
University of Dayton
eCommons
Electrical and Computer Engineering Faculty
Publications

Department of Electrical and Computer
Engineering

12-1997

Joint MAP Registration and High Resolution
Image Estimation Using a Sequence of
Undersampled Images
Russell C. Hardie
University of Dayton, rhardie1@udayton.edu

Kenneth J. Barnard
Air Force Wright Laboratory

Ernest E. Armstrong
Technology/Scientific Services Inc.

Follow this and additional works at: https://ecommons.udayton.edu/ece_fac_pub

Part of the Electrical and Electronics Commons, Electromagnetics and Photonics Commons,
Optics Commons, and the Signal Processing Commons

This Article is brought to you for free and open access by the Department of Electrical and Computer Engineering at eCommons. It has been accepted
for inclusion in Electrical and Computer Engineering Faculty Publications by an authorized administrator of eCommons. For more information, please
contact frice1@udayton.edu, mschlangen1@udayton.edu.

eCommons Citation
Hardie, Russell C.; Barnard, Kenneth J.; and Armstrong, Ernest E., "Joint MAP Registration and High Resolution Image Estimation
Using a Sequence of Undersampled Images" (1997). Electrical and Computer Engineering Faculty Publications. 14.
https://ecommons.udayton.edu/ece_fac_pub/14

https://ecommons.udayton.edu?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece_fac_pub?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece_fac_pub?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece_fac_pub?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/271?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/204?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/ece_fac_pub/14?utm_source=ecommons.udayton.edu%2Fece_fac_pub%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu


Joint MAP Registration and High Resolution Image

Estimation Using a Sequence of

Undersampled Images1

Russell C. Hardie†, Kenneth J. Barnard‡ and Ernest E. Armstrong‡
†Department of Electrical and Computer Engineering

University of Dayton
300 College Park Avenue

Dayton, OH 45469
Phone: (513) 229-3178
Fax: (513) 229-2471

Email: rhardie@engr.udayton.edu

‡Sensors Technology Branch
Wright Laboratory WL/AAJT

Building 622
3109 P Street

WPAFB OH 45433-7700
Phone: (513) 255-9609
Fax: (513) 255-6489

Abstract

In many imaging systems, the detector array is not sufficiently dense to adequately sample
the scene with the desired field of view. This is particularly true for many infrared focal plane
arrays. Thus, the resulting images may be severely aliased. This paper examines a technique
for estimating a high resolution image, with reduced aliasing, from a sequence of undersampled
frames. Several approaches to this problem have been investigated previously. However, in
this paper a maximum a posteriori (MAP) framework for jointly estimating image registration
parameters and the high resolution image is presented. Several previous approaches have relied
on knowing the registration parameters a priori or have utilized registration techniques not
specifically designed to treat severely aliased images. In the proposed method, the registration
parameters are iteratively updated along with the high resolution image in a cyclic coordinate-
descent optimization procedure. Experimental results are provided to illustrate the performance
of the proposed MAP algorithm using both visible and infrared images. Quantitative error
analysis is provided and several images are shown for subjective evaluation.
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1 Introduction

If a detector array used for image acquisition is not sufficiently dense, so as to meet the Nyquist

criterion, the resulting images will be degraded by aliasing effects. Since the optics of the imaging

system will serve to effectively bandlimit the image on the detector array, it is possible to acquire

an image which is free of aliasing. However, this requires the appropriate combination of optics and

detector array. Generally a broad instantaneous field of view is desired which requires optics with

a short focal length. To prevent aliasing in this case requires a dense detector array which may be

very costly or simply unavailable. Thus, many imaging systems are designed to allow some level

of aliasing during image acquisition. This is particularly true for staring infrared imagers because

of fabrication complexities. Some visual charge coupled device (CCD) cameras also suffer from

undersampling. The goal of this work is to develop a technique for estimating an unaliased high

resolution image from the aliased images acquired from such an imaging system. We also wish to

combat additive noise and blurring due to the finite detector size and optics.

Here the problem is approached from the framework of image sequence processing [1]. Thus, the

high resolution image will be estimated from a sequence of low-resolution aliased images. This is

possible if there exists sub-pixel motion between the acquired frames. Thus, a unique “look” at the

scene is provided by each frame. In particular, we consider the scenario where an imager is mounted

on a moving or vibrating platform, such as an aircraft, and is imaging objects in the far field. Thus,

the line-of-sight jitter will generally provide the necessary motion between the focal plane array

and the scene at each acquisition time with minimal occlusion effects. This process is referred to as

uncontrolled microscanning [2, 3]. The key to exploiting these multiple frames is accurate knowledge

of the sub-pixel registration parameters for each frame. If the images are severely undersampled, we

have found that traditional motion estimation techniques, such as block matching, may not provide

the desired sub-pixel accuracy. This has motivated the development of the approach presented here.

