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ABSTRACT. Let H i (resp., H 2) be a real and separable Hilbert space
with Borel field I'; (resp., I‘z), and let (H, x H), Ty x I’z) be the product
measurable space generated by the measurable rectangles. This paper
develops relations between probability measures on (H, x Hz, P, x L), i.e.,
joint measures, and the projections of such measures on (H 1 l‘l) and (Hz, l‘z).
In particular, the class of all joint Gaussian measures having two specified
Gaussian measures as projections is characterized, and conditions ate ob~
tained for two joint Gaussian measures to be mutually absolutely continuous.

The cross-covariance operator of a joint measure plays a major role in these
results and these operators are characterized.

Introduction. Let H, (resp., H 2) be a real and separable Hilbert space with
inner product (, *), (cesp., (-, +),) and Borel o-field I (Gesp., Fz). Let Fl x l"2
denote the o-field generated by the measurable rectangles Ax B, A €'}, B € Fz.
Define H; x H, = f(u, v): u in Hy, vin H2¥. H, x H2 is a real linear space, with
addition and scalar multiplication defined by (u, v) + (2, y) = (u + z, v+ y) and
k(u, v) = (ku, kv). H, x H, is a separable Hilbert space under the inner product
[+, -1 defined by [(u, v), (t, )] = (u, t); + (v, 2),; moreover, the open sets under
the norm obtained from this inner product generate I'; x I, f10]. Lee |-,
(esp., || * ||,) denote the norm in H, (tesp., H,) obtained from the inner product,
and let | « | denote the norm in H, x H, obtained from the inner product. A
probability measure on (H, x H,, I, xT',) will be called a joint measure.

A probability measure g on (H,, I') (i =1 or 2) that satisfies

) inllxll 24y (x) < s

defines an operator Ri in H; and a mean element m_ of H, by

(m;, u); = in("’ u), dp{x)
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274 C. R. BAKER

and

(Riu, v), = in(x - m,, u)(x - m, v).dyu(x);

Ri is a covariance operator; i.e., it is linear, bounded, nonnegative, selfadjoint,
and trace~class. p, is Gaussian if the probability distribution on the Borel sets
of the real line induced from p, by every bounded linear functional on Hi is
Gaussian. If p, is Gaussian, (x) is satisfied; moreover, to every covariance
operator R and element m in H; there corresponds a unique Gaussian measure
[9]. All measufes on (H,» Fl.) considered in this paper are probability measures
that satisfy (*).

We are interested in determining relations between joint measures and their
projections on (H Fi ). In particular, the following questions are answeted:
(1) What is the relation between the covariance operator of a joint measure and
the covatiance operators of its projections? (2) Given two Gaussian measures
p,on (H, I"l.), i=1 and 2, how can one characterize the set of all joint Gaussian
measures having y; and p, as projections? (3) What are conditions for equivas
lence of two joint Gaussian measures, given in terms of operators on H, and Hz?
The answers to all three questions involve cross-covariance operators, and a
characterization of such operators is given.

Joint measures. A probability measure on (H, x H,,I') xT",) will be called
a joint measure. Suppose that ., is a joint measure; the projection py is the
probability measure on (H,,T",) induced from g, \, by the I', x ", /T'| measur-
able map P 1 ? & y)=X. Snmla.tly, the projection g, is the measute on
(H,» Fz) mduced from p. ., by the map ? P (x, y)=1y. Note that there will, in
general, not be a unique joint measure havmg py and g, as projections; the
notation fly, is used to relate the joint measure to its (unique) projections.

A joint measure jy, is Gaussian if the probability distribution on the Borel

sets of the real line defined by

PE AT = py ilx, y): (x4 y), (n, V] € A}

is Gaussian for all (u, v) in H X H Plase) is clearly Gaussian for all (u, v)
in H, x H, if and only if the d1stnbuuon ?(“" ) on BIR?] defined by

P I[A x Bl = pypllx, ) (x, u); €4, {y, v), € B}

is Gaussian for all (u, v)in H; x H,.
pxy Will have a covariance operator yXY and a mean my, in H, x H, if
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JOINT MEASURES AND CROSS-COVARIANCE OPERATORS 275
() S e, W06 92 iy 3) <

this is always the case if py, is Gaussian [9]. We will assume that (x*) is
satisfied for all joint measures consideted in this paper. This is consistent
with the assumptions for the measures on (H ;s Fi)’ since if p, . is a joint
measure with projections py and g, then

f,,lx,,z liCa, V|2 dpy g, v) = f"f‘"z tull? + Iv)2 ity Cuy v)

= f,,l Hull? dpug (w) + f"z IViI2 dpy(v)

so that p , satisfies (x+) if and only if both p, and Iy satisfy (+). Given a
joint measure py,,, we will use Rx and m, (resp., RY and m, ) to denote the
covariance operator and mean element of the projection py (resp., #Y)-

Cross-covariance operators. Suppose Bxy is a joint measure satisfying
(**). Define a functional G on H x H, by

Glu, v) = fHIXHZ (x ~ my, u)(y — my, v), dpyy(x, y).

