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JOINT MEASURES AND CROSS-COVARIANCE OPERATORS(l)
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CHARLES R. BAKER

ABSTRACT.   Let H. (resp., H ) be a real and separable Hubert space
with Borel O'field T   (resp., rj, and let (H. X //-,  T, X T.) be the product
measurable space generated by the measurable rectangles.   This paper
develops relations between probability measures on (H. x H ,  V   x T.), i.e.,
joint measures, and the projections of such measures on (H., T.) and (H , Y ).
In particular, the class of all joint Gaussian measures having two specified
Gaussian measures as projections is characterized, and conditions are ob-
tained for two joint Gaussian measures to be mutually absolutely continuous.
The cross-covariance operator of a joint measure plays a major role in these
results and these operators are characterized.

Introduction. Let H.  (resp., A7 ) be a real and separable Hubert space with
inner product (•, *)j (resp.,(', -)2) and Borel o-field Tj (resp., TJ.  Let Tj x T

denote the o-field generated by the measurable rectangles AxB,A£rj,B£ I"^.
Define H. x //, = {(u, v): u in H., v in H A.  f/j x H   is a real linear space, with

addition and scalar multiplication defined by (u, v) + (z, y) = (u + z, v + y) and
k(u, v) = (ka, k\).   H. x H2 is a separable Hubert space under the inner product
[•, •] defined by [(u, v), (t, z)] = (u, t)j + (v, z)2; moreover, the open sets under
the norm obtained from this inner product generate Tj x T2 [10].   Let || • ||j
(resp., || • ||2) denote the norm in H. (resp., H ) obtained from the inner product,
and let ||| • ||| denote the norm in Hl x H2 obtained from the inner product.  A
probability measure on (//j x H2, Tj x T2) will be called a joint measure.

A probability measure (i. on (//., T.) (i = 1 or 2) that satisfies

« //fi||x||i?^.(x)<oo

defines an operator R. in H. and a mean element m. of H. by

<m¿, u)¿ = JH.(x, u^ft/x)

Received by the editors June 3, 1971.
AMS (MOS) subject classifications (1970). Primary 28A40, 60G15, 28A35, 60G3O;

Secondary 94A15.
Key words and phrases. Joint measures, Gaussian measures, absolute continuity of

measures, covariance operators, mutual information.
0) This research was supported by the National Science Foundation under grant GU-

2059 and by the U. S. Air Force Office of Scientific Research under contract AFOSR-68-
"15. „_„ Copyright e 1974, American Mathematical Society

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



274 C. R. BAKER

and

(R.u, v),. = JH .(x - m¿, u).<x - nr, \).dp.ix);

R; is a covariance operator; i.e., it is linear, bounded, nonnegative, selfadjoint,
and trace-class,  p. is Gaussian if the probability distribution on the Borel sets
of the real line induced from p.. by every bounded linear functional on 77. is
Gaussian.   If p. is Gaussian, (*) is satisfied; moreover, to every covariance
operator R and element m in 77. there corresponds a unique Gaussian measure
[9]. All measures on (77., T.) considered in this paper are probability measures

that satisfy (*).
We are interested in determining relations between joint measures and their

projections on (77., T.).   In particular, the following questions are answered:

(1 ) What is the relation between the covariance operator of a joint measure and
the covariance operators of its projections?   (2) Given two Gaussian measures
p. on (77., T.), i = 1 and 2, how can one characterize the set of all joint Gaussian
measures having p. and p2 as projections?   (3) What are conditions for equiva-

lence of two joint Gaussian measures, given in terms of operators on 77j and HJ}
The answers to all three questions involve cross-covariance operators, and a
characterization of such operators is given.

Joint measures. A probability measure on (77j x 772> T^ x T2) will be called
a joint measure.  Suppose that pXY IS a joint measure; the projection px is the
probability measure on  (77 j, Tj) induced from pxy by the Tj x T2/T   measur-
able map ?., J.(x, y) = x.  Similarly, the projection py is the measure on
(772, r ) induced from pxy by the map i?2, $2(x, y) = y.  Note that there will, in
general, not be a unique joint measure having px and py as projections; the
notation pXY ls used to relate the joint measure to its (unique) projections.

A joint measure pXY is Gaussian if the probability distribution on the Borel

sets of the real line defined by

£P(tt-')[A] = íxxyí(x, y): [(x, y), (u, v)]eAj

is Gaussian for all (u, v) in 77j x 772«   / U,T   is clearly Gaussian for all (u, v)
in 77j x 772 if and only if the distribution ¡Pq   *   0n BIT? ] defined by

?[». »)[A x B] = pXY{ix, y): (x, u)j € A, (y, v>2 e B\

is Gaussian for all (u, v) in 77j x 772>
pXY will have a covariance operator J^XY and a mean mXY in 77   x 772 if
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JOINT MEASURES AND CROSS-COVARIANCE OPERATORS 275

<**) /HiXH2IIK*.y)!ll2<W*.y)<~;

this is always the case if ¡iXY ls Gaussian [9l.  We will assume that (**) is

satisfied for all joint measures considered in this paper.   This is consistent
with the assumptions for the measures on (H., V.), since if fixy is a joint
measure with projections nx and py, then

/•V*,!** V)IH2^XY^ v)= fHiXH2WH\+b\\22\^XYiu, v)

= fHih\\2d^xiu)+ fH^\\2duYM

so that fiXY satisfies (**) if and only if both p.x and py satisfy (*). Given a
joint measure Pyy» we will use R„ and m„ (resp., Ry and my) to denote the
covariance operator and mean element of the projection nx (resp., py).

Cross-covariance operators. Suppose ¡iXY is a joint measure satisfying
(**).  Define a functional G on H. x H   by

G(u, v) = JH xh   <x - mx, u)1<y - my, v)2 ¿pxy(x, y).