This basic problem of high resolution image recovery using multiple frames was first addressed

in the literature by Tsai and Huang [4]. Their observation model is based on the shift property

of the Fourier transform. Each aliased observation provides a set of equations in the frequency

domain. Provided that enough frames are available, the unaliased discrete spectrum, and hence

unaliased image, can be solved for. However, one must know the shifts in order to solve for the high

resolution image in this fashion. A method for estimating the shifts using the multiple aliased frames

is proposed in [4] for the case where the images are bandlimited. While this is an insightful solution,

it may be impractical in many applications because of prohibitively high computational complexity.

Furthermore, it requires a set minimum number of frames to operate, which may not be available.

The image recovery algorithm in [4] is extended in [5] for the case where noise is considered by using
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a recursive least squares solution for the set of frequency domain linear equations. This is extended

again for the case where blurring in considered in [6]. However, the estimation of the global frame

shifts is not addressed in [5] or [6]. A technique which uses the least squares solution, similar to

that in [5], along with a fast suboptimal scheme for estimating the global frame shifts is described

in [7].

Another approach to the high resolution image reconstruction problem uses a projection onto

convex sets (POCS) algorithm [8]. The POCS approach has been extended to treat motion blur

and noise in [1, 9, 10]. Block matching or phase correlation is suggested in [9, 10] as a means of

estimating the required motion parameters. A related multiframe technique which considers global

translational shift and rotation is presented in [11]. In [12], this technique is extended to treat the

more general case of a perspective projection of a plane. All of these methods rely on a two stage

estimation procedure whereby the registration is done independently of the high resolution image

reconstruction.

The problem has also been approached from a statistical estimation framework. Specifically, a

maximum a posteriori (MAP) estimator is developed in [13, 14] which is an extension of a single

frame image expansion algorithm proposed in [15]. The MAP estimator in [13, 14] uses an edge

preserving Huber-Markov random field for the image prior. The motion is estimated by a block

matching algorithm applied to the individual frames. These individual frames are first expanded

using the single frame algorithm in [15] to allow for sub-pixel estimates. This provides a useful

solution and it can treat the case where the image motion is not global, which is critical if the

scene contains moving objects. The block matching technique, however, does not exploit a priori

information about the motion if any is available. It also does not exploit all the observed frames

when estimating the motion parameters for each image. Another related multiframe MAP technique,

which uses an approach similar to that described here, can be found in [16].

A statistical estimation approach to multiframe resolution enhancement was first applied to

staring infrared imager data in [17]. In particular, a maximum likelihood (ML) technique using

the expectation maximization (EM) algorithm is developed which seeks to estimate translational

motion and a high resolution image [17] in the case of Poisson image statistics. As in [17], here

we view the problem as that of blind image restoration. That is, the undegraded high resolution

image must be estimated from a sequence of noisy, blurred and undersampled images jointly with

certain parameters of the observation model. Namely, these observation model parameters are

the registration parameters associated with each observed frame. Unlike most blind deconvolution

applications, however, here we assume we know the system point spread function (PSF). What

we do not know is the relative position of each observed low resolution pixel with respect to a

fixed high resolution grid. Therefore, in this paper we seek to minimize a MAP cost function
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with respect to the high resolution image and the registration parameters simultaneously using a

cyclic coordinate-descent optimization procedure [18]. In this iterative technique, the registration

parameter estimates are updated using the current best estimate of the high resolution image. In

this way, information from all the observed frames is used in updating the registration parameters.

We believe this approach represents an effective use of all of the observed data.

The organization of the rest of the paper is as follows. In Section 2, the observation model is

described. The MAP estimation problem is formulated in Section 3 and the prior statistical models

are described. Also in Section 3, the cyclic coordinate-descent optimization procedure for minimizing

the MAP cost function is developed. Experimental results are provided in Section 4. These include

results obtained using simulated data and using a staring infrared imaging sensor. Quantitative

error analysis is provided and several images are shown for subjective evaluation. Finally, some

conclusions are given in Section 5.

2 Observation Model

Consider the desired high resolution image of size L1N1×L2N2 written in lexicographical notation as

the vector z = [z1, z2, . . . , zN ]T , where N = L1N1L2N2. That is, z represents the ideal undegraded

image or underlying scene values sampled at or above the Nyquist rate. Let the parameters L1

and L2 represent the down sampling factors in the observation model in the horizontal and vertical

directions, respectively. Thus, each observed low resolution frame is of size N1 × N2. Let the

k’th low resolution frame be denoted in lexicographical notation as yk = [yk,1, yk,2, . . . , yk,M ]T for

k = 1, 2, . . . , p and where M = N1N2. Let the full set of p observed low resolution images be denoted

y = [yT
1 ,yT

2 , . . . ,yT
p ]T = [y1, y2, . . . , ypM ]T . (1)

Thus, all observed pixel values are contained within y.

