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RESEARCH ARTICLE
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Abstract
Obese women exhibit decreased fertility, highmiscarriage rates and dysfunctional corpus

luteum (CL), but molecular mechanisms are poorly defined. We hypothesized that weight

gain induces alterations in CL gene expression. RNA sequencing was used to identify

changes in the CL transcriptome in the vervet monkey (Chlorocebus aethiops) during weight

gain. 10 months of high-fat, high-fructose diet (HFHF) resulted in a 20%weight gain for HFHF

animals vs. 2% for controls (p = 0.03) and a 66% increase in percent fat mass for HFHF

group. Ovulation was confirmed at baseline and after intervention in all animals. CL were col-

lected on luteal day 7–9 based on follicular phase estradiol peak. 432 mRNAs and 9miRNAs

were differentially expressed in response to HFHF diet. Specifically, miR-28, miR-26, and let-

7b previously shown to inhibit sex steroid production in human granulosa cells, were up-regu-

lated. Using integrated miRNA and gene expression analysis, we demonstrated changes in

52 coordinately regulated mRNA targets corresponding to opposite changes in miRNA. Spe-

cifically, 2 targets of miR-28 and 10 targets of miR-26 were down-regulated, including genes

linked to follicular development, steroidogenesis, granulosa cell proliferation and survival. To

the best of our knowledge, this is the first report of dietary-induced responses of the ovulating

ovary to developing adiposity. The observed HFHF diet-induced changes were consistent

with development of a dysfunctional CL and provide newmechanistic insights for decreased

sex steroid production characteristic of obese women. MiRNAsmay represent novel biomark-

ers of obesity-related subfertility and potential new avenues for therapeutic intervention.
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Introduction
Over 300 million adult women are classified as obese worldwide [1]. Female obesity is fre-
quently associated with ovulatory and menstrual dysfunction [2], increased congenital anoma-
lies [3], as well as iatrogenic [4] and spontaneous preterm birth [5]. Adiposity exerts a harmful
impact on reproductive function even if ovulatory capacity is preserved. Obese women with
spontaneous and regular ovulation demonstrate increased pregnancy loss [6, 7], longer time to
pregnancy [8], and decreased fertility [9]. Maternal obesity is also an independent risk factor
for fetal origin of adult disease, including obesity and metabolic disorders in offspring [10].
Mechanisms for obesity-linked reproductive dysfunction may hold the key to avoiding its
transgenerational impact and have considerable public health implications.

Obese women exhibit a state of relative hypogonadotropic hypogonadism [11–14]. Both
pituitary and ovarian markers are affected as evidenced by reduced output of luteinizing hor-
mone (LH) and luteal progesterone [13, 15]. In a large-scale evaluation of daily hormone pat-
terns from ovulatory cycles, obese women exhibited greater than 50% decrease in luteal
progesterone output and a 30% reduction in LH, when compared to their normal weight coun-
terparts [16]. This implies that the ovary undergoes additional dysfunction in excess of that
occurring at the hypothalamus and pituitary, yet molecular mechanisms remain unclear.

MicroRNAs (miRNAs) are non-coding RNAs that function post-transcriptionally [17] and
are estimated to regulate up to 30% of all protein-coding genes [18]. In 2008, impairment of
miRNA processing was demonstrated as a cause of corpus luteum (CL) insufficiency and infer-
tility in mice [19]. Several more recent studies have shown that miRNA-mediated control of
mRNA transcripts is critical for ovarian function [20–22]. Because of the diversity of miRNA
targeting, identification of functionally important mRNA targets is crucial for recognizing tis-
sue-specific roles for miRNAs [23]. Several miRNAs regulate ovarian sex steroid synthesis in
vitro [24]. The role of miRNAs in mediating effects of adiposity on CL function has not been
explored.

The vervet monkey (Chlorocebus aethiops sabaeus) is an Old World, nonhuman primate of
the same subfamily as macaques. Adult females have an average intermenstrual interval of 30
days and exhibit cyclic hormonal changes that mimic women [25–28]. In a fully pedigreed and
genotyped vervet research colony (VRC) of over 400 animals [29], vervets developed obesity
and its associated metabolic profile in a manner very similar to humans [30]. Thus, the VRC
represents a source of a potentially highly translatable primate model to elucidate the impact of
obesity on various target organs, including the reproductive axis. We hypothesized that there
are alterations in vervet CL gene expression that occur due to adiposity. MiRNA and mRNA
differential expression patterns were compared between monkeys receiving either a high-fat,
high-fructose (HFHF) or control diets.

