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Abstract—In this paper the mixing vector (MV) in the statistical

mixing model is compared to the binaural cues represented by in-

teraural level and phase differences (ILD and IPD). It is shown

that the MV distributions are quite distinct while binaural models

overlap when the sources are close to each other. On the other

hand, the binaural cues are more robust to high reverberation than

MV models. According to this complementary behavior we intro-

duce a new robust algorithm for stereo speech separation which

considers both additive and convolutive noise signals to model the

MV and binaural cues in parallel and estimate probabilistic time-

frequency masks. The contribution of each cue to the final decision

is also adjusted by weighting the log-likelihoods of the cues em-

pirically. Furthermore, the permutation problem of the frequency

domain blind source separation (BSS) is addressed by initializing

the MVs based on binaural cues. Experiments are performed sys-

tematically on determined and underdetermined speech mixtures

in five rooms with various acoustic properties including anechoic,

highly reverberant, and spatially-diffuse noise conditions. The re-

sults in terms of signal-to-distortion-ratio (SDR) confirm the ben-

efits of integrating the MV and binaural cues, as compared with

two state-of-the-art baseline algorithms which only use MV or the

binaural cues.

Index Terms—Blind source separation, computational auditory

scene analysis, reverberation, time-frequency masking.

I. INTRODUCTION

H EARING aids, automatic speech recognition (ASR) and

many other communication systems work reasonably

well when there is just one source with almost no echo, but

their performance degrades in situations where there are more

speakers talking simultaneously or the reverberation is high.

Therefore, it is highly desirable to localize and separate the

source signals as an auditory front-end especially when the

source signals and the mixing process are unknown, introducing

a blind estimation problem.

There have been various methods suggested to perform blind

source separation (BSS) such as independent component anal-

ysis (ICA) [1]–[3] and beamforming [4] which need as many
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mixtures available as the number of sources. To deal with under-

determined cases, when the number of mixtures is smaller than

that of sources, the signals are transformed into the time-fre-

quency (T-F) domain where the signals become sparse and the

sources can be segregated using T-F masks [5].

In [6], probabilistic (soft) masks are generated based on the

posterior probability of each source at each T-F unit. The al-

gorithm starts with the statistical model of the mixture signals

with additive noise. For T-F units, dominated by one source, the

mixing matrix can be replaced with a mixing vector. Both the

mixing vector and the active source are latent variables which

are estimated by clustering the observation vectors at each fre-

quency bin. Although this BSS technique offers good perfor-

mance based on SiSEC 2008 Data [7], it degrades as the rever-

beration time increases.

On the other hand, the human auditory system with just two

ears has shown great performance in source separation [8],

[9], which has been studied and modelled under the name of

computational auditory scene analysis (CASA) [10], [11]. In

CASA, there are two groups of monaural and binaural cues

associated with the features extracted from one or a pair of

mixtures, respectively. Among monaural cues, fundamental

frequency is the most studied feature which is only effective for

voiced speech [12]. In some approaches such as [13] and [14],

pitch information is integrated with spatial cues to improve the

results. However, their performance depends on accurate pitch

estimation which is difficult when there are multiple sources

with overlapping frequency components. Here, we focus on

binaural cues which contain spatial information.

In [15], the two main binaural cues, namely interaural level

difference (ILD) and interaural phase difference (IPD), are

applied in a probabilistic context which shows significant

improvement over existing algorithms including [5] and [16].

However, it performs poorly when the sources are close to each

other with small angular displacement. In [17] the monaural

cues are integrated with binaural cues for reverberant speech

segregation. Albeit they reported better results compared to

[15], they exploited a large training set with known azimuth

of the sources which is not always available. Moreover, their

method only recovers one (the target) source, while in [15] all

the sources can be estimated.