Next we wish to define an appropriate relationship between the undegraded high resolution

image and the observed low resolution images. This observation model is the basis for the estimation

technique developed in the next section. We use a straightforward but general observation model

where the low resolution pixels are defined as a weighted sum of the appropriate high resolution

pixels with additive noise. The weighted sum models the blurring of the underlying scene values due

to the finite detector size and the PSF of the optics. An important factor in specifying the weights

is the position of each low resolution pixel with respect to the fixed high resolution grid (i.e., the

registration parameters). Specifically, the observed low resolution pixels from frame k are related

to the high resolution image through the following model

yk,m =
N∑

r=1

wk,m,r(sk)zr + ηk,m, (2)

3



for m = 1, 2, . . . ,M and k = 1, 2, . . . , p. The weight wk,m,r(sk) represents the “contribution” of

the r’th high resolution pixel to the m’th low resolution observed pixel of the k’th frame. The

vector sk = [sk,1, sk,2, . . . , sk,K ]T , contains the K registration parameters for frame k. Depending

on the application, these parameters may represent global translational shift in the horizontal and

vertical directions, rotation, affine transformation parameters, or other motion parameters. This

motion is measured in terms of some reference on a fixed high resolution grid. The term ηk,m in

(2) represents an additive noise samples which will be assumed to be independent and identically

distributed (i.i.d.) Gaussian noise samples with variance σ2
η.

We believe that a Gaussian noise model is useful for a variety of imaging systems and scenarios. In

most practical imaging applications, detected photons follow Poisson statistics [19]. The measurable

manifestation of photon-noise depends on the particular detector type. For photon detectors that

detect light through the conversion of photons into charge carriers, those carriers also follow Poisson

statistics [19, 20]. A system is photon-noise limited when this photon noise is the dominant noise

source in the system. When there exists a large number of photon generated charge carriers, the

Poisson statistics can be approximated by a Gaussian distribution [21]. Furthermore, if the imaging

system is not photon-noise limited, then the superposition of the contributing events from all noise

sources may result in a probability density function which approaches a Gaussian as defined by the

central limit theorem [21, 22]. Notwithstanding this, Poisson image statistics are valid provided the

system is photon-noise limited. A ML high resolution image estimation approach is developed in

[17] under the assumption of Poisson image statistics.

The observation model in (2) assumes that the underlying scene samples, z, remain constant

during the acquisition of the multiple low resolution frames, except for any motion allowed by the

motion model. Thus, the only frame-to-frame differences of the model weights in (2) result from

the motion of each low resolution pixel relative to the high resolution grid. It is these minute sub-

pixel motions we wish to exploit to form our high resolution image estimate. One simple model for

specifying the weights, which does not include the PSF of the optics, is illustrated in Fig. 1. Here

each low resolution pixel (shown on the right) is obtained by summing the high resolution pixels

within the span of that low resolution detector (shown on the left). In this example, only L1L2

high resolution pixels contribute to a specific low resolution pixel. To represent uniform detector

sensitivity, the weights corresponding to those L1L2 high resolution pixels would be set to 1/(L1L2).

The other weights would be set to zero. This discrete detector model simulates the integration of

light intensity that falls within the span of the low resolution detector. If the entire low resolution

grid moves relative to the fixed high resolution grid (i.e., global rigid motion), a different set of

high resolution pixels contribute to each low resolution pixel. This yields a new set of linearly

independent equations from (2).
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Figure 1: Discrete detector model showing those high resolution pixels (on the left) that contribute
to a low resolution pixel (on the right). The image z represents the true underling high resolution
image we wish to estimate and yk is the k’th observed low resolution frame. Note the different grid
sizes for z and yk.

Alternatively, the model in (2) can be expressed in terms of the entire set of low resolution pixels

as

ym =
N∑

r=1

wm,r(s)zr + ηm, (3)

for m = 1, 2, . . . , pM and where wm,r(s) is the “contribution” of zr to ym. Here the entire set of

motion parameters is contained in s = [sT
1 , sT

2 , . . . , sT
p ]T . In many practical imaging situations, these

parameters are not known a priori. Therefore, we consider them to be random parameters to be

estimated along with the high resolution image z. In the experimental results presented in Section

4, we focus on translational motion because of our specific experimental setup and application.

However, the following algorithm development is done in general terms to allow for a variety of

image acquisition scenarios. In the case of translational motion K = 2 and sk = [hk, vk]T , where hk

and vk are the horizontal and vertical shifts for frame k, respectively. These will be most conveniently

measured in terms of high resolution detector spacings.

For some of the later analysis, it will be convenient to represent the observation model in matrix

notation. Thus, rewriting (3) in matrix notation yields

y = Wsz + n, (4)

where element (m, r) in Ws is wm,r(s) and n = [η1, η2, . . . , ηpM ]T . Note that since the elements of
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n are i.i.d. Gaussian samples, the multivariate probability density function (pdf) of n is given by

Pr(n) =
1

(2π)
pM
2 σpM

η

exp

{
− 1

2σ2
η

nTn

}
=

1

(2π)
pM
2 σpM

η

exp



−

1
2σ2

η

pM∑

m=1

η2
m



 . (5)

3 MAP Estimator

We wish to form a MAP estimate of the high resolution image z and the registration information s

simultaneously, given that we observe y. The estimates can be computed as

ẑ, ŝ =
arg max

z, s Pr(z, s|y). (6)

Using Bayes rule, this can alternatively be expressed as

ẑ, ŝ =
arg max

z, s
Pr(y|z, s)Pr(z, s)

Pr(y)
. (7)

Noting that the denominator is not a function of z or s, and that z and s are statistically independent,

the estimates can be written as

ẑ, ŝ =
arg max

z, s Pr(y|z, s)Pr(z)Pr(s). (8)

Since we later define the form of these densities to be Gaussian in nature it is more convenient, and

equivalent, to minimize the minus log of the functional in (8). This yields

ẑ, ŝ =
arg min

z, s L(z, s) =
arg min

z, s {−log[Pr(y|z, s)]− log[Pr(z)]− log[Pr(s)]} . (9)

Thus, we must specify the prior image density Pr(z), the prior motion density Pr(s), and the

conditional density Pr(y|z, s). Then, a method for jointly optimizing (9) with respect to z and s

must be found. First let us consider the prior density models.

