≥ max
1≤k≤J


D2(Mk,Nk) +

∑

j 6=k

δ2(Mj ,Nj)


 (13)

As an example, if we consider the case where the separation distances are constant for all j, then the

joint minimum separation distance satisfies
√
Jδ(M1,N1) ≤ δ(M∗,N ∗), and using the upper bound for

δ(M∗,N ∗) from [23], we obtain

δ(M∗,N ∗) ≤
√
δ2(M1,N1) + (J − 1)∆2(M1,N1) ≤ δ(M1,N1) +

√
J − 1∆(M1,N1).

In the case where δ(M1,N1) ≪ ∆(M1,N1), we observe that δ(M∗,N ∗) can be considerably larger than
√
Jδ(M1,N1). This means that we can potentially tolerate much more noise while ensuring PM∗N ∗ = 0.

To see this, let n denote a noise vector and recall that we require ‖nj‖ < ǫ = δ(Mj ,Nj)/2 to ensure

that PMjNj
= 0. Thus, if we require that PMjNj

= 0 for all j, then we have that

‖n‖ =

√√√√
J∑

j=1

‖nj‖2 <
√
Jǫ =

√
Jδ(M1,N1)/2.

However, if we instead only require that PM∗N ∗ = 0, then we only need ‖n‖ < δ(M∗,N ∗)/2, which

can be a significantly less stringent requirement.
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The benefit of classification using the joint manifold is more apparent when we extend our noise model

to the case where we allow ‖nj‖ > δ(Mj ,Nj)/2 with non-zero probability and apply (10). To bound

the probability in (10), we will make use of the following adaptation of Hoeffding’s inequality [24].

Lemma 4. Suppose that nj ∈ R
N is a random vector that satisfies ‖nj‖ ≤ ǫ, for j = 1, 2, . . . , J .

Suppose also that the nj are independent and identically distributed (i.i.d.) with E[‖nj‖] = σ. Then if

n = (n1, n2, . . . , nJ) ∈ R
JN , we have that for any λ > 0,

P
(
‖n‖2 > J(σ2 + λ)

)
≤ exp

(
−2Jλ2

ǫ4

)
.

Using this lemma we can relax the assumption on ǫ so that we only require that it is finite, and instead

make the weaker assumption that E[‖n‖] =
√
Jσ ≤ δ(M,N )/2 for a particular pair of manifolds M,

N . This assumption ensures that λ = δ2(M,N )/4 − σ2 > 0, so that we can combine Lemma 4 with

(10) to obtain a bound on PMN . Note that if this condition does not hold, then this is a very difficult

classification problem since the expected norm of the noise is large enough to push us closer to the other

manifold, in which case the simple classifier given by (9) makes little sense.

We now illustrate how Lemma 4 can be be used to compare error bounds between classification using

a joint manifold versus using a pair of component manifolds. The proof can be found in [23].

Theorem 5. Suppose that we observe a vector y = x + n where x ∈ M∗ and n is a random vector

such that ‖nj‖ ≤ ǫ, for j = 1, 2, . . . , J , and that the nj are i.i.d. with E[‖nj‖] = σ ≤ δ(Mk,Nk)/2. If

δ(Mk,Nk) ≤
δ(M∗,N ∗)√

J
, (14)

and we classify the observation y according to (9), then there exist c∗, ck such that c∗ > ck and

PM∗N ∗ ≤ exp

(
−2c∗

ǫ4

)
and PMkNk

≤ exp

(
−2ck
ǫ4

)
. (15)

This result can be weakened slightly to obtain the following corollary [23].