We have documented changes in the CL gene expression in response to diet-induced weight
gain. To the best of our knowledge, this is the first report of dietary-induced responses of the
ovulating ovary to developing adiposity. Use of a menstrual non-human primate species
allowed us to apply invasive investigative tools that cannot be practically used in humans.
Thus, our work bridges a knowledge gap by addressing potential underlying molecular mecha-
nisms for effects of obesity on ovarian function.

Materials and Methods

Animal Handling, Morphometrics and Urine collection
Ten adult female vervet monkeys (Chlorocebus aethiops sabaeus) were selected randomly from
the middle of distribution of body mass from the Vervet Research Colony at the Wake Forest
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Primate Center (WFRC, Winston-Salem, NC). Monkeys were pair-housed at Wake Forest
School of Medicine Primate Center / Center for Comparative Medicine and Research/ Fried-
berg Campus (Winston-Salem, NC). Monkeys were housed indoors in a climate controlled,
temperature and humidity monitored room/building. The caging was USDA approved, steel
Quad cages constructed of mesh flooring, removable dividers to allow horizontal movement
between the two cages for each pair of monkeys, and a pan underneath to collect excrement
and other waste. Monkeys were exposed to artificial lighting in a 12 hour, light-dark cycle from
6am to 6pm, with additional ambient light via windows in the hallway external to their housing
room. Monkeys had ad-libitum access to water through water lixits and were fed 120kcal of
experimental diet /kg of body weight once per day, as detailed in SI Materials and Methods. In
addition, feeding and foraging opportunities were provided 3–4 times per week (fresh fruits &
vegetables, popcorn, sunflower seeds). For environmental enrichment, all cages were equipped
with perches inside and hanging mirrors and puzzle feeders on the outside of the cage. The
WFRC Friedberg Campus is an AAALAC-accredited facility and all housing is AAALAC-and
FDA approved. All monkeys were within the normal weight range for this species and were
sexually mature with a mean age of 6.8 years (Table 1) as detailed further in SI Materials and
Methods. This study was carried out in strict accordance with the recommendations in the
Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and
approved by the WFRC Animal Care and Use Committee. All policies and procedures were

Table 1. Biometric and Metabolic Characteristics Before and After Dietary Intervention*.

Variable Control Diet (n = 4) HFHF Diet (n = 6)

Age (years) Baseline 7.8 (1.2) 6.2 (0.9)

Body weight (kg) Baseline 5.1 (0.5) 0.72 4.4 (0.2) 0.72

10 months 5.3 (0.4) 0.72 5.2 (0.2) 0.02

Percent change 2.4 (4.1) 19.6 (7.0) 0.03

Waist circumference (cm) Baseline 28.9 (2.4) 0.72 25.4 (1.1)

10 months 29.0 (1.3) 0.93 30.0 (1.2) 0.03

Percent change 1.9 (6.0) 19.0 (6.6) 0.20

Total Body Fat Mass (g) Baseline 999.4 (179.4) 0. 682.6 (83.2)

10 months 1160.4 (129.3) 0.27 1310.8 (183.6) 0.02

Percent change 23.1 (17.1) 105.5 (40.5) 0.07

Percentage Body Fat Baseline 19.1 (2.2) 0.72 15.1 (1.3)

10 months 21.5 (1.0) 0.39 24.3 (2.7) 0.02

Percent change 16.7(12.0) 65.9 (22.3)0.11

Triglycerides (mg/dL) Baseline 51.3 (3.9) 0.72 33.8 (1.6)

10 months 36.0 (4.5) 0.09 68.0 (25.7) 0.03

Percent change -27.6 (12.1) 104.2 (78.5) 0.01

Total cholesterol (mg/dL) Baseline 168.3 (6.1) 0.72 151.2 (10.0)

10 months 163.0 (7.7) 0.67 158.2 (11.1) 0.42

Percent change -2.5 (6.8) 5.1 (4.8) 0.39

Total Adiponectin (ng/mL) Baseline 49,602 (4931) 0.72 57,548 (5568) 0.72

10 months 46,445 (6179) 0.68 46,166 (6841) 0.13

Percent change -4.4 (14.6) -19.3 (11.8) 0.44

Values indicate mean (standard error of mean). HFHF, High fat high fructose

* Superscripts are P values for within the group comparisons for 10 month values (vs. baseline) and for between the group comparisons for percent

change values (control vs. HFHF diet)

doi:10.1371/journal.pone.0135163.t001
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done in compliance with state and federal laws, and regulations and guidelines established by
the WFRC Animal Care and Use Committee (Protocol number A10-093). Wake Forest Uni-
versity is accredited by the Association for Assessment and Accreditation of Laboratory Ani-
mal Care (AAALAC: Assurance number A3391-01). No adverse events occurred. After the
study, all animals were examined and released back into the colony.