For fixed u (resp., v), G is a linear functional on H2 (resp., Wj).  Moreover,
|G(u, \)\   < HR^ullj ||Ry v||2, where Rx and Ry are the covariance operators of
¡jlx and Py   Hence, for fixed u, there exists by Riesz' theorem a unique element
q   in H2 such that G(u, v) = (q  , v)   for every v in H .  Similarly, for fixed

v £ H2 there exists a unique element g   e f/j such that G(u, v) = (g    u)j for
all u £ //j.  Define a map RXy: H2 —> Hl by Rxyv = 8»'  "xy *s single*valued,
by the fact that g   is unique.   Rxy is defined everywhere in H2, is clearly
linear, and is bounded since

IIR II2      ||„   II2 <gv' U)' |G(v, U)|2
llRXYVHl = Ml =   SUP    T^l~=    SUP       m   „2

ueHj     ||u||¿ ue«        ||u||<

Pfollj
«<H,    HI?

< sup—^IIRMl^llRxIKPvl^H2.

Clearly R£y: H{ —» W2 is defined by RXyu ■ <!„•  Thus G(u, v) = (Rxyv, u)j =
(v, RXyU)2 for all u in H. and v in H2.  We define Rxy = ^yX'   ^e °Perator
R»y will be called the cross-covariance operator of pxy.  A Pattia^ characteriza-
tion of the cross-covariance operator was given in [l] for the case where Rx and

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



276 C. R. BAKER

Ry areboth strictly positive, 77j = 772, and pXY was induced by a map from a
probability space into (77 x 77, T x T).  Here the characterization will be extended,
and without these restrictions. _

Let Px (resp., Py) be the projection operator mapping 77j onto range(Rx)

(resp., 772 onto range(Ry)), where range(R) denotes the closure of range(R).  We.
then have the following result.

Theorem 1. (A) If pxy is a joint measure with a covariance operator and
mean element, then the cross-covariance operator Rxy bas a representation as
RXY = Rx VRy, where V is a unique bounded linear operator such that V: 772 —»
771,||V||<l,a«a'V=PxVPy.

(B) If R: H2 —► 77j is a bounded linear operator of trace class, then there
exists a joint Gaussian measure pXY such that R is the cross-covariance opera-

tor of pXY.

Proof. (A) Let s be any fixed element in range(Ry), with z any element of
772 satisfying Ryz = s.  Define a linear functional /   on range(Rx) by

/s(RJ^u) = fH xh  (x - mx, o>!<y - my, z)2 dpXYix, y)

= (Rxyz, u)j,    allueTfj.

Since |/s(Kxu)| < ||s||2 HR^uHj, /   is bounded on range(Rx) and thus can be

extended by continuity to a bounded linear functional on range(Rx) (= P^ltfj]).
Note that the extension has norm < ||s||2.   By Riesz' theorem, there exists a
unique element h in Px^i^ sucn that /s(w) =("» w)i f°r ali w in Px^i^ an<*
llhUj < ||s||2.  Define a map V: 772 — 77j by V's = h.  Vis defined for all s in
range(Ry), is clearly linear and single-valued, and is bounded because  ||V s||j <
||s||2.   V can thus be extended by continuity to a bounded linear operator V de-

fined on Py[772]; note that Vs = PxVPys for s in Py[/72], ||V|| < 1, and /s(w) =
(Vs, w),.  We extend the domain of V to all of 77   by defining Vu = 0 for n in
(Py[772])x.   Thus, for any z in 772, for s ■ Ryz, and for any u in 77j, one has
/ (R^u) = (Rxyz, b>, = <VR*Z> R«n)lt so that Rxy = R^VR*, ||V|| < 1, and
V=pxVIV M    „

To see that V is unique, suppose that Rxy " °x ^y» Wita l^ll - * an<^
G = PxGPy. Then (V - G)Ryu = RJ*(V - G)R'^u = 0, all u e 772, so that Vu =
Gu, all u in Py[T72L  Since Vu = Gu = 0 for u 1 Py[772], V = G on 772.

(B) By the polar decomposition theorem, R = LT , where T: 772 —» 772,
T2 = (R*R)^, and U: 772 —♦ 77 is partially isometric, isometric on Pft^l and

zero on (PT[T72])X, with range(U) = range(R) (PT ■ the projection operator in H2
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with range equal to range(T)).  Since R is trace-class, T and UT are Hilbert-

Schmidt.  Further, TU* = W(UT2U*)H for a partially isometric W: Hx — H2, W
isometric on range(UT U ), and with range(W) C range(T) = range(R R).  Thus
R = UT2 = (UT2U*)MW*T.

Since T is selfadjoint and Hilbert-Schmidt, there exists a Gaussian measure
fiy on (H2j T.) with covariance operator T   and null mean element.  Define
V: H2 —» H2 as the identity map, and X: H2 —* flj by Xv = Uv.  X is T2/Tx
measurable as a continuous map, and thus induces from py a probability measure
fix on (//j, Tj), px(A) = py{f : Uv £ A}, A £ Tj.  p.x is Gaussian, with null mean
element and covariance operator Rx = UT U .

The map (X, Y): H2 — Hj x H2, (X, Y)(\) = (Uv, v), is T2/Tl x T2 mea-
surable, thus induces from py a measure uXY on (Hj x ff2, Tj x Tj), defined by
HXY(C) = py{«: (Uu, u) £ C}, C £ Tj x T2.   Moreover,

<Rxyu, v\ = fH xh  (x, v)1<y, u)2 dnXY(x, y)

= /„ <y. U*v)2<y, u>2 ¿py(y>

= (RyU*v, u)2    for all u in H2, v in /7j.