Corollary 1. Suppose that we observe a vector y = x + n where x ∈ M∗ and n is a random vector

such that ‖nj‖ ≤ ǫ, for j = 1, 2, . . . , J and that the nj are i.i.d. with E[‖nj‖] = σ ≤ δ(Mk,Nk)/2. If

δ2(Mk,Nk) ≤
∑

j 6=k δ
2(Mj ,Nj)

J − 1
, (16)

and we classify according to (9), then (15) holds with the same constants as in Theorem 5.
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Corollary 1 shows that we can expect a classifier based on the joint manifold to outperform a classifier

based the k-th component manifold whenever the squared separation distance for the k-th component

manifolds is not too much larger than the average squared separation distance among the remaining

component manifolds. Thus, we can expect that the joint classifier will outperform most of the individual

classifiers, but that it is still possible that some individual classifiers will do better. Of course, if one

knew in advance which classifiers were best, then one would only use data from the best classifiers. We

expect that more typical situations include the case where the best classifier changes over time or where

the separation distances are nearly equal for all component manifolds, in which case the condition in (16)

is true for all k.

B. Experiments

In this section, we apply the random projection-based fusion algorithm to perform binary classification.3

Suppose a number of cameras, each with resolution N , observe the motion of a truck along a straight

road. This forms a 1-D manifold in the image space R
N pertaining to each camera; the joint manifold

generated by the truck’s motion would also be 1-D in R
JN . Suppose now that we wish to classify

between two types of trucks. Example images from three camera views for the two classes are shown

in Figure 4. The resolution of each image is N = 240 × 320 = 76800 pixels. In our experiment, we

converted the images to grayscale and sum M = 200 random projections for the three camera views.

The sample camera views suggest that some views make it easier to distinguish between the classes than

others. For instance, the head-on view of the two trucks is very similar for most shift parameters, while

the side view is more appropriate for discerning between the two classes of trucks.

The probability of error, which in this case is given by 1

2
PMN + 1

2
PNM, for different manifold-based

classification approaches as a function of the signal-to-noise ratio (SNR) is shown in Figure 4. It is clear

that the joint manifold approach performs better than majority voting and is comparable in performance

to the best camera. While one might hope to be able to do even better than the best camera, Theorem 5

would suggest that in general this is only possible when no camera is significantly better than the average

camera. Moreover, in the absence of prior information regarding how well each camera truly performs,

the best strategy for the central processor would be to fuse the data from all cameras. Thus, joint manifold

fusion proves to be more effective than high-level fusion algorithms like majority voting.

3Our images were generated using POVRAY (http://www.povray.org), an open-source ray tracing software package.
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Fig. 4. Sample images of 2 different trucks from multiple camera views and SNR vs. probability of error for individual

cameras, the joint manifold, and majority voting. The number of pixels in each camera imageN = 240×360 = 76800.

The joint manifold performs better than majority voting and nearly as well as the best camera.

This example highlights two scenarios when our proposed approach should prove useful. First, our

method acts as a simple scheme for data fusion in the case when most cameras do not yield particularly

reliable data (and thus decision fusion algorithms like majority voting are ineffective.) Second, due to the

high dimensionality of the data, transmitting the images could be expensive in terms of communication

bandwidth. Our method ensures that the communication cost is reduced to be proportional only to the

number of degrees of freedom of the signal.

V. JOINT MANIFOLD LEARNING

In contrast to the classification scenario described above, in which we knew the manifold structure a

priori, we now consider manifold learning algorithms that attempt to learn the manifold structure from

a set of samples of a manifold. This is accomplished by constructing a (possibly nonlinear) embedding

of the data into a subset of R
L, where L < N . If the dimension K of the manifold is known, then L

is typically set to K. Such algorithms provide a powerful framework for navigation, visualization and

interpolation of high-dimensional data. For instance, manifold learning can be employed in the inference

of articulation parameters (e.g., 3-D pose) from a set of images of a moving object. In this section

we demonstrate that in a variety of settings, the joint manifold is significantly easier to learn than the

individual component manifolds. This improvement is due to both the kind of increased robustness to
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noise noted in Section IV and to the fact that, as was shown in Theorem 2, the joint manifold can

be significantly better-conditioned than the component manifolds, meaning that it is easier to learn the

structure of the joint manifold from a finite sampling of points.