Serum and Urine Analytes and Assays
The urinary excretion of sex steroids closely corresponds to the serum concentrations of the
parent hormones [31]. Urine was assayed for estrone conjugates (E1c) and pregnanediol glucu-
ronide (Pdg) using previously described methods [32], as detailed further in SI Materials and
Methods (S2 Table).

Luteectomy
In order to time the luteal phase, serum estradiol levels were measured daily from menstrual
cycle day 7 during the luteectomy cycle. The first day of low serum estradiol (defined as values
less than 100 pg/ml [33]) after the midcycle estradiol peak was denoted day 1 of the luteal
phase [27]. Luteectomies were performed twice on all monkeys, at baseline and after dietary
intervention. A laparotomy approach was used to collect CL tissue on luteal day 7–9 as detailed
further in SI Materials and Methods (S1 Fig).

Dietary Intervention
At baseline, the monkeys were fed a commercial non-human primate diet (Purina Monkey
Chow) once daily in the afternoon. After completion of the baseline procedures, monkeys were
randomly assigned to either adipogenic HFHF diet (n = 6), similar to that used for previous
studies in baboons [34] and cynomolgus monkeys [35] or a control diet (n = 4) (Table 2) as
detailed further in SI Materials and Methods (S1 Table).

RNA isolation, Library Preparation, and Sequencing
CL total RNA was extracted using TRIzol method followed by purification using MirVana
RNA Isolation Kit (Ambion) as detailed further in SI Materials and Methods.

Computational Analysis and Quality Control. mRNA profiling
All sequence reads were trimmed to an overall quality score of Q15 [36], and any sequences
that were trimmed to less than 75bp were subsequently removed, as detailed further in SI Mate-
rials and Methods (S4 Table).

Table 2. Composition of Control and High Fat High Fructose (HFHF) Experimental Diets.

Diet Caloric Density Protein (% Kcal) Carbohydrate (% Kcal) Simple sugars (% Kcal) Fat (% Kcal) Fiber (% of diet)

Control 2.3† 17.6 57 11 26 12.8

HFHF 2.7† 17.1 45 30 38 10.5

Drink 0.60* 0 100 100 0 0

Monkeys were fed 120 Kcal of diet / kg of body weight per day plus 10% to account for waste. Simple sugars were derived from sucrose (3% for both

diets) and high fructose corn syrup (HFCS; 2.4% for control and 10% for HFHF). In addition to the diet, monkeys in the HFHF group were given daily

access to a Kool-Aid drink containing 15ml of HFCS / 100ml of water, providing 150–250 additional Kcal per day.
† Kcal/g of diet

* Kcal/ml

doi:10.1371/journal.pone.0135163.t002

Diet-Induced Changes in Vervet Corpus Luteum Transcriptome

PLOSONE | DOI:10.1371/journal.pone.0135163 August 10, 2015 4 / 19



miRNA profiling
As the miRNA sequence reads are shorter than the 50bp reads generated, the first step in qual-
ity assessment of the miRNA reads was to identify the reverse complement of the reverse
sequencing adapter. As no vervet monkey-specific miRNA databases exist, it was necessary to
take an agnostic approach to find all small RNAs that might be differentially expressed. Thus
reads that passed quality filtering were analyzed with a custom Python script to identify unique
sequences, and produce a normalized read count using DESeq normalization [37] as detailed
further in SI Materials and Methods (S5 Table).

Genome Annotation
Transcript sequencing output was mapped with the current vervet genome assembly (Chloro-
cebus_sabeus 1.0). We utilized the Vervet Genome Sequencing Project [38] as detailed further
in SI Materials and Methods.

Target Gene Prediction and Integrated Analysis
The selected miRNAs that were differentially expressed were further analyzed to identify the
networks and pathways targets as detailed further in SI Materials and Methods.