Hence Rxy = URy = UT   = R.   Finally, it is clear from the definitions that
fiXY is Gaussian.   This completes the proof.

Covariance operators for joint measures. Suppose that ¡iXY is a joint mea-
sure satisfying (**). We proceed to determine the relations between the covari-

ance operator and mean element of HXY, and the covariance operators and mean

elements of the projections ¡ix and py.

Proposition 1. Let ¡iXY be  a  joint measure such that
/„    H |||(u, v)|||   dp.XY(u, v)< ».   Let J^xy andmXY be the covariance operator

and mean element of pxy> and denote by Rx and mx (resp., Ry and my) the
covariance operator and mean element of the projection px (resp., py).   Then,
mXY ~ (mx> my)> and ^xy^u» v^= ^xu + "xyv> Ryv + Ryxu^ for a^ ^u» v^*n
Hj x H2.

Proof. It is clear that *»»xy = (mXt my)> for example,

(mx, u>! = JH <x, u^a^M

[(x, y), (u, 0)]duXYix, y) = Uxy, (u, 0)]./,H   m XH J
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278 C. R. BAKER

To describe the covariance operator 3lxy, we can assume that PXY has
mean element.  Then

[iRXY(u, v), (t, z)] =   f   ^ [(x, y), (u, v)][(x, y),(t,z)]d>xy(x, y)

= JH XH Kx, u>! +<y, v)2l{(x, t)j +(y, z)2i dpXY(x, y)

= <Rxu, t)j + <Rxyv, t)j + (Rxyz, u>! + <Ryz, v)2

= t(RxU + Rxyv» Ryv + Ryx")' ^' z^-

One thus sees that Rx, Ry and Rxy completely characterize ®XY-

Characterization of joint Gaussian measures. One can now characterize the
set of all Gaussian joint measures having given Gaussian measures px and pY
as projections.

Theorem 2. Suppose that px and pY are Gaussian measures on (77., T.)
and (772» T ), respectively.  Let Rx and mx (resp., Ry and my) denote the co-
variance operator and mean element of px (resp., py).

(A) A joint Gaussian measure p, having % as covariance operator and m as
mean element, has px and pY as projections if and only if m = (mx, my) and
K(u, v) = (Rxu + Rxyv, Ryv + Rxyn) for all (u, v) in 77j x 772, where Rxy =

RJ* VR^ for a bounded linear operator V: 772 -» 77 j with ||V|| < 1.
(B) Ler V be any bounded linear operator mapping H2 into H y with ||V|| <1.

Define an operator RXY'~ #2 —» 77 j fry Rxy = Rx VRy, and define ÍR: 77t x 772—♦
Tij x 772 by iR(u, v) = (Rxu + Rxyv, Ryv + Rxyu) for all (u, v) in 77j x 772#  91 is
then a covariance operator, and the Gaussian joint measure having 3v as covari-
ance operator and (mx, my) as mean element has px and py as projections.

Proof. (A) If /t is a joint Gaussian measure with projections px and py,
then the assertion on the form of ÍR and m follows from Proposition 1.

Conversely, suppose that p is a joint Gaussian measure with covariance
operator and mean element having the form given in the statement of (A).  Sup-
pose also that p has projections pz and pw, and that these measures have co-
variance operators Rz and R„, and mean elements mz and m^.   The projections
must be Gaussian and, by Proposition 1, m = (mz, m^,) and also Jv(u, v) =
(Rzu + RZVpV, R^v + RB,zu) for all (u, v) in 77j x 772, where Rz„, is the cross-
covariance operator of p.   It is clear that mx = mz and my = m^,.  Now let {u^j
be a c.o.n. set in H{; fot any u in H y one has that CR(u, 0), (ufe, 0)] =

<Rxu, u¿)1 =(Rzu, ufe)j for each ufe in UJ, so that Rx = Rz.  Similarly, Ry =
R^.  Hence, px = pz and py = p^, by the unique correspondence between a
Gaussian measure and its covariance operator and mean element.
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JOINT MEASURES AND CROSS-COVARIANCE OPERATORS 279

(B) It is sufficient to show that the operator 3\ is a covariance operator, with
3\ as defined in the theorem, and with V any bounded linear operator mapping H.
into Wj with ||V|| < 1.

It is straightforward to verify that £K is linear and selfadjoint; since % is
defined everywhere in H, x H2, % is also bounded, by the closed-graph theorem.
To see that 31 is nonnegative,

[3Uu, v), (u, v)] = (Rxu, u)j + (Ryv, v>2 + 2(Rxyv, u),

= ||R^||2 + ||Ryv||2 + 2<VR^,R^)1

> iirM + HRJH2 - 2«rJH.II*H
-(PJHli-P|Ml)2>o.

It remains to show that in is trace-class.   Let iun!> n = 1, 2, • • •, be c.o.n.
in Hj, and let {v }, n - 1, 2, •• •, be c.o.n. in H2.   Then the set {(u , 0), n =
1, 2, •••} u{(0, vn), b»1,2,«-! is c.o.n. in f/1 x H2, and

ZlÄ(v 0), (un, 0)] + £ [ÍR(0, vn),(0, Vf|)]
n n

" L<RxV U„>1 + Z <RyV v„)2 =TraceRx +TraceRy.
n n

Thus, % is a covariance operator, and by (A) the joint Gaussian measure having
9v as covariance operator and (mx, my) as mean element has p.x and py as
projections.

Corollary.  Let Jibe a bounded linear operator in H. x H2.   If there exist
bounded linear operators Rj, R2 and R,, with R,: //, —+ //,, R2: H2 —» r72, an¿
R,: f/2 —♦ //j, s«cA íAaj iR(u, v) = (RjU + R,v, R2v + RÎu) for all (u, v) in
H. x H2, then these operators are unique.