A. Theory

Several algorithms for manifold learning have been proposed, each giving rise to a nonlinear map

with its own special properties and advantages (e.g., Isomap [25], Locally Linear Embedding (LLE) [26],

Hessian Eigenmaps [27], etc.) Of these approaches, we devote special attention here to the Isomap

algorithm, which assumes that the point cloud consists of samples from a data manifold that is (at least

approximately) isometric to a convex subset of Euclidean space. In this case, there exists an isometric

mapping f from a parameter space Θ ⊆ R
K to the manifold M such that dM(f(θ1), f(θ2)) = ‖θ1−θ2‖2

for all θ1, θ2 ∈ Θ. In essence, Isomap attempts to discover the inverse mapping f−1 : M → Θ.

Isomap works in three stages:

• Construct a graph G that contains a vertex for each data point; an edge connects two vertices if the

Euclidean distance between the corresponding data points is below a specified threshold.

• Weight each edge in the graph G by computing the Euclidean distance between the corresponding

data points. We then estimate the geodesic distance between each pair of vertices as the length of

the shortest path between the corresponding vertices in the graph G.

• Embed the points in R
K using multidimensional scaling (MDS), which attempts to embed the points

so that their Euclidean distance approximates the estimated geodesic distances.

A crucial component of the MDS algorithm is a suitable linear transformation of the matrix of squared

geodesic distances; the rank-K approximation of this new matrix yields the best possible K-dimensional

coordinate structure of the input sample points in a mean-squared sense. Further results on the performance

of Isomap in terms of geometric properties of the underlying manifold can be found in [28].

We examine the performance of using Isomap for learning the joint manifold as compared to learning

the component manifolds separately. We assume that we have noiseless samples from the J isometric

component manifolds {Mj}J
j=1

. In order to judge the quality of the embedding learned by Isomap, we

will observe that for any pair of points p, q on a manifold M, we have that

ρ ≤ ‖p− q‖
dM(p, q)

≤ 1 (17)

for some ρ ∈ [0, 1] that will depend on p, q. Isomap will perform well if the largest value of ρ that

satisfies (17) for any pair of samples that are connected by an edge in the graph G is close to 1. Using
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this fact, we can compare the performance of manifold learning using Isomap on samples from the joint

manifold M∗ to using Isomap on samples from a particular component manifold Mk. The proof of this

theorem can again be found in [23].

Theorem 6. Let M∗ be a joint manifold from J isometric component manifolds. Let p,q ∈ M∗ and

suppose that we are given a graph G that contains one vertex for each sample. For each k = 1, . . . , J ,

define ρj as the largest value such that

ρj ≤
‖pj − qj‖
dMj

(pj , qj)
≤ 1 (18)

for all pairs of points connected by an edge in G. Then we have that
√∑J

j=1
ρ2

j

J
≤ ‖p − q‖
dM∗(p,q)

≤ 1. (19)

From Theorem 6 we see that, in many cases, the joint manifold estimates of the geodesic distances will

be more accurate than the estimates obtained using one of the component manifolds. If for a particular

component manifold Mk we observe that ρk ≤
√

P

J

j=1
ρ2

j

J
, then we know that the joint manifold leads to

better estimates. Essentially, we may expect that the joint manifold will lead to estimates that are better

than the average case across the component manifolds.

We now consider the case where we have a dense sampling of the manifolds so that the ρj ≈ 1,

and examine the case where we obtain noisy samples. We will assume that the noise is i.i.d. and

demonstrate that any distance calculation performed on M∗ serves as a better estimator of the pairwise

(and consequently, geodesic) distances between any two points p and q than that performed on any

component manifold using the points pj and qj . Again, the proof of this theorem can be found in [23].