3.1 Prior Models

The problem of estimating z from y is generally an ill-posed inverse problem. This can lead to

estimates with excessive noise magnification if not treated. However, an appropriate choice of Pr(z)

in (9) can serve to regularize the problem. Such a prior statistical image model should accurately

reflect the characteristics of the random process from which z is viewed as a realization.

While the selection of an image prior is application dependent, we believe that a simple Gibbs

distribution [23, 24] can provide a useful solution for a wide variety of imaging systems. As will

be seen, this image prior model used with a Gaussian noise model has the desirable property of

yielding a convex MAP cost function with a unique global minimum. This cost function is readily

differentiable with respect to the high resolution image z allowing for a closed-form solution.
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The probability density function for the Gaussian prior has the form

Pr(z) =
1

(2π)
N
2 |Cz|1/2

exp

{
−1

2
zT C−1

z z
}

, (10)

where Cz is the N × N covariance matrix of z. The exponential term in (10) which includes the

image covariance can be factored into a sum of products yielding

Pr(z) =
1

(2π)
N
2 |Cz|1/2

exp

{
− 1

2λ

N∑

i=1

zTdidT
i z

}
, (11)

where di = [di,1, di,2, . . . , di,N ]T is a coefficient vector and λ can be viewed as a “tuning ” parameter.

Thus, the prior can be rewritten as

Pr(z) =
1

(2π)
N
2 |Cz|1/2

exp




− 1

2λ

N∑

i=1




N∑

j=1

di,jzj




2




. (12)

The coefficient vectors di for i = 1, 2, . . . , N effectively express a priori assumptions about the local

relationship between pixel values in z. As is commonly done, here these parameters are selected to

provide a higher probability for smooth random fields. The parameter λ can be used empirically

to control the “penalty” for discontinuities and rapidly varying features in z. Finally, by equating

(10) and (12), the elements of the inverse covariance matrix can be written in terms of di,j . Let the

(i, j)’th element in C−1
z be denoted C−1

i,j which is given by

C−1
i,j =

1
λ

N∑

r=1

dr,idr,j . (13)

For the experimental results presented in Section 4, we have selected the following values for the

coefficient vectors:

di,j =

{
1 for i = j
−1/4 for j : zj is a cardinal neighbor of zi.

(14)

Figure 2 illustrates the four cardinal neighbors of a pixel zi. To account for border effects on our

finite lattice, the coefficients are modified at the edges where fewer than four cardinal neighbors are

available. Note that the prior in (12) can be viewed as a Gibbs distribution where the exponential

term is a sum of clique potential functions [23]. For the coefficients in (14), the pixel cliques with

non-zero clique potential functions look like the set of shaded pixels in Fig. 2 including the center

sample labeled zi. Such cliques can be derived from a third order neighborhood system [25, 26].

The choice of a prior statistical model for the registration parameters will be highly applica-

tion specific. Furthermore, in many cases, the registration parameters may be significantly over-

determined by the data and a prior is not necessary to yield a useful solution. One exception is the

case where the high resolution image exhibits strong periodicity. A registration estimator with no
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z
i

Figure 2: The high resolution image prior neighborhood model showing the cardinal neighbors of a
pixel zi. In this case, di,j would be non-zero only for j such that zj is an immediate spatial neighbor
of zi (those shaded pixels).

a priori information may easily report incorrect parameters because it has been trapped in a local

minima. Cases where the signal-to-noise ratio is very low or numerous registration parameters must

be estimated may also benefit from a valid prior statistical model if one can be identified. If the

signal-to-noise ratio is high and there are a relatively small number of registration parameters to

estimate, we believe that a “no preference” prior can yield a useful solution. Thus, the estimation

of the registration parameters reduces to a maximum likelihood estimate.

Using the Gibbs image prior and a “no preference” registration prior, we now begin to formulate

the MAP solution for the high resolution image. First we derive a closed form solution then a

gradient descent procedure is described. The latter provides a more practical implementation for

large images.