In this paper, we study the method based on mixing vector

(MV) estimation [6] and the technique using binaural cues [15]

to investigate the strengths and weaknesses of these two ap-

proaches. We found that the MV models seem to be more dis-

tinct compared to ILD and IPD models for sources that are

close to each other. On the other hand, for spatially separated

sources the binaural cues become easily distinguishable while

MV models may overlap. Moreover, we examined the effect of
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Fig. 1. Block diagram of the proposed algorithm. The two recorded mixtures,

, and , are transformed to the time-frequency domain and three different

features, ILD, IPD and MV are extracted from each T-F unit. The likelihood

of each source being dominant based on each cue is estimated and weighted

to contribute to the final soft mask. The mask is then applied to the mixture

spectrograms to extract the sources.

two different types of noise on these models and found that MV

models deviate due to convolutive noise but are robust to ad-

ditive noise. On the contrary, the binaural cues, and especially

IPD, are robust to convolutive noise introduced by reverbera-

tion and degrade in the presence of additive noise. These ob-

servations confirm the complementary role of spatial cues in

statistical and binaural models under various conditions which

motivated us to combine the models, introducing a new robust

algorithm.

In our proposed algorithm, soft T-F masks are estimated to

recover the source signals from stereo recordings considering

additive and convolutive noise models. This technique also pre-

vents the permutation problem by initializing the T-F masks

based on binaural cues. The model parameters and posterior

probability of the sources are estimated iteratively using the ex-

pectation-maximization (EM) algorithm. The final score of each

source being active at each T-F unit is calculated based on a

weighted combination of three source models, i.e., ILD, IPD

andMV, according to the reliability of each cue. An overview of

our method is represented in Fig. 1. Instead of omnidirectional

microphone recordings, binaural recordings, are considered in

this paper, as often encountered in applications such as hearing

aids, robotics and spatial audio.

We examined the performance of our proposed method and

the two state-of-the-art algorithms by Mandel et al. [15], and

Sawada et al. [6] in rooms with a typical range of acoustic prop-

erties. It is shown that the proposed technique outperforms the

two baselines especially under challenging conditions when the

sources are close to each other or the reverberation is high.

This paper is organized as follows. Section II discusses the

extraction of the cues from the binaural signals in the time and

frequency domains with some simplifications. Section III ex-

plains the source models and the proposed source separation

algorithm in detail. Comparison between the statistical and bin-

aural models is covered in Section IV. Implementation details of

the proposed algorithm are discussed in Section V. Experiments

are reported in Section VI, followed by Section VII discussing

the results. Section VIII summarizes the results and envisages

future work.

II. STATISTICAL AND BINAURAL MIXTURE MODELS

As mentioned in Section I, we consider both additive and

convolutive noise signals associatedwith statistical and binaural

models. Accordingly, theMVs and binaural cues for each source

are estimated based on different noise models, as discussed in

the following section.

A. Observations in the Time and Frequency Domain

We suppose that there are sources and microphones

where in the case of binaural recordings . It is also

assumed that the number of sources, , is known a priori. The

recorded signals in a room with reverberation are filtered ver-

sions of the source signals added together at each microphone.

If is the signal recorded by the th microphone in the time

domain and the th source, then (1) holds where is the

room impulse response (RIR) from source to microphone

with and representing the additive and the convolutive

noise signals, respectively:

(1)

where is the discrete time index, denotes convolution, and

the superscripts and represent the additive and convolutive

noise terms respectively.

The RIRs become longer with the increase of reverberation,

making the process of separation computationally expensive

in the time domain [18]. Therefore, using short-time Fourier

transform (STFT), the signals are mapped into the T-F domain,

where the speech signals are more sparse. Another motivation

to work in the T-F domain is that, as suggested by CASA theory,

the human auditory system also performs a short-time spectral

analysis.

The mixture model (1) can also be represented in T-F domain

by replacing the convolution with multiplication based on STFT

(assuming a time-invariant mixing system):

(2)

where , ,

, ,

, and denotes the STFT, with

and representing the time frame and frequency

channel, respectively. The above model is essentially an inte-

grated model of the two in [6] and [15] used respectively for

calculating the mixing vector cue and binaural cues.