For fixed u (resp., v), G is a linear functional on H, (tesp., H ) Moreover,
(GG, v)? < ||R’§u|l1 “R%vuz, where R, and R, are the covanance operators of
pyx and .. Hence, for fixed u, there exists by Rxesz theorem a unique element
q, in H, such that G(u, v) = (q“, v)2 for every v in H,. Similarly, for fixed

v € H, thete exists a unique element g € H, such that G, v) = (8, u), for
allu € H,. Define amap Ry, :H, — H by Ry v=g. Ry, is single-valued,
by the fact that g_ is unique. RXY is defined everywhere in H,, is clearly
linear, and is bounded since

®y W Gy, w)|?
"ny"“% = ||8,,||f = sup ——— = sup 16tv, w)|*

wey [ullf  weny  Jull}
IRl ,
< sup —— |Rpvil; < IRy ll; IRy [l Nivll2-
uEHl I“”l

Clearly RXY H, — H, is defined by RXY" =q,. Thus G(u, v)= (Ryyvs )y =
(v, XY“>2 for all u in H and v in H,. We defme RXY = RYX The operator
RXY will be called the cross-covarzance operator of {1y . A partial characteriza-

tion of the cross-covariance operator was given in [1] for the case where Ry and
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276 C. R. BAKER

Ry areboth strictly positive, H, = H,, and pyy, was induced by a map from a
probability space into (H x H,I" xI'). Here the characterization will be extended,
and without these restrictions.

Let Py (cesp., Py) be the projection operator mapping H, onto range(R,)
(cesp., H, onto range(Ry)), where range(R) denotes the closure of range(R). We.
then have the following result.

Theorem 1. (A) If py is a joint measure with a covariance operator and
mean element, then the cross-covariance operator RXY bas a representation as
Ryy= R;é VR%, where V is a unique bounded linear operator such that V: H, —
H, VI<1,and V=P, VP,

(B) If R: H, = H, is a bounded linear operator of trace class, then there
exists a joint Gaussian measure fy Such that R is the cross-covariance opera~

tor of pyye

Proof. (A) Let s be any fixed element in range(RY), with z any element of
H, satisfying R%z =s. Define a linear functional f, on range(R ) by

[’(R;’éu) = letz(x -_ mX' u>1<y - mys Z)Z dﬂxy(xv y)
= (RXYZ’ “)1’ all m€ Hy.

Since I/S(R;Eu)[ < sl “R;’gu“l, {, is bounded on range(R?) and thus can be
extended by continuity to a bounded linear functional on range(R,) (= PX[HI])'
Note that the extension has norm < [sf,. By Riesz’ theorem, there exists a
unique element h in PX[H1] such that fs(w) =(h, W)l for all w in PX[H1] and
Ihfl, < Isll,- Define a map V': H, — H, by V's = h. V'is defined for all s in
range(R;f), is clearly linear and smgle-valued and is bounded because [[V's|l; <
Isll,- V' can thus be extended by continuity to a bounded linear operator V de-
fined on Py[H,]; note that Vs = P, VP sfors in Py (1,1, [Vl <1, and f (W)=
(Vs, W) We extend the domain of V to all of H, by defmmg Vu=0for uin
Py [H DY, Thus, for any 2z in H2 for s = Réz, and for any u in H,, one has

f, (H ..) (Ryyz, u), =(VR%z, R%u) , so that R, = REVRY, ||V|| <1, and
V= P VP,

To see that V is unique, suppose that Rxy = R% GR%, with ||G|| <1 and
G=P,GP,. Then (V-G)R,u=R (V G)R%n 0 all u € H,, so that Vu =
Gu,allum P [H 1. since Vu-—Gu—OfotulP [H 1, V= GonH

(B) By the polar decomposition theorem, R UTZ, where T H,—H,,
T? = R*R)%, and U: H, — H, is partially isometric, isometric on P [H Tand
zero on (PT[HZ])l, with range(U) = range(R) (P_. = the projection operator in H,
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JOINT MEASURES AND CROSS-COVARIANCE OPERATORS 27

with range equal to range(T)). Since R is trace~class, T and UT are Hilbert-
Schmidt. Further, TU*= WUT2U*)% for a partially isometric W: H, — H,, W
isometric on range(UT?U*), and with range(W) C range(T) = range(®"R). Thus
R = UT? = (UT?U*%W*T.,

Since T is selfadjoint and Hilbert-Schmidt, there exists a Gaussian measure

py on (H,, ') with covariance operator T? and null mean element. Define
Y: H, — H, as the identity map, and X: H, — H, by Xv = Uv. XisT,/T,
measurable as a continuous map, and thus induces from py a probability measure
px on (Hy, I), uy(4) = y.Y{v: UveA}l,Ae F1' By is Gaussian, with null mean
element and covariance operator Ry = UT2U*,

The map (X, Y): H, = H; x H,, (X, Y)(V)= (Uv, v), is T', /T’y xT"; mea-
surable, thus induces from g, a measure gy y on (H; x H,, I"; xT',), defined by
Pxy(C) = yY{u: Uu,u)eC}, Ce Fl xT",. Moreover,

(ny“v V)l = fH IXH2<x’ V)1()'9 “)2 dl‘xy(xq y)

= fH ()'q U*v)z(y'r u)z d[ly(y)'
2

= <RYU*V, u)2 for all u in H,, v in Hy.

Hence Ry, = UR, =UT? = R, Finally, it is clear from the definitions that
pxy is Gaussian. This completes the proof.

Covariance operators for joint measures. Suppose that py, is 2 joint mea-
sure satisfying (*+). We proceed to determine the relations between the covari-
ance operator and mean element of Bxy» and the covariance operators and mean

elements of the projections py and f,.