3.2 Matrix MAP Solution

Let us begin by expressing the conditional density from (9) in matrix form. Given the observation

model in (4) and the noise density in (5), the conditional density can be written as

Pr(y|z, s) =
1

(2π)
N
2 σN

η

exp

{
− 1

2σ2
η

(y −Wsz)T (y −Wsz)

}
. (15)

Using (9), (10), and (15) and ignoring terms which are not functions of z or s, the MAP estimates

can be expressed as

ẑ, ŝ =
arg min

z, s L(z, s), (16)

where

L(z, s) =
1

2σ2
η

(y −Wsz)T (y −Wsz) +
1
2
zT C−1

z z. (17)

Thus, we have to minimize the cost function in (17) with respect to z and s simultaneously, where

y represents the observed data. This provides a somewhat challenging optimization problem. This
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is partly due to the fact that (17) is not readily differentiable with respect to s for many motion

models. However, given z is fixed, it is possible to perform a search over a finite set of discrete

motion parameters to minimize (17) with respect to s. Also, (17) forms a quadratic function in z

and can be minimized readily with respect to z if the registration information s is fixed. Thus, the

approach will be to use a cyclic coordinate-descent optimization procedure [18]. That is, we descend

the cost function in (17) with respect to s and z separately and alternately. These alternating

minimizations will continue until the algorithm adequately converges or a set number of iterations

is reached.

Consider beginning the optimization procedure using some initial estimate of the high resolution

image ẑ0. This estimate can be obtained, for example, by interpolating the first low resolution

image in the observed sequence. At each iteration n, the motion parameters can be obtained by

minimizing (17) with respect to s, given z is the current estimate of the high resolution image

ẑn = [ẑn
1 , ẑn

2 , . . . , ẑn
N ]T . Specifically, the motion estimates for n = 0, 1, 2, . . . can be computed as

ŝn =
arg min

s L(ẑn, s) =
arg min

s
{
(y −Wsẑn)T (y −Wsẑn)

}
. (18)

To derive the update procedure for the high resolution image, we begin by computing the gradient

of the cost function in (17) with respect to the vector quantity z. This gradient is given by

∇zL(z, s) =
1
σ2

η

(WT
s Wsz−WT

s y) + C−1
z z, (19)

where

∇zL(z, s) =




∂L(z,s)
∂z1

∂L(z,s)
∂z2
...

∂L(z,s)
∂zN




. (20)

At iteration n, we fix the motion parameters in (19) such that s = ŝn. Then by setting∇zL(z, s)|s=ŝn

equal to zero and solving for z we obtain the the next image estimate

ẑn+1 =
[
WT

ŝnWŝn + σ2
ηC

−1
z

]−1
WT

ŝny. (21)

This process of updating the motion parameters and the image continues for n = 0, 1, 2, . . . until

L(ẑn, ŝn) stabilizes or ||ẑn+1 − ẑn||/||ẑn|| < ε, where ε is a predetermined threshold. It is possible

that the functional in (17) contains local minima and the proposed optimization procedure can get

trapped by these. Thus, it may be important to begin the procedure with the the best estimate of

z possible.

A practical problem may arise in implementing (21), even for modest sized images, due to the

large matrix dimensions. Although the matrices Ws and C−1
z are generally sparse, it is often more

practical to use a gradient descent procedure rather than perform the matrix inverse in (21). This

approach is described in the following section.
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3.3 Gradient Descent Optimization

In this section, we derive an iterative gradient descent minimization procedure with respect to the

high resolution image z. A pointwise notation is used because we believe it may provide the reader

with additional insight into the mechanics of the algorithm.

To begin, we first write all the densities in (9) in terms of individual high resolution pixel values.

Consider first the conditional density obtained using (3) and (5)

Pr(y|z, s) =
1

(2π)
pM
2 σpM

η

exp



−

1
2σ2

η

pM∑

m=1

(
ym −

N∑

r=1

wm,r(s)zr

)2


 . (22)

Using (9) with the conditional density in (22) and the prior in (12), the MAP estimates can be

formulated as

ẑ, ŝ =
arg min

z, s L(z, s), (23)

where the MAP cost function is now expressed as

L(z, s) =
1

2σ2
η

pM∑

m=1

(
ym −

N∑

r=1

wm,r(s)zr

)2

+
1
2λ

N∑

i=1




N∑

j=1

di,jzj




2

. (24)

Clearly, the cost function in (24) balances two types of errors. The first term will be referred to

as the linear equation error. This error is minimized when z, projected through the observation

model, matches the observed data. Minimization of this term alone can lead to excessive noise

magnification in some applications due to the ill-posed nature of this inverse problem. The second

term will be referred to as the image prior error which serves as a regularization operator. This is

generally minimized when z is smooth. The weight of each of these competing “forces” in the cost

function is controlled by σ2
η and λ. For example, if the fidelity of the observed data is high (i.e., σ2

η

is small), the linear equation error dominates the cost function. If the observed data is very noisy,

the cost function will emphasize the image prior error. This will generally lead to smoother image

estimates. Thus, the image prior term can be viewed as a simple penalty term controlled by λ which

biases the estimator away from noisy solutions which are inconsistent with the Gibbs image prior

assumption.

As before, we will use a cyclic coordinate-descent minimization procedure alternating between

the motion parameters and the high resolution image. However, here we use a steepest descent

technique to minimize (24) with respect to z, given the motion parameters are fixed. Let us begin

with the motion estimation.