For the convenience of analysis in Section IV, we define the

contribution of source to the mixture at each T-F unit

using the subscript as follows

(3)

For the remaining of the paper, the commonly used assump-

tion that speech signals are sparse in the T-F domain is adopted,

as in [5], [6] and [15]. More specifically, we assume that only

one source (say, the th source) is dominant at each T-F unit of

the mixture, resulting in a simpler model in the complex T-F

domain:

(4)
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B. MV based Classification

With the sparsity assumption in the T-F domain (i.e. that at

most one source is active at each T-F point within the mix-

ture), all the columns of the mixing matrix at each T-F point are

multiplied by zeros except the one corresponding to the active

source. As a result, each observation vector can be considered

as a basis vector multiplying the dominant source magnitude.

Accordingly, for , and , a vector represen-

tation of equation (4) can be represented as follows (omitting the

convolutive noise terms, , and also referring to equation (3)):

(5)

where , is the com-

plex 2D observation vector at each T-F unit,

the MV for the th source and

is the additive noise that contains

background noise and energy from other sources that are not

dominant at that T-F unit. To eliminate the effect of source

amplitude variation, the observation vectors are normalized

with respect to their magnitudes at each T-F unit, as in [6],

(6)

(7)

where is Frobenius norm, ,

, , and takes the absolute

value of its argument. The normalized observation vectors

are then whitened and normalized again as follows:

(8)

where is a whitening matrix, with each row

being one eigen vector of , and

.

We then apply centroid-based clustering, for each fre-

quency bin, to group into clusters, in which each

cluster is represented by a centroid, denoted as , where

. The aim is to minimize the Mahalanobis distance

between the vectors in each cluster and the centroid of that

cluster. In [6] a complex Gaussian density function is employed

to do this at each frequency bin with frequency-dependent

mean and variance:

(9)

where is the centroid with a unit norm ,

and is the variance. For notational convenience, we

denote as . The distance

is the minimum distance

between and the subspace spanned by because

is the orthogonal projection of

onto the subspace, where the superscript is Hermitian (con-

jugate) transpose. In other words, it shows how probable it is

that belongs to the th source. Note that, in terms of the

above discussions, we can see that the estimated mixing vector

, which is obtained from , is related to by

(10)

C. IPD and ILD Based Classification

Considering as in (4) for a pair of recordings,

, two different ratio cues can be calculated (omitting the ad-

ditive noise terms, ):

(11)

(12)

where denotes and finds the phase angle.

Therefore, the level difference related to each source,

, and the phase difference corresponding

to that source, , can be estimated as the mean

value of the noisy observations, , and , respec-

tively, as long as the T-F units dominated by each source (say

th) are identified.

Assuming that has a normal distribution with

variance of for th source, the probability of each T-F

unit being dominated by that source based on level differences

can be estimated as in [15]:

(13)

where is the mean value and can be esti-

mated based on maximum likelihood (ML), which is explained

in more detail in Section III. Similar to the MV, we denote

as .

Due to the fact that all the measured phases are wrapped to

the range , they cannot bemapped to their corresponding

interaural time difference (ITD) uniquely. To avoid this ambi-

guity, a top-down process is suggested in [15] where the equally

spaced ITDs corresponding to azimuths from to 90 are

mapped to the corresponding IPDs without ambiguity. Then the

difference between the observed and the predicted IPDs gives

the phase residuals that

can be modelled by a normal distribution for each candidate

ITD, , as explained in [15]:

(14)

where is the mean and the standard deviation. Similar

to MV and ILD, we denote as . The

Gaussian distributions are summed over with some coeffi-

cients in a Gaussian mixture model (GMM) framework to give

the marginal distribution for source at each T-F unit. This for-

mulation has the capability to integrate strong early reflections

with the direct sound from the source.
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D. Differences between MV and IPD/ILD Cues

Despite the fact that both the MV cue and the IPD/ILD cue

are derived from the mixtures (i.e. the same information), we

found that there are considerable differences in the behavior of

these cues, due to the use of different processing methods (with

versus without normalization and whitening) and noise models

(additive versus convolutive). Such differences will be analyzed

in detail in Section IV, based on both the theoretical models

and numerical comparisons, where we can see that these cues

present complementary properties in various conditions (e.g. for

closely spaced sources and/or for highly reverberant mixtures).