Proposition 1. Let pyy be a joint measure such that
letzlll(u, vl dpyy(u, v)< oo, Let E(XY and my, be the covariance operator

and mean element of iy and denote by Ry and my (resp., Ry, and m,,) the
covariance operator and mean element of the projection py (resp., py). Then,
myy = (my, my), and mxy(u, v)= Ryu + Ry v, Ryv + Ry u) for all (u, v) in
H, x H 2

Proof. It is clear that my, = (my, my); for example,
my, u)y = (x, u), dpy (x)
(ma w0y = fy e u)y e

= letz[(x’ ¥)s (0, 0dptyy(x, y) = [myy» (u, O).
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278 C. R. BAKER

To describe the covariance operator ﬁxw we can assume that p,, has
mean element. Then

Ryplw v, &, 2= [

"1"”2[(’(’ y), (a, VI, y), ¢, 2)ldpyy(x, y)

= fHIXHZi(x, u); +(y, V1K ) +(ys 205} duyy(x, y)
_ Ry, t), + Ryyws ), + Rz, w), + (Ryz, v,
= [Ryu + nyv; Ryv + Ryxu), (4, 2)1.
One thus sees that Ry, R, and Ry, completely characterize foy.

Characterization of joint Gaussian measures. One can now characterize the
set of all Gaussian joint measures having given Gaussian measures p and g,
as projections.

Theorem 2. Suppose that py and p, are Gaussian measures on (H,T'))
and (Hys I',), respectively. Let Ry and my (resp., Ry, and m ) denote the co-
variance operator and mean element of py (resp., pry).

(A) A joint Gaussian measure yt, baving R as covariance operator and m as
mean element, bhas py and p,, as projections if and only if m = (my, m,) and
R, v) = Ryu + nyv, Ryv + R;Yu) for all (u, v) in H, x H,, where RXY =
R;g VR? for a bounded linear operator V: H, — H, with fivi<1.

(B) Let V be any bounded linear operator mapping H, into H,, with v <1.
Define an operator Ry 2 H, = H by R, = R;’g VR?, and define R: H, x H,—
Hyx H, by R, v)= ®yu + R, v, R v+ R} u) forall w,v)in Hy x H,. R is
then a covariance operator, and the Gaussian joint measure baving R as covari-
ance operator and (my, m,) as mean element has p, and p,, as projections.

Proof. (A) If i is a joint Gaussian measure with projections p, and g,
then the assertion on the form of R and m follows from Proposition 1.
Conversely, suppose that y is a joint Gaussian measure with covariance
operator and mean element having the form given in the statement of (A). Sup-
pose also that p has projections p, and i, and that these measures have co-
variance operators R, and RW and mean elements m, and my,. The projections
must be Gaussian and, by Proposition 1, m = (m,, my,) and also R, v) =
Rzu + Ry v, Ryv+ Ry u) for all (u, v) in H, x H,, where R, is the cross-
covariance operator of pt. It is clear that my =m, andm, =m_ . Now let fnn}
be a c.0.n. set in H,; for any u in H|, one has that R, 0), (uk, 0)] =
(qu, uk)l =(Rzu, uk)l for each u, in {unl, so that Rx = RZ‘ Similarly, RY =
Ry. Hence, py = M5 and p,, = g, by the unique correspondence between a

Gaussian measure and its covariance operator and mean element.
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JOINT MEASURES AND CROSS-COVARIANCE OPERATORS 279

(B) It is sufficient to show that the operator R is a covariance operator, with
R as defined in the theorem, and with V any bounded linear operator mapping H,
into H, with | V|| < 1.

It is straightforward to verify that R is linear and selfadjoint; since R is
defined everywhere in H; x H,, R is also bounded, by the closed-graph theorem,
To see that R is nonnegative,

R, v), (0, V] = (Ryu, u); + (Ryv, v), + ARy v, u);
= IRKull} + [RYv))Z + 20VRYv, R¥w),
> [RZull} + IRYVIZ - 2IRZull, RG],
- (Rull, - IR > 0.
It remains to show that R is trace-class. Let {unl, n=1,2,+44+, be c.o.0.

in Hy,and let {v _},n=1,2,+++, be c.o.n. in H,. Then the set (, 0), n=
1,2,---30{0, v ), n=1,2,-+} is c.on. in H, x H,, and

2R, 0), @, 0] + ¥ RO, v,) (0, v.)]
= Z(qun, u )+ > <RYvn’ v,), =Trace Ry +TraceR,.

Thus, R is a covariance operator, and by (A) the joint Gaussian measure having
R as covariance operator and (my, m,) as mean element has py and p,, as

projections.

Corollary. Let R be a bounded linear operator in H, x H,. If there exist
bounded linear operators R, R, and R3, with Ri:H, - H,,R,: H, > H,, and
RS: H, — H,, such that R, v) = (Rlu + R3v, sz + R’;u) for all (u, v) in
H, x H,, then these operators are unique.

Proof. Follows directly from the second part of the proof of (A).

Further properties of the covariance operator. This section contains more
details on the covariance operator “RXY for a joint measure pyy. Included is an
explicit expression for the square root of ﬂxy, and a description of spectral
properties of operators related to the cross-covariance operator.

The following result will be used in this and succeeding sections.