At each iteration n, the motion parameter estimates are updated through a search procedure to

minimize (24) with respect to s, given that z = ẑn. Thus, using only those terms in (24) which are

10



a function of s, the updated motion parameter estimates become

ŝn =
arg min

s L(ẑn, s) =
arg min

s





p∑

k=1

M∑

m=1

(
yk,m −

N∑

r=1

wk,m,r(sk)ẑn
r

)2


 . (25)

Note that the linear equation error in (25) is written in terms of a sum over individual frames. The

cost function in (25) can clearly be minimized by minimizing each of the p terms independently.

Thus, the estimate for the registration parameters for frame k at iteration n, ŝn
k , can be found as

follows:

ŝn
k =

arg min
sk





M∑

m=1

(
yk,m −

N∑

r=1

wk,m,r(sk)ẑn
r

)2


 , (26)

for k = 1, 2, . . . , p.

A search is required to minimize (26) with respect to sk. This search resembles a type of block

matching algorithm. However, here the low resolution frames are not compared to one another, as

they might be in a traditional block matching algorithm. Rather, they are compared to the high

resolution estimate after it is projected through the observation model with set motion parameters.

We believe that this procedure is less susceptible to aliasing than traditional block matching algo-

rithms. This is because no interpolation on the low-resolution aliased grid is required as the motion

parameters are varied and tested to find a minimum in (26). Pyramidal search strategies and other

efficient techniques designed for traditional block matching can be employed here [1].

To derive the pointwise gradient descent update for the image estimate, we begin by differ-

entiating (24) with respect to some pixel zk for k = 1, 2, . . . , N . This partial derivative is given

by

gk(z, s) =
∂L(z, s)

∂zk
=

1
σ2

η

pM∑

m=1

wm,k(s)

(
N∑

r=1

wm,r(s)zr − ym

)
+

1
λ

N∑

i=1

di,k




N∑

j=1

di,jzj


 . (27)

Note that the first term in (27) is the sum of differences between the “predicted data” minus the

actual low resolution data. Each term in the sum is weighted by the contribution of zk to that low

resolution pixel, wm,k(s). The second term (the image prior gradient) is simply a linear combination

of the high resolution pixels for each k. This portion of the derivative can be computed for all high

resolution pixels via a convolution operation. For the coefficients given in (14), the appropriate

convolution kernel is shown in Fig. 3. Finally, the gradient descent update for each pixel estimate,

given the motion parameters are fixed as s = ŝn, is

ẑn+1
k = ẑn

k − εngk(ẑn, ŝn), (28)

for n = 0, 1, 2, . . . and k = 1, 2, . . . , N . Alternatively, the update can be written as

ẑn+1 = ẑn − εn∇zL(z, s)|z=ẑn,s=ŝn . (29)

11
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Figure 3: Convolution kernel used to obtain the image prior gradient.

The parameter εn in (28) and (29) represents the step size at the n’th iteration. This parameter

must be selected to be small enough to prevent divergence and large enough to provide convergence

in a reasonable number of iterations. The optimal step size can be calculated by minimizing

L(ẑn+1, ŝn) = L(ẑn − εn∇zL(z, s)|z=ẑn,s=ŝn , ŝn) (30)

with respect to εn. To do so we begin by writing L(ẑn+1, ŝn) using (24) and (28). Next we differen-

tiate this with respect to εn and set the derivative equal to zero. Solving for εn yields, after some

manipulation,

εn =
1
σ2

η

∑pM
m=1 γm

(∑N
r=1 wm,r(ŝn)ẑn

r − ym

)
+ 1

λ

∑N
i=1 ḡi

(∑N
j=1 di,j ẑ

n
j

)

1
σ2

η

∑pM
m=1 γ2

m + 1
λ

∑N
i=1 ḡ2

i

, (31)

where

γm =
N∑

r=1

wm,r(ŝn)gr(ẑn, ŝn) (32)

is the gradient projected through the low resolution pixel formation model, and

ḡi =
N∑

j=1

di,jgj(ẑn, ŝn) (33)

is a weighted sum of neighboring gradient values. A summary of the total estimation procedure is

provided in Table 1.

It is worth noting that the conjugate gradient technique [18] cannot be directly applied in place

of the gradient descent update in Table 1. Although the conjugate gradient technique generally

offers faster convergence, it requires that the cost function remain constant from one iteration to

12



Table 1: Proposed Iterative MAP Estimation Algorithm.

step 1: Begin at n = 0 with initial estimate ẑ0 being the interpolated low resolution
frame 1.

step 2: For k = 1, 2, . . . , p, find ŝk according to (26) to generate ŝn.

step 3: Compute the gradient gk(ẑn, ŝn) given in (27) for k = 1, 2, . . . , N .

step 4: Compute the optimal step size εn using (31).

step 5: Let ẑn+1
k = ẑn

k − εngk(ẑn, ŝn) for k = 1, 2, . . . , N , yielding ẑn+1.

step 6: If ||ẑn+1 − ẑn||/||ẑn|| < ε or a set number of iterations is reached, stop.

step 7: Let n = n + 1 and go to step 2.

the next. If the registration parameter estimates change in our iterative procedure, so does the

cost function. In light of this, we believe that a straight-forward gradient descent offers a practical

solution. However, the conjugate gradient technique, or other similar method, could be applied once

the registration parameter estimates have stabilized. Furthermore, such techniques could be used if

one applies multiple image update iterations between the motion parameter updates.