This motivates us to integrate the cues for improving the estima-

tion of the T-F masks under the same probabilistic framework

as discussed in the above subsections. For enhancing the read-

ability of Section IV and for notational convenience, we first in-

troduce how the cues can be integrated in the source models and

how the model parameters are estimated by EM, as discussed

in the next section. We then explain in Section IV why these

cues are complementary to each other and therefore why it is

beneficial to combine them for T-F mask estimation and source

separation.

III. SOURCE MODELING AND SEPARATION

A. Model Parameter Estimation from the Mixtures

The parameters of the models described in Sections II-B and

II-C can be estimated for each source based on the T-F units

dominated by that source. However, the dominant source at each

T-F unit is a latent variable, , which is not directly observed but

can be inferred from the observed cues and estimated models.

On the other hand, the parameters are also unknown, leading

us to apply the EM algorithm which is an iterative method for

obtaining ML or maximum a posterior (MAP) estimates of the

parameters in statistical models, where the model depends on

the expectation of latent variables. We also consider another la-

tent variable which is the time delay, , between the left and

right recordings corresponding to the dominant source at each

T-F unit.

Two probabilities need to be estimated and updated during it-

eration of the EM algorithm. The first one is which is

the occupation likelihood that source dominates at the

unit in the mixture. Hence . The second

one is , which is the joint probability of any T-F unit ac-

tivated by source at time delay , and can be considered as

the mixing weights in the GMM, as in [15]. Note that

, where and are the number of time

frames and frequency bins, respectively.

The parameters are that

maximize the log-likelihood of the observations:

(15)

(16)

where , , , , , and are the mean and variance

of the IPDs, the ILDs and the MVs, respectively, for source

and time delay . Equation (16) represents a GMM with

one Gaussian distribution for each source and each azimuth

(corresponding to each ). Therefore, there are (number

of sources) (number of equally spaced ITDs) Gaussian

distributions being mixed by the mixing weight .

We should emphasize here that, in (16), we have followed

the original work of Mandel et al. in [15] and assumed that the

IPD/ILD cues are independent. As a result, the mutual (joint)

probability is written as the product of individual probabilities.

Such an assumption may not hold in practice, but it provides a

convenient way for dealing with the issues related to the opti-

mization of the log-likelihood function, as well as the parameter

estimation of the probabilistic model. Due to the independence

assumption, when both cues are contaminated by independent

noise, they should still be independent. A further study about

this assumption can be found in Mandel et al. [19].

With the above log-likelihood function, the aim is therefore

to estimate the model parameters given the observations of IPD,

ILD andMV. This can be achieved by the well-known EM algo-

rithm, based on the units allocated to each source in the mixture

spectrograms, and then both the units and the parameters are re-

fined alternately, as discussed next.

B. Expectation-Maximization Algorithm

The EM algorithm is employed to estimate the model param-

eters and the probability at each T-F point, iteratively. In the

Expectation step (E step), it calculates the expected value of

the log-likelihood function with respect to the observations

and , under the current estimate of the parameters . In other

words, given the estimated parameters, , and the observations,

and assuming the statistical independence of the cues [15], the

probability of the source at time delay being dominant at T-F

unit is calculated as:

(17)

where is the occupation likelihood of source with

delay . Coefficient can be determined in such a way that

adds up to 1 over all sources and time delays at each

T-F unit, while the mixing coefficient is initialized by the

PHAT histogram [20]. Other elements of (17), i.e. ,

, and can be estimated via (14), (13), and

(9), respectively.