Proof. Follows directly from the second part of the proof of (A).

Further properties of the covariance operator. This section contains more
details on the covariance operator ®XY for a joint measure pxy.  Included is an
explicit expression for the square root of Jixy, and a description of spectral
properties of operators related to the cross-covariance operator.

The following result will be used in this and succeeding sections.

Lemma 1 [2]. Suppose that H is a real Hilbert space, and that R, and R2
are bounded linear operators, R, : H. —» H, R2: H2 —> H.   Let P,  (resp., P ) be

A. A.
the projection operator mapping //,  (resp., H2) onto range(Rj ) (resp., range(R2)).
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Then range(Rj) C range(R2) if and only if there exists a bounded linear operator
G: 7/j — 772 such that R. = R2G, G = P^Pj = GPj.  Moreover, ranged,) C
range(R2) if and only if there exists k < oo such that ||R*u||2 < k ||R*u||2 for all

u ¿b 77j.

Corollary, (a) Range(R,)C range(R2)» there exists a bounded linear
operator Q: 772 — 772 such that RjR* = R2QR*.

(b) Range(R.) = range(R2) «=»  there exists a bounded linear operator Q having

bounded inverse with (RjRj)    = (R2R2)   Q «=» there exists a bounded linear
operator T having bounded inverse with R,R, = (R2^2)   T(R2R2)   .

(c) (RjRj)   - RjA , where A is partially isometric, isometric on

range(Rj) and Au = 0 for u 1 range(Rj).

In many applications, such as determining equivalence of two joint Gaussian
measures, one must verify conditions involving the square root of a covariance
operator.  We now obtain an explicit representation for the square root of the co-
variance operator of a joint measure pXy

Let 9lX8y denote the covariance operator of px 0 py, the product measure
for px and py on (77, x 772, T. x T2). For px ® py, the cross-covariance opera-
tor is the null operator, so that

^X®y(u' v) = (Rxu> Ryv)-

Hence 5vx8y(u, v)= (Rxu, Ry v), and one can write íRxy as íRxy(u, v) =
(Rxu, Ryv)+ (Rxyv, Ryxu) = íRX(8y(u, v)+ (R^VR^v, R^V*RJ^u) (where
Rxy = R*VR*. V: 772 - 77,, ||V|| < 1)= Kx0y(u, v)+ iR«0yö»«8y(n, v), with
ö(u, v) = (Vv, V*u).  Ö is a selfadjoint bounded linear operator with |||ö||| =
||V||, as can be easily verified.

We have established the following result.

Proposition 2. %xy = 5^0 + 0]3$8y, and %*y = 9.*9y$ + ö]*ff*,
where G. ¿5 a partially isometric operator, isometric on range(fKxy), and zero on
the null space of 9lxy, and i is the identity operator in Hl x \~2'

The second part of this result follows from the corollary to Lemma 1, and

the fact that range(3vxy) = range(5\xy).
Note that Proposition 2 and Lemma 1 imply that range(ÍRxy)C range(3tx8y),

with equality if and only if 3 + Ö has bounded inverse.   This implies [8] that the
support of a joint Gaussian measure pxy is always contained in the support of
7*X ® /'y w*tn equality if and only if á + Ö is nonsingular on range(3vx   y).

The operators 9 + Ö and Ö, defined above, play an important role in the study
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JOINT MEASURES AND CROSS-COVARIANCE OPERATORS 281

of equivalence of joint Gaussian measures.  We proceed to examine the spectral
properties of these operators.  Recall that the set of limit points of the spectrum
of a selfadjoint bounded linear operator consists of all points of the continuous
spectrum, all limit points of the point spectrum, and all eigenvalues of infinite
multiplicity.   The identity operator in //, and the identity operator in H2 will
both be denoted by the symbol I; the appropriate space will be clear from the
context.

Theorem 3. (a) VV   has a c.o.n. (in H.) set of eigenvectors if and only if
V V has a c.o.n. (in HA) set of eigenvectors.

(b) ö(u, v) = A(u, v) « VV*u = A2u, V*Vv = A2v, and V*u = Av ~ D(u, - v)=
- A(u, - v). Ö has a c.o.n. set of eigenvectors if and only if VV   has a c.o.n.
set of eigenvectors.

(c) Ö is compact if and only if V is compact.
(d) á + 0 is compact if and only if both ffj and H2 are finite-dimensional

spaces.
(e) // there exists a scalar a< 1 such that ||V*u||2 < a ||u||2 for all u in

range(I - VV*), then i + Ö, I - V*V, and I - VV* each has closed range, and
á + o>[l-aH]áonrange(á + o).

(f ) a is a limit point of the spectrum of 9 + u if and only if 1 - (1 - a)   ¿s a
limit point of the spectrum of I - VV .

Proof, (a) Suppose VV*n   = A2u , with in | c.o.n. in H,. Define A v   =v " n        n   n' n 1 n n
V u   for all n such that A   ¡¿ 0.   Then V*Vv   = A v .  Now suppose that theren n n       n n rsr
exists v in H. such that (v, v ), = 0 for all v .   Then Vv is in the null space of2 b'2 n r
V , so that V Vv = 0.  Hence {v I U ¡null space of V V¡ contains a set that isn
c.o.n. in H2.   The converse follows by symmetry.