Lemma 1 [2]. Suppose that H is a real Hilbert space, and that R} and R,
are bounded linear operators, R;: H) — H,R,: H, = H. Let P (resp., P,) be
the projection operator mapping H, (resp., Hz) onto range(Rl ) (resp., range(Rz)).
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280 C. R. BAKER

Then range(R,)C range(Rz) if and only if there exists a bounded linear operator
G: Hl - Hz such that Rl = RZG’ G= PZGPI = GPI. Moreover, range(Rl)C
range(R,) if and only if there exists k < = such that ||RTu[|2 <k [lR;u"z for all
uin H,.

Corollary. (2) Range(R,)C range(R )= there exists a bounded linear
operator Q: H, — H, such that Rl L= R QR*.

®) Range(R )= range(Rz) = there exists a bounded linear operator Q having
bounded inverse with (R )A (R R )%Q <> there exists a bounded linear
operator T baving bounded inverse wztb RIR (R )A T(R )’i

©) R, R*)% R, A*, where A is partially isometric, isometric on
range(Rl) and Au =0 /or ul range(Rl).

In many applications, such as determining equivalence of two joint Gaussian
measures, one must verify conditions involving the square root of a covariance
operator. We now obtain an explicit representation for the square root of the co-
variance operator of a joint measure fiy y-

Let mx@y denote the covariance operator of p, @ py,, the product measure
for py and gy on (H, x H ), ') xT',). For py ® p, the cross-covariance opera-
tor is the null operator, so that

RX@Y(“' v) = (Ryu, RYV).

Hence RX@Y(“’ v)= (Rx u, R v) and one can write ﬂxy as mxy(u v) =
Ryu, RYv) + Ry ypv, Ryyu) = '(RX®Y(“’ v)+ (R% VRAV R%V*R%u) (where
RXY = R%VR% V: H,—H,, Vi< = RX@Y(“’ v)+ ‘(RXQYORX®Y(“’ v), with
O, v) = (Vv, V*u). 0 is a selfadjoint bounded linear operator with O[] =
V], as can be easily verified.

We have established the following result.

Proposition 2. me = ﬁxm,[g + mfRX@y, and .‘ny = X®Y[§ + O @*,
where @ is a partially isometric operator, isometric on tangeiﬁxy), and zero on
the null space of foy, and § is the identity operator in H; x Hy.

The second part of this result follows from the corollary to Lemma 1, and

the fact that range(ﬁxy) = tange(mxy)

Note that Proposition 2 and Lemma 1 imply that range(foy) C ranged{x‘gy),
with equality if and only if 4 + O has bounded inverse. This implies [8] that the
support of a joint Gaussian measure iy, is always contained in the support of
iy ® py with equality if and only if 4+ 0 is nonsingular on tange(ﬂ;ﬁ v

The operators 9+ 0 and 0, defined above, play an important role in the study
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JOINT MEASURES AND CROSS-COVARIANCE OPERATORS 281

of equivalence of joint Gaussian measures. We proceed to examine the spectral
properties of these operators. Recall that the set of limit points of the spectrum
of a selfadjoint bounded linear operator consists of all points of the continuous
spectrum, all limit points of the point spectrum, and all eigenvalues of infinite
multiplicity. The identity operator in H; and the identity operator in H, will
both be denoted by the symbol I; the appropriate space will be clear from the
context.

Theorem 3. (a) VV* bas a c.o.n. (in H,) set of eigenvectors if and only if
V*V bas a c.oun. (in H,) set of eigenvectors.

®) O, v)= A, v) = VV¥ = A%, V¥Vy = )tzv, and Viu=Av = O, - v)=
~Mu, - v). O bas a c.o.n. set of eigenvectors if and only if VV* bas a c.omn.
set of eigenvectors.

(c) O is compact if and only if V is compact.

() 9+ 0 is compact if and only if both H, and H, are finite-dimensional
spaces.

(e) If there exists a scalar a.< 1 such that [V¥u]|2< a [|u||f for allu in
range(l - VV*), then §+ O, 1= V¥V, and 1~ VV* each bas closed range, and
§+0>01-a%)onranged + O).

(f) ais a limit point of the spectrum of $+ O if and only if 1 - (1 - a) isa
limit point of the spectrum of 1- VV*,

Proof. (a) Suppose VV* u, -)\zu o With {u_} c.o.n. in H. Define A v =
V*u for all n such that A # 0 Then V*Vv = sz . Now suppose that there
ex1sts v in H, such that (v v ) = 0 for all v n Then Vv is in the null space of
V¥, so that V Vv =0, Hence {v }uinull space of V*V} contains a set that is
c.o.n. in H,. The converse follows by symmetry.

) G(u, v)=Am, v) = Vu=Avand Vv=An = VV'a=AZuand Av= Vu =
VWi =A% and - M= v) = VVu = D, - v) = = A(u, - v). If {(u sV $isa
complete set in H, x H,, then {u_} must be complete in H,, so that VV has a
complete set of exgenvectors if U has a complete set. Conversely, if VvV -
A%u, define vby Av=V*uif A£0,and v=0ifA=0. Then O(u, v)= Ay, v).