The ILD parameters ( ) and the IPD residual pa-

rameters ( ), are re-estimated for each source and

time delay using the estimated occupation likelihood

that was calculated in the E-step. The M-step of the algorithm

can be defined as follows where the model distributions are

Gaussian:

Similar to [15], the ILD parameters are updated as:

(18)

(19)

IPD residual parameters are updated:

(20)

(21)
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Frequency-independent parameters can be estimated by

taking the average along the frequency bins. For example,

the frequency independent mean of ILD can be calculated

as , and likewise for the other ILD/IPD

parameters. Such averaging can be used to control the model

complexity, as will be discussed in Section VI. However, the

MVs are estimated at each frequency independently [6]. There-

fore the permutation alignment over frequency bins is still a

problem. In addition, it is well-known that the EM algorithm

only guarantees a local optimum and, in practice, it is important

to set the initial values appropriately to achieve the global

optimum. Both issues will be addressed in Section V.

To update the parameters of the mixing vectors, the correla-

tion matrix of weighted samples is required. Since the orien-

tation of a linear subspace (i.e., the basis vector related to each

source) can be thought of as its greatest variance [21], the eigen-

vector corresponding to the maximum eigenvalue, , of

the correlation matrix is assumed as the optimum , as in [6]:

(22)

(23)

(24)

(25)

where and are the number of time frames and frequency

bins, respectively.

Equipped with clear definitions of symbols and descriptions

of the proposed algorithm discussed above, we are now able to

provide a detailed analysis of the properties of the MV cue in

contrast with the IPD/ILD cues, and show that they can comple-

ment each other in various acoustic conditions for the improve-

ment of T-F mask estimation, which is our focus in next section.

IV. COMPARING THE CUES AT DIFFERENT CONDITIONS

A. Complex Mixing Vector Representation

First, we show that the operations of normalization (6) and

whitening (8) in the T-F domain have reduced the degrees

of freedom of the model (5) when represented by the mixing

vector. To see this, we represent the model in (5) with complex

vectors containing amplitude and phase information as

follows (neglecting any effects of noise on the estimates):

(26)

where source is the dominant source. Therefore at each fre-

quency bin , we have:

(27)

(28)

(29)

where and

have uniform and normal distributions, respectively. As shown

in (28), is time-variant since the phase

of the source signal changes with respect to time. As a result,

it is uninformative and cannot be used to estimate the time-

invariant mixing vectors blindly. Instead, the MVs

can be evaluated as the main eigenvectors of

the covariance matrices as defined in (22) where we

take , according to the aforementioned spar-

sity assumption that only one source, i.e. , is active at

each . Consequently, the MVs will have two degrees of

freedom: relative amplitude and relative phase, since

and or .

This result is consistent with the fact that the covariance ma-

trices are positive-semidefinite and symmetric [22] and so Her-

mitian in the complex domain with all the eigenvalues being real

and simple [23]. Hence, the eigenvectors (mixing vectors) will

be like where and , with relative phase and

amplitude containing the whole information.

On the other hand, as illustrated in Section II-B, the MV

related to each source at a given frequency can be consid-

ered as the centroid of that source’s (whitened and normalized)

observation vectors where

at that frequency. Therefore, the MV of the

source at a given frequency, , can be represented by the

observation vectors of that given source (assuming all

other sources to be inactive). To show this, similar to the nota-

tion used in equation (4), we define the contributions of source

to as , where ,

, and likewise, its contributions to as

. When only source is active, ac-

cording to (26), we have .