Theorem 7. Let M∗ be a joint manifold from J isometric component manifolds. Let p,q ∈ M∗ and

assume that ‖pj−qj‖ = d for all j. Assume that we acquire noisy observations s = p+n and r = q+n′,

where n and n′ are independent noise vectors with the same variance and norm bound

E[‖nj‖2] = σ2 and ‖nj‖2 ≤ ǫ, j = 1, . . . , J,

with similar bounds for n′j . Then,

P

(
1 − δ ≤ ‖s − r‖2

‖p − q‖2 + 2Jσ2
≤ 1 + δ

)
≥ 1 − 2c−J2

,

where c = exp

(
2δ2

(
d2+2σ2

d
√

ǫ+ǫ

)2
)

.
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We observe that the estimate of the true distance suffers from a constant small bias; this can be

handled using a simple debiasing step.4 Theorem 7 indicates that the probability of large deviations in

the estimated distance decreases exponentially in the number of component manifolds J ; thus we should

observe significant “denoising” even in the case where J is relatively small.

B. Practice

The theoretical results derived above assume that the acquired data arises from J isometric component

manifolds. In practice, barring controlled synthetic scenarios, this is very rarely the case. For instance,

suppose the data is acquired using a network of nonidentical cameras with partially disjoint fields of view.

In such a scenario, the isometric assumption breaks down due to two reasons: (i) the cameras may possess

different dynamic ranges, be at different distances from the scene, or may be of different modalities (such

as visual versus infrared cameras or even visual plus audio data), and thus the component manifolds may

be scaled differently; (ii) due to occlusions or non-overlapping fields of view, certain regions of some

component manifolds may be ill-conditioned compared to other component manifolds.

In order to handle such non-idealities, we make two modifications to the Isomap algorithm while

performing joint manifold learning. Recall that that in order to find the nearest-neighbor graph G, Isomap

must first calculate the matrix of squared pairwise Euclidean distances. We denote this matrix D for the

joint manifold M∗ and Dj for the component manifold Mj . Note that D =
∑J

j=1
Dj . Thus, if a particular

component manifold is scaled differently than the others, by which we mean that dMj
(fj(θ1), fj(θ2)) =

Cj‖θ1 − θ2‖2 with Cj 6= 1, then all the entries of the corresponding Dj will be reweighted by C2
j , so

that Dj will have a disproportionate impact on D. This can be alleviated by normalizing each Dj by its

Frobenius norm, which can be interpreted as scaling each manifold so that an Eulerian path through the

complete graph has unit length.

The second non-ideality can be partially addressed by attempting to adaptively detect and correct

for occlusion events. Consider the case of large-scale occlusions, in which we make the simplifying

assumption that for each camera the object of interest is either entirely within the camera’s view or

entirely occluded. In this case, the non-occluded component manifolds are still locally isometric to each

other, i.e., there exists a neighborhood U such that dMj
(fj(θ1), fj(θ2)) = ‖θ1 − θ2‖2 for all θ1, θ2 ∈ U

and for all j corresponding to the non-occluded component manifolds. Thus, if we knew which cameras

4Manifold learning algorithms such as Isomap deal with biased estimates of distances by “centering” the matrix of squared

distances, i.e., removing the mean of each row/column from every element.
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were occluded for a pair of points, say xm and xn, then we could simply ignore those cameras in

computing Dm,n and rescale Dm,n so that it is comparable with the case when no cameras exhibit

occlusions. More specifically, we let J̃ denote the index set for non-occluded component manifolds and

set Dm,n = (|J |/|J̃ |)∑
j∈ eJ

‖xm
j −xn

j ‖2
2. To do this automatically, we threshold ‖xm

j −xn
j ‖2

2 to zero when

it is below a certain value, i.e., we set J̃ = {j : ‖xm
j −xn

j ‖2
2 ≥ ǫ} for some parameter ǫ, since this for the

component manifolds in which the object of interest is occluded this distance will be relatively small.