If [(m, ), (u, v)] = O for all such eigenvectors (u, v), then {m, u), + +(z, v)2 =0
and also (m, u); —(z, v), = 0 (by the first part of (b)), so that m = 0 if the
eigenvectors of VV* are complete in H,. In this case, the eigenvectors of V¥V
are complete in H,, by (a), and the proof of (a) shows that the nonzero point
spectrum of V*V is identical to the nonzero point spectrum of VV*, Thus, the
element z above must belong to the null space of V*V. If {x } is c.o.n. in the
null space of V*V, the set {(0, xn)} are eigenvectors of U corresponding to the
eigenvalue zero. Hence, the union of this set with the eigenvectors {(u, v)}
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282 C. R. BAKER

derived as above from the eigenvectors of YV constitutes a complete set in
H, x H,.

(c) Follows directly from (b).

(d) From (b), § + O cannot have zero as the only limit point of its nonzero
eigenvalues, since A is an eigenvalue of §+ O if and only if 2 - A is an eigen-
value. §+ 0 is thus compact if and only if range(g +0) is finite-dimensional.
The above eigenvalue relation also shows that the dimension of the null space of
4+0 is equal to the multiplicity of the eigenvalue A = 2, Hence, the dimension
of the range of §+ 0 will be finite-dimensional if and only if H, x H, is finite-
dimensional. This occurs if and only if both H, and H, are finite~dimensional.

(e) Suppose there exists a< 1 such that ||V*u]|§ <a “u"f on range(I - VV¥),
Then, YV*< al on range( - VV¥), V*V < al on range(l - V¥V), and hence
0? < ad on range@ = 0%). If u is in range(g - Uz), the above inequalities yield
[(g + O)u, u]Z a- CL%)
ulrange@+ O)or else ¢ + D)u = 2u. Noting that the null space of §+ 0 is

lull?. Suppose that u L range( - 07%); then either

contained in the null space of §- 02, one sees that §+ 0 >~ a’)§ on
range( + O). This implies that § + U has closed range. The fact that - VV*
and I = V¥V each has closed range follows from the preceding inequalities.

(f) ais a limit point of the spectrum of § + U if and only if there exists a
normalized sequence (u , v )in H, x H, which is weakly convergent to zero,
and such that |6+ O-af) , v )l =0 [12]. ¢+ 0-ah ,v ) —(0,0)
ifand only if (1 ~a)u_+Vv =0, (1 -a)v_+Vu —0,and (1 -a)u_-
VV*un -0, If llunll1 is bounded away from zero, it is clear that 1 — (1 — a)?
is a limit point for I - VV*, since fu_} must be weakly convergent to zero. Thus,
suppose that u”,e — 0 for some subsequence {u_ }. Then V*unk ~ 0 and
hence v, — 0; this contradicts the assumption that {(u_, v )} is normalized in
H, x H,. Hence, [u_||, must be bounded away from zero, and thus 1 - (1 - a)?
is a limit point for I - VV*,

Conversely, suppose that {u } is a normalized sequence in H,, weakly
convergent to zero, with (1 - a)znn - VV*un — 0. Define positive scalars {k}
by krzn =1+(- a)-z HV*“,,";- {k;l(“n, (a- 1)-1"*“,,)} is a normalized se-

quence in H, x H,, weakly convergent to zero, with
-1 -1 - 1y* -
B+0-aflk 1, k7@~ 1)~V ) — (0, 0),

a is thus a limit point of § + O when 1- (1- a)? is a limit point of I- VV*,
This completes the proof of the theorem.

Equivalence of joint Gaussian measures. For two Gaussian measures on a
real and separable Hilbert space, necessary and sufficient conditions for equiva-
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JOINT MEASURES AND CROSS-COVARIANCE OPERATORS 283

lence (mutual absolute continuity) have been the subject of extensive investigations.
It is known that the two measures are either equivalent (denoted by ~) or orthog-
onal [3], [6]; the necessary and sufficient conditions for equivalence can be
expressed in terms of the covariance operators and mean elements of the two
measures (see, e.g. [11, Theorem 5.1], or [13]). Since these results apply to any
two Gaussian measures on any real and separable Hilbert space, they can be used
to determine equivalence or orthogonality of two joint Gaussian measures on
(Hy xHy, T’y xT",). Our objective here is to formulate conditions for equivalence
in terms of operators and elements in the individual spaces H, and H,.
Throughout this section, we will consider two Gaussian 1omt measures, [y
and p, .. The cross-covariance operators will have the form Ry, = R% VRA
and R, = R” TRW , where V and T are linear, [V < 1and |T| <1, py has

mean my = (mx, mY), and p, ., has mean m,,, = (mz, mw). We will also assume

that range(RXQY) = range(ﬂzgw) =H, x H,, where RX®Y is the covariance
operator of iy ® fty, similarly R for by, ® }LW‘ This is no restriction, for
the following reasons: (1) range(mxy) c range(-‘RXQY), as shown previously; (2)

conditions for equivalence of p,y and piy,, depend only on elements in, and

operators defined on, range(ﬂ;fy) and range(ﬂ?w), by Lemma 2 below; (3)

by ® py Lp, @ py if range(ﬁ(;fm,) £ range(mlggw), as one can easily show, and
we will see that py\ Ly if py ® py Lp, ® py, independently of the assump-
tion that range(ﬁ?sy) = tange(ﬂlé@w) =H xH,.