We now present an example to demonstrate the relationship

between and the MVs with a scatter plot. To this end,

we generate the observed signals by convolving two random

utterances from the TIMIT dataset [24] with binaural RIRs

(BRIRs) of room A [25] (as listed in Table II in Section VI)

for sources at 0 and 10 azimuths, one at a time. For ex-

ample, we can allow one utterance to be active (e.g., source

placed at 0 azimuth), by switching off the other (e.g.

source placed at 10 ). In this way, the observed signals ,

, would contain only the contributions from source

. Then the signals are transformed to T-F domain and

concatenated to produce complex observation vectors at each

T-F unit, in this case , which are further

processed in terms of (6) and (8) to produce the normalized

and whitened observation signals . The

observation vector, , with corresponding MV

as its centroid, is represented by ,

and , which are associated

to the phase and level differences of source , respec-

tively. The observation vectors at the frequency band

of 3.85 kHz are the circles plotted in Fig. 2(a). When only

source is active (by switching off source ),

we can similarly visualize , and

as the triangles in Fig. 2(a).

It can be seen that all the points are confined to a quadrant

of a unit cylinder shell due to the normalization which can

be unwrapped to a 2D plane as shown in Fig. 2(b). Now,

this seems to suggest that the MV does not provide extra

information compared to IPD and ILD. However, as will be

clear in the following sections, the scatter plots and probability
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Fig. 2. 2D representation of the observation vectors in frequency channel

kHz after normalization and whitening on a (a) unit cylinder wall, and

(b) unwrapped 2D plane, for two different sources at 0 and 10 azimuths.

distributions of MV and binaural cues are different and they

introduce different behavior under various conditions.

B. Closely Spaced Sources

In this section we compare the behavior of the MV and bin-

aural cue (ILD/IPD) distributions and show that MV distribu-

tions are more distinct compared to the joint probability of ILD

and IPD, when the sources are close to each other. Equal prob-

ability contours are used to illustrate the multivariate distribu-

tions in 2D space [26]. We consider the same example as shown

in Fig. 2 in Section IV-A, where the observed signals (whitened

and normalized) and were obtained in the same way by

placing respectively source 1 at 0 azimuth and source 2 at 10

azimuth, one at a time.

To calculate the equal probability contours based

on the MV, the (mean and variance) model parame-

ters, , and , were estimated for each source

based on the whitened observation signals

using (22)-(24).

For example, for the estimation of , and , source 1

alone was active when capturing the observation signals .

As a result, , and equation (22) can be

simplified as . Hence for the

frequency band at kHz, the MV parameters

and were estimated according to (22)–(24). The same

procedure was followed when calculating and

assuming that only source 2 was active in that band. We then

plotted the equal probability contours of two MV probabilities

under the two sets of MV parameters calculated above, as

shown by dashed lines in Fig. 3(a), as follows. First, two sets

of MV probabilities were calculated using

(9) for , with taking discrete values from

and from dB to 20 dB. This corresponds

to changing from approximately 0.1 to . Then,

Matlab’s contour function was employed to draw the equal

probability contours in dashed lines based on these two sets of

calculated probabilities.

To show how distinguishable the sources are, the variables

in 2D space should be divided into two

(or more) groups, which are associated with the samples

from each source. The decision boundaries, or the borders

between these regions, are drawn with a solid line where

the two sets of MV probabilities are equal. In other words,

when . We also

Fig. 3. Scatter plots and probability contours (dashed lines) for sources in room

A at 0 in and 10 in with decision boundaries shown by solid lines based

on (a) mixing vectors and (b) binaural cues in frequency kHz.

show the scatter plots based on the whitened observations

from the clean source signals, and at

kHz, i.e. by plotting the quantities

versus , for both sources .

Note that, each scatter point corresponds to a time frame ,

as has been fixed to kHz in this plot. Since the model

parameters were estimated with the same observation vectors,

the equal probability contours and the scattered samples are

consistent.