Results

Acquisition of Adiposity Following 10 Months of HFHF Diet
Animals were given either HFHF or control diet (Table 1, S1 Table) after baseline studies were
completed (S2 Table). Monkeys in the intervention group gained fat mass and body weight,
increased their waist circumference, and developed a significant increase in serum triglycerides
(Table 2). On average, dietary intervention resulted in a 20% weight gain for HFHF-fed mon-
keys vs. 2% in controls (p = 0.03). There was a 66% increase in percent body fat for HFHF
group vs. 17% for control. While fasting glucose and total cholesterol were not significantly
affected, the reduction in total adiponectin (-19%) did approach statistical significance for the
experimental group (p = 0.13). Assessment of reproductive hormones showed no differences
between the two groups with respect to menses or serum AMH. All animals were ovulatory
before and after intervention, based on assays of sex steroid metabolites from serial urine col-
lections. Indices of estrogen excretion and luteal phase progesterone excretion were similar
before and after intervention (S2 Table). This implied that our model is best suited to assess
early, pre-clinical CL response to de novo adiposity.

To evaluate changes in CL gene expression that mediate adiposity-related reduction in
reproductive fitness, we performed luteectomy at baseline and after the dietary intervention.
For each analyzed cycle, lifespan of CL was timed by daily serum estradiol (E2) in the follicular
phase to document midcycle E2 surge and subsequent E2 drop corresponding to LH surge
[39]. All luteectomy procedures were conducted on luteal day 7–9 as this corresponds to a
mid-stage, fully functioning CL based on dynamic transcript changes during CL developmental
phases in the rhesus macaque [33]. RNA sequencing was conducted on the obtained CL tissue
by paired assessments of the same animal. Joint genomic profiling of mRNA and miRNA was
done to evaluate the initial adaptive changes of the ovulating ovary to weight gain.

mRNAExpression Changes with Adiposity, Weight Gain and Fat Mass Gain
Using RNA sequencing, 61.8 to 101.7 million total single-paired end reads per sample were
received and 48.6 to 88.1 million reads were mappable to the draft vervet genome [18].
Approximately 1100 mRNA exhibited significant changes in response (p<0.05, FDR<0.15) to

Diet-Induced Changes in Vervet Corpus Luteum Transcriptome
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the HFHF diet within the CL or correlated with increases in body weight and/or fat mass (Fig
1A). Of these, 432 sequences were identified and annotated by homology to the human genome
Fig 1B). Analysis of the transcriptome in each category (diet, weight gain and fat mass gain)
identified subsets of differentially expressed genes (DEG). As expected, the majority of genes
correlating with weight gain overlapped with those associated with increased fat mass and/or
diet allocation. However, we also observed specific, mutually exclusive, subsets of genes respon-
sive to dietary intervention, fat mass or weight gain only (S3 Table).

Observed Changes in miRNA Gene Expression were Consistent with
Development of Dysfunctional CL
Sequencing of the small RNA fraction identified 50 miRNAs, based upon homology to their
human counterparts, of which 9 were differentially expressed (p<0.05, FDR<0.15) in response
to HFHF diet (Table 3). These included members of the Let 7 family, miR-26a and miR-143,
which are among most abundant miRNAs found in mouse, bovine, sheep and human ovaries
[40–43]. Notably, several miRNAs induced in response to the HFHF diet were consistent with
the development of dysfunctional CL. Specifically, Let-7b and miR -28 have been shown to
inhibit progesterone and testosterone production in human granulosa cells (GC), while miR-
26a and miR-28 suppress estrogen secretion [44–46]. Similarly, expression of let-7b, miR-26a,
miR-28 and miR-143 were previously associated with decreased proliferation of GC, while

Fig 1. Venn Diagrams for Total Differentially Expressed Genes by Diet, Weight Gain and Fat Mass. A. all vervet mRNAs. B. all mRNAs that were
annotated to human genes. (p,0.05, FDR<0.15).

doi:10.1371/journal.pone.0135163.g001

Diet-Induced Changes in Vervet Corpus Luteum Transcriptome

PLOSONE | DOI:10.1371/journal.pone.0135163 August 10, 2015 6 / 19



let7b and miR-26a were found to promote GC apoptosis[45–47]. Additionally, we identified
small nucleolar RNAs, splicing factors and several sequences, present in the vervet and other
primate genomes which lack a human homolog; these may represent novel species specific
miRs [48]. Several tRNA-derived fragments (tRFs) [49, 50], which are postulated to play a role
in gene silencing mechanisms by interacting with canonical miR pathways [51, 52], also exhib-
ited changes in abundance in response to the HFHF diet.