The two lemmas below are fundamental to our results.,

Lemma 2 [11). Suppose py and p, are two Gaussian measures on the Borel
o-field of a real and separable Hilbert space H. Let R and m; be the covariance
operator and mean element of ko Then p, ~p, if and only z/

(@) my -m, is in the range of R

(b) Rl = R + RAWRA, where W is a Hilbert-Schmidt operator that does not
bave -1 as an ezgenvalue, and W is identically zero on the null space of Rz’

This is simply a restatement of Rao-Varadarajan Theorem 5.1 [11], slightly

modified to allow for range(R?) #£H. The extension follows easily from Theorem
4.1 of [11], and the fact that the support of a zero-mean Gaussian measure is the

closure of the range of its covariance operator [8] (note that range(R!;) =

range(R,)). Since the values of W' on the null space of R, do not affect the
values of R =R, + R%W RA on H, it is clear that if one defmes Wby W-W'

on range(Rz), and W=0o0n range(Rz) , then Rl = Rz + R? WR;.

Lemma 3. yy ®p, ~ py @ py if and only if py ~ py and py ~ py.
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Proof. Suppose py ~ p, and g, ~ py. Then
iy ® pylAl= [ pix: (x, y) € Aldpy(y),

so that p, ® . [A1= 0 if and only if pylx: (x, y) € A} = Oa.e. dp,(y)
and pY{y: (x,y) € A} = O a.e. dpr,(x). It follows easily that g, Ony ~ ity ® py.
For the converse, one notes that py(B) = py ® By(B x H,).

We now examine the equivalence or singularity of the joint Gaussian mea-
sutes [iyy and pzw- We have seen that ﬁxy = “R;?@Y(g + O)R%OY and "RZW =
Tg@W(g + 3')5{124,8“,, where O(u, v) = (Vv, V*u) and T (u, v) = (Tv, T ). I
tange(R;é) = range(R’Z5 )and tange(R?) = range(R;’vi), then by Lemma 1 there exist
bounded linear operators B;: H; — H, and B,: H, — H, such that both B, and
B, have bounded inverse, and R? = R%Bl, R&é = R¥ B,. We can then define an
operator BinH 1 % H 2 by %(u, V)= (Blu, Bzv). Bis linear, bounded, and has
bounded inverse.

Theorem 4. py\ ~ pyy if and only if
(@) py ~ py and py ~ py;
(b) there exists a Hilbert-Schmidt operator U in H, x H, such that 0 does

not have ~ 1 as an eigenvalue, and

g+ 0 = Bl + TI1B* + BMY + TIOU + T1%Bx;

(c) my, —~m,,, belongs to the range of ﬂ;ay[g + 014,

Remark. Note that condition (a) implies (Lemma 2) that the operator B (de-
fined above) exists and is linear, bounded, and has bounded inverse.

Proof. (A) Suppose jtyy ~ py. Condition (a) is obviously satisfied since,
for example, py(A) = py (A x H). This implies (Lemma 3) that p, ® pty, ~ 1, ®
Ky since Rz@W = R;’?@Y@ﬁ*g{; ®y» the operator § - BB* is Hilbert-Schmidt and
does not have + 1 as an eigenvalue, by Lemma 2.

Bxy ~ Bzy also implies that RXY = fR;W(g + K)ﬁ;w, where K is Hilbert-
Schmidt, K can be taken as zero on the null space of mZW’ and -1 is not an
eigenvalue of X. Hence RXY = fR%QY%@(g + K)@*fB*ﬂ;?gey, where &@*= 4+9.

"RXY also can be written as ﬁxy = 5{;’3@),(5 + (\))ﬂ;‘m{. Hence

§+0 = BAQ*B* + BAKA*B* = B + T1B* + Bl + TIHR[ + T1%B*

where O = D*KD, D the partially isometric operator satisfying g;w =
RE oyl + TVAD*, @ = @ + T)4D*. Condition (b) is satisfied.
Finally, gty ~ i implies that my , —m o, belongs to range(.‘R?Y). Since

5(;’31, = R;?@Y[Q + O]%Q*, G partially isometric and isometric on range(fRXY), one
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sees that myy —mypy = .‘R;@Y[g + O]%m for some m in Hl X HZ'

(B) Suppose conditions (a), (b) and (c) are satisfied. Condition (a) implies
the existence of the operator B, mzew = 91;? ®Y$ $*“R)5?®Y’ 4 - BB* Hilbere-
Schmidt, and B B* having bounded inverse. Assumption (b) then implies that
SRXY - '(RZW = ng m;w, where K = D09*, 9 partially isometric, isometric on
range(ﬂzw) and zero on range(fsz)‘L. X is thus Hilbert-Schmidt, vanishes on
the null space of fsz, and does not have — 1 as an eigenvalue. Assumption
(c) implies my, ~m g in range(ﬁ;éy), by Proposition 2. Conditions (a), (b) and
(c) thus imply pyy ~ pt 74, by Lemma 2, and the theorem is proved.

The necessary and sufficient conditions given in Theorem 4 are completely
general. However, they are stated in terms of operators in H; x H,, whereas one
might prefer conditions given in terms of operators in H, and in H,. The next
result gives such conditions for equivalence for a wide class of joint Gaussian

measures.