(b) ö(u, v) = A(u, v) « V*u = Av and Vv = Au « VV*u = A2u and Av = V*u «
VV*n = A2u and - A(- v) = V*u « 0(u, - v) = - A(u, - v).  If {(nn, v^J is a
complete set in tfj x //,, then (u j must be complete in //,, so that VV has a
complete set of eigenvectors if Ö has a complete set.  Conversely, if VV u =
A2u, define v by Av = V*u if A ¿ 0, and v = 0 if A = 0.  Then ö(u, v) = A(u, v).
If [(m, z), (u, v)] = 0 for all such eigenvectors (u, v), then (m.u), + (z, v)2 = 0
and also (m, u)j - (z, v)2 = 0 (by the first part of (b)), so that m = 0 if the
eigenvectors of VV   are complete in //,.  In this case, the eigenvectors of V V
are complete in H2, by (a), and the proof of (a) shows that the nonzero point
spectrum of V*V is identical to the nonzero point spectrum of VV ,  Thus, the
element z above must belong to the null space of V V.   If jx^} is c.o.n. in the
null space of V*V, the set 1(0, x )1 are eigenvectors of Ö corresponding to the
eigenvalue zero.   Hence, the union of this set with the eigenvectors {(u, v)i
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derived as above from the eigenvectors of VV  constitutes a complete set in
77j x 772.

(c) Follows directly from (b).
(d) From (b), 9 + Ö cannot have zero as the only limit point of its nonzero

eigenvalues, since À is an eigenvalue of 9 + u if and only if 2 - À is an eigen-
value.  3 + Ö is thus compact if and only if ranged + Ö) is finite-dimensional.

The above eigenvalue relation also shows that the dimension of the null space of
3 + Ö is equal to the multiplicity of the eigenvalue A = 2.   Hence, the dimension
of the range of 3 + Ö will be finite-dimensional if and only if 77, x 772  is finite-
dimensional.   This occurs if and only if both 77, and 77- are finite-dimensional.

(e) Suppose there exists a< 1 such that ||V*u||2 < a ||u||2 on range(I - VV*).

Then, W*< ai on ranged - VV*), V*V < ai on ranged - V*V), and hence

Ö   < ai on range(9 - Ü ).   If u is in range(9 - 0 ), the above inequalities yield

[(9 + ö)u, u] > (1 - aH) |||u|||2.   Suppose that u 1 range(9-ö2); then either

u 1 range(9 + Ö) or else (9 + ö)u = 2u.   Noting that the null space of 9 + Ö is

contained in the null space of 9 - Ö , one sees that 9 + Ö > (1 - a ^)9 on

range(9 + Ö).   This implies that 9 + Ö has closed range.   The fact that I - VV
and I — V V each has closed range follows from the preceding inequalities.

(f ) a is a limit point of the spectrum of 9 + U if and only if there exists a
normalized sequence (u , v ) in 77, x 77. which is weakly convergent to zero,
and such that |||(9 + 0 - aa)"nB, v^M — 0 [12]. (9 + 0 - aJ)(uB, vj — (0, 0)
if and only if (1 - a)u   + Vv   — 0, (1 - a)v   + V*u   — 0, and (1 - a)2u   -' n n ' n n n
VV un —» 0.   If ||uj| j is bounded away from zero, it is clear that 1 - (1 - a)2
is a limit point for I - VV , since ¡u  ! must be weakly convergent to zero.   Thus,

suppose that un   —»0 for some subsequence !u    !.   Then Vu     —»0 and
k t k k

hence v     —» 0; this contradicts the assumption that i(u , v )| is normalized inn, ' r n      n

Tfj x 772.  Hence, ||u ||, must be bounded away from zero, and thus 1 - (1 - a)

is a limit point for I - VV .
Conversely, suppose that iu ! is a normalized sequence in 77j, weakly

convergent to zero, with (1 - a) u   - VV u   —> 0.  Define positive scalars Ik j
by k2n = 1 + (1 - a)-2 ||V*un||2.  \k-Aun, (a- l)-1V*ufi)l is a normalized se-"
quence in 77, x 772, weakly convergent to zero, with

[9 + 0 - ad] C*;lu„, k~Ha - ir lV\) - (0, 0).

a is thus a limit point of 9 + Ü when 1 - (1 - a)2 is a limit point of I - VV .
This completes the proof of the theorem.

Equivalence of joint Gaussian measures. For two Gaussian measures on a
real and separable Hilbert space, necessary and sufficient conditions for equiva-
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lence (mutual absolute continuity) have been the subject of extensive investigations.

It is known that the two measures are either equivalent (denoted by ~) or orthog-
onal [3],  [6]; the necessary and sufficient conditions for equivalence can be
expressed in terms of the covariance operators and mean elements of the two
measures (see, e.g. [11, Theorem 5.l]> or [13]).  Since these results apply to any
two Gaussian measures on any real and separable Hubert space, they can be used
to determine equivalence or orthogonality of two joint Gaussian measures on
(H, x H2, T, x I-1,).   Our objective here is to formulate conditions for equivalence
in terms of operators and elements in the individual spaces //, and H2.

Throughout this section, we will consider two Gaussian joint measures, ¡iXY
and Hzw.  The cross-covariance operators will have the form Rxy = Rx VR^*

and Rzw = R^TR^, where V and T are linear, ||V|| < 1 and ||T|| < 1.  pxy has

mean <"xy = (mx. my)< and P-zw ^as mean mzw ~ ^mZ* mH^"  "e w*^ a^so assume

that range(íRXl8y) = range$ZISW) = W, x H2, where Sxg)y is the covariance
operator of px ® py, similarly ®ZaW for p_ ® p„,.   This is no restriction, for
the following reasons: (1) range(iRXy)C range$x®y)i as shown previously; (2)

conditions for equivalence of p.zw and pxy depend only on elements in, and

operators defined on, range(iRXy) and range(5\ZH,), by Lemma 2 below; (3)

px ® py 1 pz ® fiw if range(£RXl8y) A range(iRz8H,), as one can easily show, and

we will see that pxy 1 pZH, if px ® py 1 pz ® ¡iw, independently of the assump-

tion that range(JlX(8y) = rangeijR!^,,,) = tfj x H%.
The two lemmas below are fundamental to our results.