The parameter ǫ can be reasonably inferred from the data. D is used by subsequent steps in Isomap to

learn an improved low-dimensional embedding of the high-dimensional acquired data. Note that while

this approach does not rigorously handle boundary cases where objects are only partially occluded, our

experimental results below indicate that the algorithms are robust to such cases.

C. Experiments

We provide a variety of results using both simulated and real data that demonstrate the significant

gains obtained by using the joint manifold model, both with and without the use of random projections.

The manifold learning results have been generated using Isomap [25]. For ease of presentation, all of

our experiments are performed on 2-D image manifolds isomorphic to a closed rectangular subset of R
2.

Thus, ideally the 2-D embedding of the data should resemble a rectangular grid of points that correspond

to the samples of the joint manifold in high dimensional space.

1) Manifolds isometric to Euclidean space: As a toy example, we consider three different manifolds

formed byN = 64×64 = 4,096 pixel images of an ellipse with major axis a and minor axis b translating in

a 2-D plane, for (a, b) = (7, 7), (7, 6) and (7, 5); an example point is shown in Figure 5. The eccentricity

of the ellipse directly affects the condition number 1/τ of the image articulation manifold; in fact, it can

be shown that manifolds associated with more eccentric ellipses exhibit higher values for the condition

number. Consequently, we expect that it is “harder” to learn such manifolds. Figure 5 shows that this is

indeed the case. We add a small amount of i.i.d. Gaussian noise to each image and apply the Isomap

algorithm [25] to both the individual datasets as well as the concatenated dataset. We observe that the

2-D rectangular embedding is poorly learnt for each of the component manifolds but improves visibly

for the joint manifold.

2) Imaging artifacts — noise and occlusions: Next, we demonstrate how using joint manifolds can help

ameliorate common imaging artifacts such as noise and occlusions. We test our proposed joint manifold

learning approach on a database of truck images generated using POVRAY. The data comprises a set of
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Manifold 1 Manifold 2 Manifold 3 Joint manifold

Fig. 5. (top) Articulation manifolds sharing a common 2-D parameter space Θ. This simulates viewing a translating

disc from J = 3 viewing angles. (bottom) 2-D embedding of individual and joint manifolds learned via Isomap.

540 views of a truck on a highway from 3 vantage points. Each image is of size N = 90×120 = 10,800.

The images are parametrized by the position of the truck on the road; thus, each of the image data sets

can be modeled by a 2-D manifold. Sample views are shown in Figure 4. In this section our experiments

only use Class 2. To simulate imaging artifacts, we convert the images to grayscale, so that the ambient

dimension of the data from each camera lies in R
10,800.

Noise: We add i.i.d. Gaussian noise to each image and attempt to learn the 2-D manifold. The noise

level is quite high (PSNR = 3.5dB), as evidenced by the sample images in Figure 6. It is visually

evident from the 2-D embedding results that the learning performance improves markedly when the data

is modeled using a joint manifold.

Occlusions: Suppose we assume in the above highway example that the road is lined by trees on either

sides, so that the truck in our example is occluded in many frames, especially those captured by Camera

1. Sample figures and learning results are shown in Figure 7. Overall the joint manifold provides the best

embedding, supporting the assertions in Section V-B that our framework can accommodate occlusions.

3) Real data experiment — unsupervised target tracking: Finally, we test our methods on data captured

from a real camera network. As a practical application of manifold learning, we consider a situation where

we are given a set of training data consisting of images of a target moving through a region along with a
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Camera 1 Camera 2 Camera 3 Joint manifold

Fig. 6. (top) Noisy captured images. SNR ≈ 3.5 dB ; (bottom) 2-D embeddings learned via Isomap from noisy

images. The joint manifold model helps ameliorate the effects of noise.