Theorem 5. Suppose that ||V*x||2 <alxll, for all x in W, some
a<1l. Then pyy ~ Py if and only if

(a) Uy ~ hz and By ~ Py

®b) V- BITB; is Hilbert-Schmidt;

(c) there exists a finite and strictly positive scalar A such that

AB, (- TT*)B} < I-VV#< A~ 1Bl(l - TT*)B}
and

AB,(I - T*T)B% <1 - V*V < A~1B,(I - T*T)BY;

(d) there exist elements u in H, and v in H,, such that my —~m, = R;é(u + Vv)
and my, - my, = Rlé(v + V),

Proof. (A) Suppose pyy ~ pyyy- Condition (a) is necessary, from Theorem
4, and implies that § —= 88" is Hilbert-Schmidt. Condition (b) is then implied by
condition (b) of Theorem 4. To see that (c) holds, one notes that tange(ﬁ;é(y) =
tange(‘ﬁgw) implies the existence of strictly positive and finite scalars 3, and
B, such that Blg{zw < SRXY < Bzﬂzw, from Lemma 1. This is equivalent to
3133(9 +HB*<4+0< 3253(9 + J)B*, which is equivalént to range((B@ + HB*1%) =
rangel@ + 0)#]. This implies that the null space of I- VV* is identical to the
null space of Bl(l - TT*)B’; and that the null space of 1 - V*V is identical to
the null space of B,(I - T*T)B. The assumption that IlV*x||2 is bounded away
from |x||, for x in range(l - VV*) implies, by Theorem 3, that §+ 0, I - V*V,
and I- VV* each has closed range. Hence, (§ + 0)* has closed range, and
range( + 0) = range (B4 + T18*), so that range(Bl + F1 B*) is closed. This

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



286 C. R. BAKER

implies that the range spaces of B, [l - TT*]B* and B, [I- T*T]B* are closed,
so that range(I ~ VV*) = range B, [I TT ]B and range(l v* V)—
rangeB M- T*T]B* Since these range spaces are all closed, condition (¢) follows.

Finally, fiyy ~ pt7y implies that my ,, —m,, belongs to the range of fo v
so that myy ~m,, = '(Rx oyl + 01 for some m in H, x H,. This implies
condition (d), since range([§ + 01%) = range® + O).

(B) Suppose conditions (a)-(d) are satisfied. (a) implies that "RXGY =
ﬂ;QWfB%*fR/ ow» Where 4~ BB* has bounded inverse. The assumption that
[|V*x||2 < a x|, for all x in range(l - VV*), some a< 1, implies that I~ VV*,
I- V*V, and 9+ 0 have closed range. Condition (c) then implies
range[B, (I - TT*)B]] = range(I - VV*) and range(l - V*V) = range(Bz[I* - T*T]B’; )
so that range(Bl4 + T18*) = ranged + O). Since range([§ + OF%) is closed, this
implies that range(d + 01%) = range(IBA + T)B*1%), so that by Lemma 1 there
exist finite and strictly positive scalars B, 8, such that

B,BIS + T1B* <9, U< 8,800 + T1B*.

This is equivalent to $,R,y < Ryy < B,Rzy, which implies range(‘ﬂfgy) =
range(.(RléW). Thus, there exists a bounded linear operator K such that K=0on
the null space of sz, with (RXY = 5{1/ [g + K]-(Rléw, and § + K is bounded away
from zero on range(mzw).

One now has

§+0 =80+ B* + BAKE*B*

where @@*=9 + F,0r 8- BB*+ U-BTB* = BAXKA@*B*. Since B has bounded
inverse, and § ~ BB* is Hilbert-Schmidt, condition (b) implies that RXQ®* is
Hilbert-Schmidt. The null space of K contains the null space of ?zw, so that
range(X) C tange(ﬁzw). But fk‘é &*ﬁéQW’ so that range(X) C range(@*). The
assumption that |[Vul}, is bounded away from [juf|, for u in range(I - V*V), and
condition (¢), imply that [|@(u, V)||% > k [l(u, V)|| for all (u, v) in range(@*®)

and some k> 0. Moreover, tange(@*@) = tange[(aw = range(é ). Hence if

t,, v, is a c.o.n. set in range(@ @), then

3 @K@, v )12 2 & 3 K@, v I 2 £ T 1K, v,

so that X is Hilbert-Schmidt and does not have ~ 1 as an eigenvalue (the latter
because § + K is invertible).
Finally, it is easy to show that condition (d) implies my, ~ m,g, belongs
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to the range of R;A( y+ This concludes the proof.
In the case where .,y = ity gy, @ Simple and general condition for equivalence
can be given.

Theorem 6. py\ ~ uy ® py if and only if [[V|| <1 and V is Hilbert-Schmidt.

Proof. "RXY = .‘R;? m,[ﬁ + Gl fR? @y+ From Theorem 3, 0O is Hilbert-Schmidt if
and only if V is Hilbert-Schmidt, and O has — 1 as an eigenvalue if and only if
VV*has + | as an eigenvalue. If V is Hilbert-Schmidt, | V] = 1 if and only if
VV*has 1 as an eigenvalue, since the set of limit points of the spectrum of a

selfadjoint compact operator contains only zero. The result follows from Lemma 2.

Corollary. pyy ~ pyp if
@) py ~ py and py, ~ py;
®) |Vl <1 and V is Hilbert-Schmidt;
() Tl <1 and T is Hilbert-Schmid.