4 Experimental Results

In order to demonstrate the performance of the algorithm, several experimental results are presented

here. The first set of experiments involve simulated data derived from a single broad band visible

image acquired from an airborne platform. These data allow for quantitative error analysis and the

weights in the observation model are as shown in Fig. 1. The second set of experimental results

have been obtained from a staring infrared imaging system equipped with a microscan mirror to

translate the incoming images in real-time. Here a PSF is calculated theoretically based on known

optical system parameters and is used in the algorithm. All the results obtained in this section use

the Gibbs distribution image prior given by (12) and (14).

While the algorithm developed in Table 1 can be employed with a variety of image motion, the

results presented here focus on global translational motion. Such motion may result from an imager

mounted on a moving platform, such as an aircraft, with rotational stabilization. The translations

may also be introduced by a movable mirror in the optical path. Such platform or mirror motion

13
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Figure 4: Simulated camera shifts in terms of high resolution pixels for 16 frames.

changes the line-of-sight pointing angle of the imager. For objects in the far field, this effectively

produces a translational shift of the scene in the focal plane with minimal occlusion effects.

4.1 Simulated Imagery

A simulated sequence of random translational shifts is shown in Fig. 4. Note that these translational

shifts are given in terms of high resolution pixel spacings. Using these shifts, a sequence of translated

images is generated from the 8 bit gray-scale image “Aerial” shown in Fig. 5a. This “ideal” image is

blurred to simulate the low resolution detector integration and subsampled by a factor of L1 = 4 and

L2 = 4. The subsampling is performed with appropriate offsets so as to simulate the translational

shifts shown in Fig. 4 and Gaussian noise is added to each low resolution frame. One typical frame

of the simulated low-resolution noisy data is shown in Fig. 5b.

The MAP estimate in the case where the noise variance is σ2
η = 100 is shown in Fig. 5c. The

smoothness parameter for the image prior has been empirically selected to be λ = 150. Decreasing

λ will generally lead to a smoother image estimate. The initial high resolution image estimate is a

bilinearly interpolated version of the first frame and 20 iterations of the algorithm are performed.

Figure 5d shows the estimate in the case where λ = ∞, which is effectively a maximum likelihood

estimate since the image prior term plays no role in the estimate. Clearly the noise has been

magnified in this estimate which demonstrates that the image prior term plays an important role

in this case.

It should be noted that the ML estimate in Fig. 5d can be improved by halting the iterations

earlier. With fewer iterations, the estimate will tend to retain more of the characteristics of the
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Figure 5: (a) Original image “Aerial” (b) simulated low resolution frame 1 (L1 = L2 = 4, σ2
η = 100)

(c) MAP estimate with λ = 150 (d) MAP estimate with λ = ∞ (e) bilinear interpolation of frame
1 (f) bicubic interpolation of frame 1.
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Figure 6: Learning curve showing the MAP cost function, L(z, s), versus iteration number for the
simulated data. Here 16 frames are used with L1 = L2 = 4, σ2

η = 100, and λ = 150.

starting image (which is generally smooth). Furthermore, constraints can be added such as non-

negativity and maximum pixel values which may also improve the ML estimate without the explicit

use of a prior term. Thus, Fig. 5d is not intended to be representative of an optimal ML esti-

mate. Rather, it simply shows the effect of eliminating the prior term with all other factors being

equal. For comparison with the multiframe estimates, the images formed using bilinear and bicubic

interpolation of the single frame in Fig. 5b are shown in Figs. 5e and 5f, respectively.

To show the convergence behavior of the estimator, the MAP cost function in (24) is plotted

in Fig. 6 versus iteration number. The use of the optimal step size allows for relatively quick

convergence.

Quantitative error analysis is provided in Fig. 7. In particular, the mean absolute error (MAE)

per pixel for the MAP estimates with λ = 150 and λ = ∞ are shown in Fig. 7a for various noise

levels. For each noise level, except the highest, the MAP estimator with λ = 150 recovers the

correct shifts. In the highest noise case, two shift estimates are off by one high resolution pixel.

For comparison, the MAEs of images formed by bilinear and bicubic interpolation of a single frame

are shown. Note that the MAP estimator provides an estimate with significantly lower error than

the single frame interpolators. Also note that the MAE for the multiframe estimate with λ = ∞
degrades much more rapidly than with λ = 150 as noise levels increase. Similar results have been

observed using the mean squared error (MSE) criterion.