Integrated miRNA and mRNA Analysis
We used Ingenuity software to identify concordant changes in miRNAs and mRNAs. This
approach evaluated an increase in any miRNA that was reflected by a corresponding reduction
in its predicted target mRNA and vice versa. Among the 432 mRNAs differentially expressed in
the vervet CL, changes in 52 were consistent with these criteria (Table 4). Among the 9 differ-
entially expressed miRNAs, changes in 5 were consistent with corresponding changes in their
mRNA targets. These miRNAs had 3 possible categorizations based on relevancy to luteal
physiology and adiposity: (1) known links to both CL and adiposity; known links to (2) CL
only or (3) adiposity only.

Among the miRNAs that have been individually shown to be important for both CL func-
tion and adiposity, changes in miR-26 and miR-28 were notable. In addition to inhibition of
sex steroid production in vitro by both of these miRNA [45], miR-28 is over expressed during
the E2 drop following dominant follicle selection [53]. In our setting, both were up-regulated
in response to HFHF diet, which is consistent with dysregulation of CL function. A notable
down-regulated mRNA target of miR-28 was PARL, a critical regulator of mitochondrial mor-
phology and function. Reduced PARL levels correlate with mitochondrial abnormalities in obe-
sity and are linked with insulin resistance [54–56]. Maternal obesity and a high fat diet resulted
in decreased expression of PARL in rats and it may play a role in metabolic programming [54].
Another down-regulated mRNA target of miR-28 was BCCIP, a cofactor for BRCA2, which
functions as a progesterone-responsive gene involved in DNA repair and cell cycle control
[57]. Among miR-26 targets, genes with the highest level of down-regulation were MSMO1
and VMA21. MSMO1 mediates LH stimulation of cholesterol biosynthesis [58, 59]. Deficiency
in VMA21 results in impaired autophagy and endoplasmic reticulum stress [60, 61] and is
associated with development of metabolic syndrome [62]. Taken together, our observed down-
regulated mRNA targets of up-regulated miRNAs provide new mechanistic links between
weight gain and CL function.

Among the miRNAs with known impact on CL function, only miR-186 was up-regulated.
In follicular fluid, miR-186 increases in response to exogenous progesterone after ovulation

Table 3. Differentially Expressed Corpus LuteummiRNAs after High Fat High Fructose Diet.

miRNA Fold Change P

let7b-5p 56 0.002

let7e-5p 17,320 0.016

26a-5p 61,129 0.008

28-3p 4,381 0.008

143-5p 166,866 0.0001

186-5p 298 0.004

7193-5p 145,501 0.017

193b-3p -15,448 0.017

486-5p -25,555 0.015

doi:10.1371/journal.pone.0135163.t003
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[63]. EIF2S2, an mRNA target of miR-186 was down-regulated in this study. It has been impli-
cated in differentiation of granulosa cells [64] and has been causally linked to a genetic variant
of diminished ovarian reserve [65]. EIF2S2 is a translation initiation factor that functions in the
early steps of protein synthesis. It regulates angiogenesis via VEGF signaling due to accumula-
tion of denatured proteins in stress and its dysfunction induces apoptosis of follicles [66].

Table 4. Integrated Analysis of miRNAs and their mRNA Targets after High Fat High Fructose Diet.

MicroRNA (Fold Change) Target mRNA Gene Symbol (Name) Fold Change

hsa-miR-186-5p (298)

NAA38 (LSM8 homolog, U6 small nuclear RNA associated) -29.0

UBE2B (ubiquitin-conjugating enzyme E2B) -22.0

FAM204A (family with sequence similarity 204, member A) -7.8

EIF2S2 (eukaryotic translation initiation factor 2, subunit 2 beta) -4.4

MPC2 (mitochondrial pyruvate carrier 2) -3.3

ACTR10 (actin-related protein 10 homolog) -2.8

PDCD10 (programmed cell death 10) -2.8

hsa-miR-193b-3p (-15,448)