Proof. (b) implies py, ~ py ® py, (c) implies p,y ~ py ® py, and (a)
implies py ® py ~ iy ® py-

We give an example of two equivalent joint Gaussian measures which sat-
isfy neither condition (b) nor condition (c) of the corollary. Suppose that py ~ p,
and let W be any bounded linear operator mapping H, — H,. Define p, by
pylBl = pyix: Wx € Bl for B € T",, and define py by pwlBl = p ix: Wx € B,

Also define pyy and pyy by

pxylCl= pylx: (x, W) eCl, CelyxTy,
l‘zw[C] = ﬂz{x: (X, Wx) € C}

Then pyy ~ pyy, and both gy and p,y are Gaussian if gy and p, are
i -RZURY% R, =WR,W*, and R, = R, W* U

Gaussian. However, Ry, = RZURG (R, =WR, W', and Ry, = R, W"), where
is a partially isometric map of H, into H,, similarly, R, = R; SR;?, where §
is a partial isometry of H, into H,. Thus 1O = [IS)t = 1, and neither U nor S is
Hilbert-Schmidt if range(Ry) is infinite dimensional.

From the proof of the corollary, it is clear that py, 1 p, . if (b) or (c) (bue
not both (b) and (c)) of the corollary is satisfied.

Applications to information theory. The average mutual information (AMI) of
a joint measure py is defined as
ap

d
XY v log [—-—F)—(L—-(llo V)] dpy ® pylu, v)

AMI(# )=
XY fHIXHZ dﬂx ] 1y dl‘x ®py
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if pyy << pyx ® py, and equal to + o otherwise. For Gaussian pyy, AMI(uyy)
is clearly finite if and only if pyy ~ gty ® pty. The most comprehensive results
on AMI are due to Gel 'fand and Yaglom [5]. In [1], necessary and sufficient con-
ditions for AMI(uy ) to be finite, stated in terms of covariance operators, were
obtained for py, Gaussian,and H, = H,. That result was an extension of the

work of Gel'fand and Yaglom. Theorem 6 gives necessary and sufficient condi-
tions for AMI(zyy) to be finite without requiring H, = H,, provided pyy is
Gaussian, and is independent of the results of Gel'fand and Yaglom.

Our final result is of interest in information theory applications. Let H, =
H,=H,T", =T, =T, and consider the measure py_y defined by pr,,_x(A) =
By Y{(x, y): y — x € A} (this is a well-defined Gaussian measure, since f(u, v) =
v —u is a continuous linear map from (H x H, " x ") to (#,T")). In information
theory applications, gy, _y represents ‘‘noise’’, py ‘‘signal”’ and p, *‘signal-
plus-noise”. Typically, these measures are induced by measurable mean-square
continuous stochastic processes, with H, =H,=H= LZ[O’ T1 for some finite T.
Of interest is the AMI(iy ) (the “*average information about the signal obtained
by observing signal-plus-noise’’) and the equivalence or orthogonality of p, and
By._xe For, if AMI(uy )< o, one might intuitively expect that py,_y ~ fty, and
conversely, since py, Ly, _, allows one to discriminate perfectly between noise
and signal-plus-noise. It is known that py,_, ~ py, does not imply AMI(iy ) <
oo [7], [1]. In the case where Bx_y.x =Py.x ® bx» Hdjek [7] has shown that
AMI(sy ) < oo if and only if py and gy, _y are strongly equivalent; i.e., Ry_x =
R%[I + W]R%, where W is trace-class and does not have — 1 as an eigenvalue,
The significance of strong equivalence is partly because one can then explicitly
express the Radon-Nikodym derivative in series form [7], [11]. In the following,
we show that not only is strong equivalence of g, _, and gy not equivalent to
Bxy ~ Hx ® By When py_y » # 1y _x ® [y, but also that pyy ~ py ® py does
not even imply that g, ~ piy.

Theorem 7. If pyy ~ piy ® pys and [myll = fmy [l = 0, then py,_x ~ py if
and only if Ry = R%QR? for Q Hilbert-Schmidt,

Proof. Define p gy by nygx(4) =y ® p A, y):y-x €A}, A €T, Note
that pyy ~ by ® By = By_x ™~ kyox-

Suppose first that py,_y ~ ity then gy ~ pyoy, and py ~ pygy = Rygy=
R, + R? QR%, Q Hilbert-Schmidt, ~ 1 not an eigenvalue of Q. But RYGX =
Ry + Ry hence R, = R;A( QR%, where  is Hilbert-Schmidt.

Conversely, suppose R, = R;‘ QR%, Q Hilbert-Schmidt. Then pygy ~ Ly,
since Q is nonnegative. Hence py ~ pty .

As an example where gy ~ 1y ® iy but py, o 1 py, one can take any co-
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variance operator Ry, such that [[R,[| <1, and define R, =R, Ry, = R?/z.
Then the Gaussian joint measure py, having gty and p,, as projections and

R%,/ 2 as cross-covariance operator is equivalent to g, ® py. However, py_xl
py by Theorem 7, since R, = R?IB%.

Although the result of Hdjek quoted above does not hold when p,, _ XX #
By_x ® By, it is true that if Ry, >R, ., then pyy ~py ® py =, o is
strongly equivalent to g, 1L

These results indicate that the concept of mutual information is not com=
pletely satisfactory, since one may be able to discriminate perfectly between gy
and py_ while having only a finite value of AMI(iy ), or AMI(py ) can be
infinite while it is impossible to discriminate perfectly between iy and py_ -
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