Camera 1 Camera 2 Camera 3 Joint manifold

Fig. 7. (top) Captured images with occlusions; (bottom) 2-D embeddings learned via Isomap from images with

occlusions.

set of test images of the target moving along a particular trajectory. The aim is to recover this trajectory

using only the training data. Note that this is an “unsupervised” learning task in the sense that we do

not explicitly incorporate any known information regarding the locations of the cameras or the parameter

space describing the target’s motion, this information must be implicitly learned from the training data.
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We acquire images from a network of four Unibrain Fire-iTM OEM Firewire board cameras. The training

images comprise J = 4 different views of a coffee mug placed on the floor at different positions on an

irregular rectangular grid. Each camera is of resolution N = 320×240 = 76,800 pixels; example images

from each camera are shown in Figure 8. The concatenated data from the cameras can be modeled as a 2-

D joint manifold. However, this data suffers from real-world artifacts such as fluctuations in illumination

conditions, variations in the pose of the mug, and the fact that the mug does not lie within the field of

view of certain cameras at certain articulations. To generate the test data, we translate the coffee mug so

that its 2-D path traces out the shape of the letter “R” on the floor and capture images using J cameras.

Thus, we wish to to recover this trajectory using both the test and training data.

To solve this problem, we attempt to learn a 2-D embedding of the joint manifold using the modified

version of Isomap detailed in Section V-B. The learned embedding for each camera is shown in Figure 8,

while the embedding learned for the joint manifold is shown in Figure 9. As is visually evident, learning

the data using any one camera yields very poor results; however learning the joint manifold helps discern

the 2-D structure to a much better degree. In particular, the “R”-shaped trajectory of the test data is

correctly recovered only by learning the joint manifold.

To test the effectiveness of the data fusion method described in Section III-C, we compute M = 4,800

random projections of each image, sum the measurement vectors to obtain a randomly projected version of

the joint data and repeat the above manifold learning experiment. Manifold learning results are displayed

in Figure 9. While the recovered trajectory of the anomalous (test) data suffers some degradation in visual

quality, we observe comparable 2-D embedding results for the individual and joint manifolds as with the

original data set. Since the dimensionality of the projected data is merely 6.25% that of the original data

set, this would translate to significant savings in communication costs in a real-world camera network.

VI. DISCUSSION

Joint manifolds naturally capture the structure present in the data produced by camera networks.

We have studied topological and geometric properties of joint manifolds, and have provided some

basic examples that illustrate how they can improve the performance of common signal processing

algorithms. We have also introduced a simple framework for data fusion for camera networks that employs

independent random projections of each image, which are then accumulated to obtain an accurate low-

dimensional representation of the joint manifold. As noted in the Introduction, inspired by developments

in CS, devices that directly acquire random projections of images have recently been built [11]. Our

fusion scheme can be directly applied to the data acquired by such devices. Joint manifold fusion via
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Camera 1 Camera 2 Camera 3 Camera 4

Fig. 8. (top) Sample images from the camera network from a dataset measuring 2-D movement of a coffee mug;

(middle) 2-D embeddings of the dataset learned via Isomap fromN = 76,800 pixel images; (bottom) 2-D embeddings

of the dataset learned via Isomap from M = 4,800 random projections. The black dotted line corresponds to an ”R”-

shaped trajectory in physical space.

(a) (b)

Fig. 9. Learned trajectories for the joint manifold using (a) N = 76,800 pixel images; (b) M = 4,800 random

projections. Learning the joint manifold using the modified Isomap algorithm yields a much improved 2-D embedding

of the training points, as well as the “R”-shaped trajectory of the test data.
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random projections, like CS, is universal in that the measurement process is not dependent on the specific

structure of the manifold. Thus, our sensing techniques need not be replaced for these extensions; only

our underlying models (hypotheses) are updated.

We have not discussed complicating factors such as clutter, varying or unknown backgrounds, etc.

Promising progress in [29] suggests that such difficulties can potentially be handled even after acquiring

the random projections. Furthermore, while we have focused primarily on camera networks in this paper,

our framework can be used for the fusion of signals acquired by most generic sensor networks, as well

as multimodal and joint audio/video data.
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