Lemma 2 [ll]. Suppose p, and (i- are two Gaussian measures on the Borel
o-field of a real and separable Hubert space H.   Let R. and mf be the covariance
operator and mean element of p..   Then p. ~ p2  if and only if

(a) mx - m2 is in the range of RJ*;
(b) R, = R2 + R^WR^, where W is a Hilbert-Schmidt operator that does not

have — 1 as an eigenvalue, and W is identically zero on the null space of R2«

This is simply a restatement of Rao-VaradarajanTheorem 5.1 [ll]» slightly

modified to allow for range(RÍ) ¿H.  The extension follows easily from Theorem
4.1 of [ll]» and the fact that the support of a zero-mean Gaussian measure is the

closure of the range of its covariance operator [8] (note that range(R2 ) =

range(R,)).  Since the values of W  on the null space of R2 do not affect the
values of R, = R2 + R^ W'R^ on H, it is clear that if one defines W by W = W
on range(R2), and W = 0 on range(R2)-L, then R, = R2 + R^ WR^.

Lemma 3. px ® py •%. pz ® fiw if and only if px ~ pz and py -v. pa,.
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Proof. Suppose px ~ pz and pY ~ pw.  Then

px ® py[A] = J Hpxh- (x, y) e A\dpy(y),

so that px ® /ty[A] = 0 if and only if px\x: (x, y) e A¡ = 0 a.e. dpy(y)
and py\y: (x, y) e A \ = 0 a.e. dpx(x).  It follows easily that fix ® /ty *o pz ® p™.
For the converse, one notes that px{B) = px ® /iy(B x 772).

We now examine the equivalence or singularity of the joint Gaussian mea-
sures pXY and pzw.   We have seen that $xy = ^x«y$ + ^^X®y anc* ̂ ZW =

K^®„,(á + 2)%'£m, where ö(u, v) = (Vv, V*u) and 3"(u, v) = (Tv, T*u).   If
range(Rx) = range(Rz) and range(Ry) = range(R^), then by Lemma 1 there exist
bounded linear operators B,: 77, —» 77, and B2: 772 —» 772 such that both B. and

B2 have bounded inverse, and Rz = RXB,, RjJ; ■ Ry B2.  We can then define an
operator % in 77, x 772 by S(u, v) = (B,u, B2v).  SB is linear, bounded, and has
bounded inverse.

Theorem 4. pxy ~ pzw if and only if
(a) px ~ pz and py ~ pw;
(b) there exists a Hilbert-Schmidt operator Î0 in 77, x 772 such that iß does

not have - 1 as an eigenvalue, and

9 + Ö = fB[9 + 3TS* + m + 31*0)0 + M*;
(c) mxy - mZB, belongs to the range of $x8y0 + 01   •

Remark. Note that condition (a) implies (Lemma 2) that the operator S (de-
fined above) exists and is linear, bounded, and has bounded inverse.

Proof. (A) Suppose pxy ~ f™-  Condition (a) is obviously satisfied since,

for example, px(A) = pxy(A x 77).   This implies (Lemma 3) that px ® py ~ pz ®

Py-, since 5\z«(y = ÍKx8yíBÍD 3iXÄy, the operator 9 - Süß   is Hilbert-Schmidt and
does not have +1 as an eigenvalue, by Lemma 2.

pxy ~ pzw also implies that 3\xy = 3izly(9 + K)fRz(y, where K is Hilbert-
Schmidt, K can be taken as zero on the null space of J\ZH,, and - 1 is not an

eigenvalue of K.   Hence $xy = 5\x^yiBu(9 + K)u % J*x®y, where Qâ  = 9 + J .

5(xy also can be written as iRxy = ^X(8y$ + ^)^x«y*   H6006

9 + ö = SBflfl*S* + SOK(î*S* = £BÖ + TB* + S[9 + TW + 31*8*
where ffl = 2) K5), 5) the partially isometric operator satisfying J*zw =
^8„,[9 + J]54®*, S = (9 + J)M3f.  Condition (b) is satisfied.

Finally, /zxy ~ pzw implies that mXy - mZH, belongs to range(9lxy).  Since

5lxy = 5^Xgy[9 + ö]^§*, § partially isometric and isometric on range(iRxy), one
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sees that «*xy - mzw ~ ^X®Y^ +    ^   m ^or some «n in tf j x H2.

(B) Suppose conditions (a), (b) and (c) are satisfied.  Condition (a) implies
the existence of the operator 55, ®z8>W - ^x^Y X®V    - Hilbert-
Schmidt, and 58$  having bounded inverse.  Assumption (b) then implies that

XY ~    ZW ~    ZW^^ZW wnere K = ÍDlÜíD ,3) partially isometric, isometric on

range(iRZB,) and zero on range(5vz„,) .   A is thus Hilbert-Schmidt, vanishes on
the null space of J^Zw, and does not have - 1 as an eigenvalue.  Assumption
(c) implies «nxy ~ mzw m ranSe(^Xy)» by Proposition 2.  Conditions (a), (b) and
(c) thus imply pxy ~ V-zw by Lemma 2, and the theorem is proved.

The necessary and sufficient conditions given in Theorem 4 are completely
general.  However, they are stated in terms of operators in H. x H2, whereas one
might prefer conditions given in terms of operators in H. and in H2.   The next
result gives such conditions for equivalence for a wide class of joint Gaussian
measures.