SRSF6 (serine/arginine-rich splicing factor 6) 41.0

TRIB2 (tribbles pseudokinase 2) 12.0

UBP1 (upstream binding protein 1 (LBP-1a) 12.0

TAOK2 (TAO kinase 2) 7.0

SCARF1 (scavenger receptor class F, member 1) 6.0

GABPA (GA binding protein transcription factor, α subunit) 60kDa) 5.0

GPANK1(G patch domain and ankyrin repeats 1) 5.0

PPM1F (protein phosphatase, Mg2+/Mn2+ dependent, 1F) 5.0

STX16 (syntaxin 16) 5.0

ABI2 (abl-interactor 2) 4.0

CCNG2 (cyclin G2) 4.0

FGF12 (fibroblast growth factor 12) 4.0

CREBRF (CREB3 regulatory factor) 3.0

FAM53C (family with sequence similarity 53, member C) 3.0

RAPGEF5 (Rap guanine nucleotide exchange factor (GEF) 5) 3.0

RGL1 (ral guanine nucleotide dissociation stimulator-like 1) 3.0

ZBTB40 (zinc finger and BTB domain containing 40) 3.0

DLG1 (discs, large homolog 1 (Drosophila) 2.0

DYRK1A (dual-specificity TYR-(Y)-phos. regulated kinase 1A) 2.0

ERAP2 (endoplasmic reticulum aminopeptidase 2) 2.0

JAK2 (Janus kinase 2) 2.0

SLC23A2 (solute carrier family 23,ascorbiate transporter, member 2 2.0

ZNF562 (zinc finger protein 562) 2.0

hsa-miR-26a-5p (61,129)

MSMO1 (methylsterol monooxygenase 1) -15.0

VMA21 (VMA21 vacuolar H+-ATPase homolog) -9.9

NT5DC1 (5'-nucleotidase domain containing 1) -9.0

MAT2A (methionine adenosyltransferase II, alpha) -6.0

BCCIP (BRCA2 and CDKN1A interacting protein) -4.9

MTFMT (mitochondrial methionyl-tRNA. Fformyltransferase) -4.6

B4GALT4 (UDP-Gal:betaGlcNAc beta 1,4- GST, polypeptide 4 -3.4

MCUR1 (mitochondrial calcium uniporter regulator 1) -3.0

PDCD10 (programmed cell death 10) -2.8

SRP19 (signal recognition particle 19kDa) -2.6

hsa-miR-28-3p (4,831)
BCCIP (BRCA2 and CDKN1A interacting prtein) protein -4.9

PARL (presenilin associated, rhomboid-like) -4.8

(Continued)
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Thus, down-regulation of EIF2S2 implies decreased CL formation due to decreased
angiogenesis.

Among the miRNA affected only in adiposity, miR-486 was down-regulated. MiR-486 has
been shown to inhibit adipogenesis in human in vitro and animal in vivo obesity models [67,
68]. Thus, down-regulation of miR-486 may promote adipogenesis. In our setting, several of its
up-regulated mRNA targets with known impact on CL function were detected. The target
mRNA with the highest up-regulation was PTEN, a tumor suppressor and cell cycle regulator
that inhibits CL granulosa cell differentiation and survival [69, 70]. Similarly, TEK/Tie2, an
angiopoietin receptor, is implicated in CL angiogenesis and may mediate follicular atresia [71].

After HGHF diet, miR-193 was significantly down-regulated. It is down-regulated in adi-
pose tissue from obese patients and is negatively correlated with BMI [72, 73]. Among its
up-regulated mRNA targets, several were notable for known links with either CL function or
diet-induced adiposity. Increased CREBRF (Luman recruiting factor) promotes apoptosis of
granulosa cells [74]. TRIB2 is known to promote visceral and ectopic fat accumulation [75, 76]
and is implicated in dominant follicle selection [77]. Other up-regulated genes that are also tar-
gets of miR-193 included mediators of obesity, related inflammatory cytokine and leptin sig-
naling (JAK2) [78, 79] as well as atherosclerosis (SCARF2/SREC-I) [80].

Discussion
In this 10 month-long dietary intervention study, we have established a nonhuman primate
(NHP) model to examine de novo weight gain in relation to luteal physiology. Due to their
close phylogenetic relationship to humans, NHP are of special interest in modeling human dis-
ease. In studies of female reproduction, it is advantageous to use NHP models as they exhibit
close similarities in the endocrine control of the menstrual cycle with regulatory mechanisms
that are distinct from estrous species [81, 82]. Vervets are a small NHP species with a well-
characterized menstrual cycle that mimics women in length and hormonal regulation [25–28].
Development of obesity in long-term vervet studies demonstrated an associated metabolic pro-
file analogous to humans [30]. Our model allowed for invasive interventions, removal of the
meticulously timed CL to collect tissue for analysis and paired design to maximize power in
this costly setting. As ovulation was confirmed in all luteectomy cycles, this is the first study to
uncover the response of the ovulating ovary to weight gain. Importantly, obesity is common in
ovulatory women [8], leads to profound consequences on offspring health [10] and has not
been adequately examined with respect to CL function. Thus, our work bridges a knowledge
gap by creating a model of diet-induced weight gain and its effects on ovarian function. Use of