The MAE for the estimators using different numbers of frames is plotted in Fig. 7b. With only

one frame, the MAP estimator’s performance with λ = 150 is comparable to that of the bicubic
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Figure 7: Mean absolute error for the estimators with (a) varying levels of noise using 16 frames
and (b) different number of frames with noise variance σ2

η = 100.
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interpolator. However, with additional frames, the MAP estimate becomes significantly improved

with respect to the single frame interpolators. Similar results are observed with MSE. It is reported

in [15] that a single frame MAP interpolation method can outperform traditional interpolators if

an edge preserving Hubor-Markov prior is used. However, this is at the expense of optimization

simplicity. Note also that the estimate formed with λ = ∞ has a much higher error which does not

decrease monotonically with the number of frames. The algorithm does not appear to be highly

sensitive to the choice of λ in this application, but clearly some finite value is desired.

4.2 Staring Infrared Imagery

Now we consider applying the MAP algorithm to imagery obtained with a staring infrared imaging

sensor. The imager considered uses a 128× 128 Amber AE-4128 infrared focal plane array (FPA).

The FPA is composed of Indium-Antimonide (InSb) detectors with a spectral bandwidth from

3µm− 5µm in wavelength. The infrared imager is set up with a microscanning mirror which allows

for the collection of a sequence of frames translated by subpixel amounts in real-time. The mirror is

controlled by a piezoelectric positioner. However, calibration of the mirror for high speed operation

is very difficult, and therefore, the exact mirror positions are unknown. For our purposes, the mirror

effectively simulates an unknown imager platform motion.

The imager is equipped with F/3 optics having a focal length of 100mm. The detector pitch or

spacing is 50µm in both the horizontal and vertical directions. The active area of the detectors is

40µm×40µm, yielding a fill factor of 80%. Assuming a midband wavelength of 4µm, the theoretical

diffraction-limited optical transfer function (OTF) cuts off at 8.33 cyc/mrad [27, 28] and the effective

sampling rate of the FPA is 2 cyc/mrad. Thus, the sampling rate must be increased by a factor of

8.33 to guarantee there will be no aliasing effects when imaging an arbitrary scene.

We have selected to perform a reconstruction with L1 = L2 = 5, although this resolution may

not be sufficient to avoid aliasing effects entirely. The theoretical discrete PSF of the imaging system

on the high resolution grid is shown in Fig. 8. This is an incoherent PSF based on the assumption

of diffraction-limited optics and includes the effects of the finite detector size [27, 28]. The weights

in (2) are determined by this PSF positioned at the appropriate location on the high resolution grid

for each low resolution pixel.

The MAP algorithm is tested using 16 frames of the infrared imagery. One typical original

resolution frame is shown in Fig. 9a. This 64 × 64 image represents a region of interest from the

full 128 × 128 Amber array. No subsampling has been performed. The scene contains a number

of vehicles imaged from a tower at a distance of approximately 1 kilometer. The MAP estimate is

shown in Fig. 9b for λ = 200 and where σ2
η is estimated from a small apparently “flat” portion

of the original image sequence. The estimate formed with λ = ∞ is shown in Fig. 9c. Since
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PSF is based on the assumption of diffraction-limited optics and includes the effects of the finite
detector size.

the signal-to-noise ratio is relatively high in these data, the estimates formed with λ = 200 and

λ = ∞ are similar. Again, decreasing λ will generally produce a smoother image estimate. For

comparison, a single frame interpolated using bilinear interpolation is shown in Fig. 9d and using

bicubic interpolation in Fig. 9e.

To illustrate the convergence behavior of the algorithm with the infrared data, the cost function

is plotted in Fig. 10 versus iteration number for λ = 200. Here the initial estimate of the high

resolution image is a bicubically interpolated version of the first frame. Note the sudden drop

between the forth and fifth iterations. Here the shift estimates changed significantly allowing the

cost function to reach a lower level. The image shifts recovered by the MAP estimator are shown

in Fig. 11. These shifts appear consistent with the programmed mirror pattern.

5 Conclusions

The problem of aliasing reduction and resolution enhancement can be addressed by exploiting multi-

ple frames which offer unique “looks” at a scene. Here we have focused on exploiting frame-to-frame

translational shifts which may result from line-of-sight jitter of an imager mounted on a moving plat-

form. However exploiting these sub-pixel motions requires accurate estimates of them. To obtain

accurate estimates of the sub-pixel motion, any scene based estimator must have accurate sub-pixel

information in some form. We approached this apparently paradoxical problem from the framework

of blind image restoration. In particular, a joint MAP estimator for the high resolution image and

the registration parameters is described. We believe that this type of simultaneous estimation is
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Figure 9: (a) Low resolution frame 1 showing vehicles imaged from a tower (b) MAP estimate using
16 frames with L1 = L2 = 5 and λ = 200 (c) MAP estimate with λ = ∞ (d) bilinear interpolation
of frame 1 (e) bicubic interpolation of frame 1.
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important if the frames are severely aliased. It has been demonstrated that the MAP algorithm can

accurately recover sub-pixel translational shifts, even with significantly aliased imagery. Also, the

high resolution image estimates obtained here have significantly lower error than estimates formed

by single frame interpolation. Although our experimental results focus on global translational shift,

the fundamental approach described here can be applied to more complex scene motion. This will

be one area of future work. Future investigation will also explore optimal selection methods for the

smoothness parameter λ to avoid empirical searches.
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