Theorem 5. Suppose that ||V x||2 < a ||x||   for all x in range(I - VV ), some

a< 1.   Then pxy ~ pzw if and only if
(a) px ~ pz and py <\, p^ ;
(b) V-BjTB* is Hilbert-Schmidt;
(c) there exists a finite and strictly positive scalar A such that

ABj(I - TT*)B* < I - VV* < A" ̂ (I - TT*)B*

and
AB2(I - T*T)B* < I - V*V < A"lBJJ - T*T)B*;

(d) there exist elements u in ffj and v in H2 such that mx - mz = Rx(u + Vv)
and my - m^, = Ry(v + V u).

Proof. (A) Suppose pxy ~ P-ZW  Condition (a) is necessary, from Theorem
4, and implies that 9-5833    is Hilbert-Schmidt.  Condition (b) is then implied by
condition (b) of Theorem 4.   To see that (c) holds, one notes that range(5lxy) ■
range(iRZH,) implies the existence of strictly positive and finite scalars /3j and

ß2 such that ßy&zw - ^xy - r^2   ZW> ̂ rom Lemma I«  This is equivalent to
ßx%(i + J)S8*< i + ö < ß2%($ + 3")»*, which is equivalent to ranged + 3")SB*]*) =
range [(á + ö)5* ].  This implies that the null space of I - VV* is identical to the
null space of B}(I - TT*)Bj and that the null space of I - V V is identical to
the null space of B2(I - T T)B2#   The assumption that ||V x||2 is bounded away
from ||x|| j for x in range(I - VV*) implies, by Theorem 3, that i + Ö, I - V*V,

and I — VV   each has closed range.   Hence, (9 + Ö)    has closed range, and
ranged + Ö) = range(58[á + J]SB*), so that range(5B0 + J]SB*) is closed.   This
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implies that the range spaces of B,[I - TT ]B, and B [I - T T]B* are closed,
so that ranged - VV*) = range B,[I - TT*]B,  and ranged - V*V) =
range B2U - T T]B2 . Since these range spaces are all closed, condition (c) follows.

Finally, pxy ~ pzw implies that <nXY - mZw belongs to the range of 3?xy,

so that mxy — "izw = 9vx gy[9 + U] !m for some m in 77, x 772.   This implies

condition (d), since range([9 + Ö]   ) = range(9 + Ö).
(B) Suppose conditions (a)—(d) are satisfied,   (a) implies that   ^X&Y =

•*¿®W Z®W' wnere * ~ ■"•"   has bounded inverse.   The assumption that
||V*x||2 < a ||x||, for all x in ranged - VV*), some a< 1, implies that I - VV*,
I - V V, and 9 + Ü have closed range.   Condition (c) then implies

range[B,d - TT*)B*] = ranged - VV*) and ranged - V*V) = ranged^* - T*T]B*),
so that range(S[9 + 318*) = range(9 + Ö).   Since range([9 + 0]^) is closed, this
implies that range([9 + Ö]*) = range([8(9 + J)®*]^2), so that by Lemma 1 there

exist finite and strictly positive scalars ß., ß2 such that

/S,8[9 + 318* < 9 + Ö < /328[9 + 318*.
This is equivalent to j8,i?ZH, < Rxy < ß2^zw wnich implies range(9lxy) =
tange(%zw).   Thus, there exists a bounded linear operator A such that A = 0 on
the null space of ^zw, with ®XY = azh,[9 + ^*^ZH" an{* ^ + A is bounded away

from zero on tangeÇKzw).
One now has

UÜ = W + J)8* + SÖKÖ*S*
where Q.&* = 9 + J, or 9 - %%* + 0 - 83"8* = 8(2X0*8*.  Since 8 has bounded
inverse, and 9 - 88   is Hilbert-Schmidt, condition (b) implies that 8.K8.   is
Hilbert-Schmidt.   The null space of a contains the null space of ji-ZWt so that

range(K) C tange(%zw).   But 9%w = &*^zm, so that range(K) C tange(8*1   The

assumption that ||Vu||2 is bounded away from ||u||, for u in ranged - V V), and

condition (c), imply that fflflfti, v)|||2 > It |||(u, v)||| for all (u, v) in rangeflPfl)
and some k > 0.   Moreover, range(3 Ö) = range[(ö*ö)^] = range((2 ).  Hence if
i(u , v )j is a c.o.n. set in range(u(i ), then

Z l||ÖK(5*(un, vn)|||2 > k £ |||Kfi*(v vn)|||2 > k2 Z ll|K(v vn)|||2,
n n »

so that a is Hilbert-Schmidt and does not have - 1 as an eigenvalue (the latter

because 9 + a is invertible).
Finally, it is easy to show that condition (d) implies mxy - *"Zjy belongs
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to the range of 5\xy.   This concludes the proof.
In the case where pZH, = px§y, a simple and general condition for equivalence

can be given.

Theorem 6. P-xy ̂  Px ® Py '/ an<^ on^ '/ II ̂11 < ^ an^ ^ is Hilbert-Schmidt.

Proof. íRxy = íR^gytá + öliR^gy.   From Theorem 3, Ö is Hilbert-Schmidt if
and only if V is Hilbert-Schmidt, and U has - 1 as an eigenvalue if and only if
VV  has + 1 as an eigenvalue.   If V is Hilbert-Schmidt, ||V|| = 1 if and only if
VV  has 1 as an eigenvalue, since the set of limit points of the spectrum of a
selfadjoint compact operator contains only zero.   The result follows from Lemma 2.

Corollary. Pxy *" ̂ ZW ^
(a) px ~ pz and py ~ uw;
(b) ||V|| <1 and\ is Hilbert-Schmidt;
(c) ||T|| <l andT is Hilbert-Schmidt.