Table 4. (Continued)

MicroRNA (Fold Change) Target mRNA Gene Symbol (Name) Fold Change

hsa-miR-486-5p (-25,555)

PTEN (phosphatase and tensin homolog) 6.0

FLRT2 (fibronectin leucine rich transmembrane protein 2) 5.0

ARHGAP5 (Rho GTPase activating protein 5) 4.0

ZNF701 (zinc finger protein 701) 4.0

GRAP (GRB2-related adaptor protein) 3.0

TEK (TEK tyrosine kinase, endothelial) 3.0

TTC31 (tetratricopeptide repeat domain 31) 3.0

VPS37B (vacuolar protein sorting 37 homolog B) 3.0

DYRK1A (dual-specificity TYR-(Y)-phos. regulated kinase 1A) 2.0

PPP1R16A (protein phosphatase 1, regulatory subunit 16A) 2.0

doi:10.1371/journal.pone.0135163.t004
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a menstrual NHP species allowed us to apply invasive investigative tools that cannot be practi-
cally used in humans.

Monkeys consuming HFHF diet more than doubled their total body fat mass (106%). The
average weight gain (20%) and the average percentage of body fat gain (66%) in the interven-
tion group were comparable to other NHP high-fat feeding experiments [39, 83, 84]. While
multiple NHP studies have examined the impact of adiposity on various organ systems, this is
the first report of the ovary as the principal target organ, and represents the first comprehensive
analysis of changes in expression of mRNAs and non-coding RNAs in the vervet CL in
response to diet-induced weight gain.

Based upon homology to the human genome, we identified and jointly analyzed both
mRNAs and 50 unique miRNAs that were expressed at detectable levels in the vervet CL. Spe-
cific changes in miRNA and mRNA expression profiles were consistent with impaired follicu-
logenesis and sex steroid function. Overall, HFHF diet-induced DEGs were consistent with a
dysfunctional CL. We identified a multitude of genes highly relevant for luteal physiology, thus
substantiating the choice of the model and approach used as profiling of vervet CL has not
been published before. The DEGs included genes linked to premature ovarian failure (NTRK2)
[85, 86], polycystic ovary syndrome (MEF2A)[87], signaling pathways regulating follicular
development and angiogenesis, growth and survival of granulosa cells, and responses to gonad-
otropins (BAK1[88], BMP1[89], BMP4[89, 90], GADD45A[91], IFNGR1[92], IGFBP1[93],
JAK2[94],MAPILC3A[95, 96], NOS3[97, 98], NOTCH2[99], PLK2[100, 101], PTEN[70],
SFRP4[102], VCAN[103], YY1[104]). Further, transcripts implicated in steroidogenesis, choles-
terol biosynthesis, transport and metabolism (AUP1[105], FDFT1[106], PAWR[107],
SLCO2B1[108], VAMP4[109]), progesterone synthesis (BLVRB[110], BMP4[90]) and linked to
obesity-related reduced fertility (FANCC[111], PPT1[112], SFRP4[102]) exhibited significant
changes in expression (p<0.05, FDR<0.15). This underscores physiological relevance and util-
ity of this model for further exploration in targeted and longer-term studies of high-fat feeding
and its effects of hypothalamic-pituitary-ovarian axis, gestation and neonatal health.

Our CL miRNA data are novel with respect to the response to the intervention and joint
analysis of target- miRNA interactions. While some of observed DEGs were previously
reported in studies of either obesity or reproduction separately, we expand these data by the
newly identified co-occurring links between the metabolic and reproductive axes.

Published reports suggest that let7b, miR-26a and miR-28 inhibit sex steroid secretion from
GC, while let7b, miR-26a, miR-28 and miR-143 decrease GC proliferation and let7b and miR-
26a promote GC apoptosis [46]. Providing mechanistic insight into impaired CL function with
weight gain, several down regulated target genes were observed coincident with up-regulation
of their predicted miRNA regulators. Several such genes represent our DEGs with the highest
level of expression in response to HFHF and are known to regulate CL angiogenesis and differ-
entiation, as well as cholesterol biosynthesis in response to LH, CL angiogenesis and differenti-
ation. Specifically, down-regulated DEGs likely to regulate CL dysfunction includeMSMO1
(methylsterol monooxygenase located in endoplasmic reticulum membrane, involved in cho-
lesterol biosynthesis and induced by LH in GCs [58, 59]), VMA21 (vacuolar ATPase deficiency
linked to autophagy and ER stress and metabolic syndrome [60–62]), and PARL (an integral
mitochondrial protein that decreases mitochondrial abundance and integrity in response to
insulin resistance [54–56]).

Conversely, CREBRF and PTEN were up-regulated and observed jointly with down-regula-
tion of their predicted miRNA regulators, miR-193 and miR-486, respectively. CREBRF regu-
lates apoptosis of GC cells [74], while ovary-specific deletion of PTEN causes premature
activation of the primordial ovarian follicles [113], a process that is linked with diminished
ovarian reserve and function and important for follicular atresia [114]. Other observed changes
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in DEGs were also consistent with systemic changes in metabolic regulation, mitochondrial
dysfunction and ER stress, inflammation and lipotoxicity, which may underlie the reported
decrease in ovarian function, steroid hormone secretion and concomitant reduction in fertility
in obese women [115–118].

Limitations of our study included the fact that sequencing coverage was comprehensive but
restricted by incomplete annotation of the vervet genome. Approximately 60% of potential
mRNA sequences present in the draft vervet genome remain unannotated after human genome
lift-over. Thus, we relied on genes with the highest homology to the human reference (i.e. the
human lift-over) for both mRNA and miRNA analyses. While Next Generation sequencing of
RNAs has been shown to be highly reproducible with little technical variation [119, 120], the
limited amount of CL tissue obtained from the surgical procedures required the entire speci-
men to be used to provide sufficient materials for library preparation and sequencing analysis.
Animal welfare and economic considerations did not allow procurement of additional inde-
pendent samples for secondary analyses of protein or transcript levels. We initially hypothe-
sized that weight gain due to HFHF diet would lead to decreased ovarian sex steroid secretion,
as observed in obese ovulatory women [12, 16, 121]. However, our assessment of reproductive
hormones did not reveal any significant changes after intervention, possibly due to inter-indi-
vidual variation in hormone levels within each group and insufficient time of dietary interven-
tion to develop overt reproductive endocrine dysfunction. Nonetheless, our observed
phenotypic variation in response to dietary intervention is similar to that observed in humans
and was unequivocally accompanied by significant weight, body fat and metabolic changes.
Thus, we have established that our model represents an early, pre-clinical response of the ovar-
ian transcriptome to an acute gain in adiposity.

In summary, we have demonstrated that a 10 month administration of an adipogenic diet
results in doubling of fat mass, significant weight gain and substantial gene expression changes
in the vervet CL. We report hitherto unreported links for genes and miRNAs regulating both
luteal physiology and response to adiposity. The current report bridges a knowledge gap by cre-
ating a model of diet-induced weight gain and its effects on ovarian function in a menstrual
NHP species with confirmed ovulation in each analyzed cycle. A critical shortcoming of using
in vivo animal work to model women’s reproductive health is the long duration required for
oocyte recruitment, CL timespan and gestation in women. Unlike rodents, vervets exhibit a
well-characterized menstrual cycle with secretion of ovarian steroids and patterns of pituitary
gonadotropins that mimic those of women. Vervets also develop obesity and associated meta-
bolic profile similar to humans, while allowing invasive tissue acquisition for analysis. Using
this model, we have documented for the first time changes in the CL transcriptome in response
to diet-induced weight gain, which provide insight into the potential mechanisms mediating
the CL dysfunction characteristic of obesity in humans. Alterations in miRNA expression that
are implicated in regulation of folliculogenesis, sex steroid synthesis, and their corresponding
target mRNA levels may underlie reduced fertility and adverse pregnancy outcomes linked to
obesity. Future studies are well positioned to expand this model with full annotation of the
whole vervet genome sequencing and mapping of more genes. The attractiveness of using this
NHP model for reproductive studies is underscored by the phylogenetic link to people, close
similarity of reproductive endocrine dynamics and the ability to apply powerful investigative
tools that cannot practically be used in humans.
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