Proof, (b) implies pxy ~ px ® py, (c) implies pZ(y ~ pz ® pw, and (a)

implies px ® Py ~ pz ® pw.
We give an example of two equivalent joint Gaussian measures which sat-

isfy neither condition (b) nor condition (c) of the corollary.  Suppose that px ~ pz,
and let W be any bounded linear operator mapping H. —* H2.  Define py by

py[ß] = ux\x: Wx £ B] for B £ T2, and define pw by pw\P\ = uz\x: Wx £ B\.
Also define pxy and pZM, by

HXY[C] = px{x: (x, Wx) £ C!,      C £ Tj x r2,

p-zw^ = Mzix: (*• **) e c'-

Then pxy ~ Pzw, and both pxy and pZH, are Gaussian if px and pz are

Gaussian.  However, Rxy = R*UR* (Ry = WRXW*, and Rxy = RXW*), where U
is a partially isometric map of H2 into // , similarly, RZH, = Rz SR^, where S
is a partial isometry of H2 into f/j.   Thus ||U|| = ||S|| = 1, and neither U nor S is
Hilbert-Schmidt if range(Ry) is infinite dimensional.

From the proof of the corollary, it is clear that pxy i uzw if (b) or (c) (but
not both (b) and (c)) of the corollary is satisfied.

Applications to information theory. The average mutual information (AMI) of

a joint measure pxy is defined as

JdpXY                             dpXY "I
H   XH     1-(U' V) 1<>g     1-Z-(U' V)    ^X ® PV^' V)H1XH2¿PX®PY L^X®^ J
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if ptxy « px ® pY, and equal to + oo otherwise.   For Gaussian pXY, AMI(pxy)
is clearly finite if and only if pxy ~ px ® py.   The most comprehensive results
on AMI are due to Gel fand and Yaglom [5].   In [l], necessary and sufficient con-
ditions for AMI(ftxy) to be finite, stated in terms of covariance operators, were
obtained for pxy Gaussian, and 77, = 772.   That result was an extension of the

work of Gel fand and Yaglom. Theorem 6 gives necessary and sufficient condi-
tions for AMl(pXY) to be finite without requiring 77, = 772, provided pXY is
Gaussian, and is independent of the results of Gel fand and Yaglom.

Our final result is of interest in information theory applications.   Let 77, =

77, = 77, r, = I"1, = I-1, and consider the measure f*y_x defined by /iy_x^) =
pxy\(x, y): y - x 6 A] (this is a well-defined Gaussian measure, since /(u, v) =
v — u is a continuous linear map from (77 x 77, T x T) to (77, Y1)).   In information
theory applications, PY_X represents "noise", px "signal" and pY "signal-
plus-noise".  Typically, these measures are induced by measurable mean-square
continuous stochastic processes, with   77, = 772 = 77 = L2[0, T\ tot some finite T.
Of interest is the AMl(pXY) (the "average information about the signal obtained
by observing signal-plus-noise") and the equivalence or orthogonality of pY and
fty_x.   For, if AUl(pXY) < 00, one might intuitively expect that i*y_x ~ Py' an(^
conversely, since pY 1 pY_x allows one to discriminate perfectly between noise
and signal-plus-noise.   It is known that pY_x ~ pY does not imply AMI(fixy)<
00 [7], [l].   In the case where px_y X ~ T'y-X ® ^X» Hájek [7] has shown that
AMIfy¿xy)< 00 if and only if pY and My_x are strongly equivalent; i.e., Ry_x =

Ry[I + W]Ry, where W is trace-class and does not have - 1 as an eigenvalue.
The significance of strong equivalence is partly because one can then explicitly
express the Radon-Nikodym derivative in series form [7], [ill.   In the following,
we show that not only is strong equivalence of pY_x and pY not equivalent to

pXY ~ px ® pY when PY_X x ¡¿ í*y_x ® Mx» ̂ ut also that pXY ~ px ® pY does
not even imply that pY_x ~ pY-

Theorem 7. If pxy ~ px ® py, and ||mx|| = ||my|| = 0, then pY_x ~ V-y '/
a«a* only if Rx = R^QR* forQ Hilbert-Schmidt.

Proof. Define fiy0X by P-YQXiA) = Px ® MyHx, y): y - x e A}, A € I\  Note
that pXY ~ px ® pY =» pY_x ~ fiyOX'

Suppose first that pY_x ~ Pyi then pY ~ PyQX' an<^ ̂ y *" PyQx ""* ̂ y0X~
Ry + RyQRy, Q Hilbert-Schmidt, - 1 not an eigenvalue of Q.   But Ry@x =
Ry + Rx; hence Rx = Ry'QRy2, where Q is Hilbert-Schmidt.

Conversely, suppose Rx = RyQRy, Q Hilbert-Schmidt.   Then Pyqx ~ pY,
since Q is nonnegative.   Hence pY ~ fy_x-

As an example where pXY ~ px ® pY but /¿y_x 1 pY, one can take any co-
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variance operator Ry such that ||Ry|| < 1, and define Rx = Ry, Rxy = Ry   .
Then the Gaussian joint measure pxy having px and py as projections and

Ry     as cross-covariance operator is equivalent to px ® py.   However, py_xl

Py by Theorem 7, since Rx = Ry IRy.
Although the result of Hájek quoted above does not hold when Py_x x /=

Py-x ® Px* 'lt ls true tnat if ^y - ^y-x' t^iea Pxy "" Px ® Py ^ Py-x ls
strongly equivalent to py [l].

These results indicate that the concept of mutual information is not com-
pletely satisfactory, since one may be able to discriminate perfectly between px
and PY_x while having only a finite value of AMI(pxy), or AMI(pxy) can be
infinite while it is impossible to discriminate perfectly between px and Py_x.
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