For binaural cues, the level and phase differences of

each source with no interference at the same frequency

( kHz) were calculated based directly on

and using (11) and (12), by replacing

in these equations with for (again due

to the assumption that only source is active). The scattered

samples in Fig. 3(b) were obtained based on the observa-

tions and of each source . Then the

model parameters, and , were

estimated according to (18)–(21) using the observed

and values for each source. In this case was set

to a normal distribution over , whose mean was estimated via

the PHAT-histogram [20] and variance is fixed to 1. Then the

probability, given that source is active, of any phase differ-

ence from to was calculated

as based on the GMM of source

using (14), with as observations. The

relative amplitude, , was also varied from 0.1

to and the probability of any relative amplitude belonging

to each source, , i.e. , was computed based on (13),

with as observation. The equal probability

contours in Fig. 3(b) were estimated from a set of variables

similarly to that used in

Fig. 3(a). Also, ranges from ,

and ranges from dB to 20 dB. However, in

contrast to the MV probability defined in (9), the binaural prob-

ability is calculated as the product of (14) and (13). Note that,

in the above analysis, we have used the frequency-independent

mode in the EM algorithm as discussed in Section VI.

Now we can see that the two MV based clusters in Fig. 3(a)

are more distinct compared to the binaural based clusters and

probability contours in Fig. 3(b) when the sources are close to

each other. This suggests that MVs with the statistical model

perform better than the binaural cues for closely spaced sources.
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Fig. 4. Scatter plots and probability contours (dashed lines) for sources in room

A at 0 in and 80 in with decision boundaries shown by solid lines based

on (a) mixing vectors and (b) binaural cues in frequency kHz.

Fig. 5. The difference between the KL divergences obtained respectively from

the MV and binaural models is shown here. The KL divergence between the

two source models is calculated based on binaural cues and mixing vectors in

room A with s where one source is at 0 and the second source is

at (a) 10 and (b) 80 .

Fig. 4 displays the scatter plots, the equal probability contours

and decision boundaries for sources at 0 and 80 in room A

obtained similarly. It can be seen that when the sources are well

away from each other with 80 difference in azimuth, binaural

cue source models are quite distinct whereas the observation

vectors have more overlap, which is opposite to what has been

observed for closely spaced sources.

We have also examined how distinct the source models

are over frequency based on the Kullback–Leibler (KL)

divergence [27] between the source models for two sources at

0 and 10 or 80 azimuths. The KL divergence ( ) for MV

and binaural models are defined respectively as follows1 :

(30)

where the probability density function ,

has already been defined in (9), and

(31)

1Note that, the discrete model probability is normalized over such that

. This rule also applies to the

calculation of other KL divergence in this paper.

TABLE I

KL-DIVERGENCE BETWEEN THE CLEAN AND NOISY SIGNAL MODELS FOR THREE

DIFFERENT CUES AND TWO TYPES OF NOISE AVERAGED OVER ALL FREQUENCIES

where , and the calculation

of and based on (13) and (14), respectively,

has been described earlier in this section.

We evaluate the difference between the KL divergences ob-

tained fromMV and binaural models2, i.e.

. When , the MV cue is more discrim-

inative as compared with the binaural cues, and vice versa. As

shown in Fig. 5(a), MV based source models are well separated

even when the sources are close to each other (10 azimuth) es-

pecially in the frequency range kHz where ILD and IPD

are not very reliable [9]. On the other hand, when the sources

are positioned away from each other (80 azimuthal displace-

ment) the IPD/ILD source models become more distinct com-

pared to those based on MVs (see Fig. 5(b)). This suggests that

MV and binaural models play complementary roles for different

source positioning which motivated us to combine the statis-

tical and binaural models and introduce a new algorithm that,

as we will show in Section VI, works better than the methods

using the individual cues for various source configurations and

conditions.

C. High Reverberation

Next, we examined the effect of two types of noise on the

cues. First, speech shaped noise was generated by averaging the

spectra of the anechoic recordings of 15 utterances used in the

experiments (see Section VI-A). Then the generated noise was

added to a clean signal to produce a corrupted signal, similar

to [28]. The clean signal was one of the utterances convolved

with anechoic BRIR (see Section VI-A). The same utterance

was also convolved with the BRIR of the reverberant roomD (as

in Table II) to introduce convolutive noise. To measure the rel-

ative level of this convolutive noise we divided room D’s BRIR

at 32 ms, which is also half of the window length (64 ms), and

zero-padded each remaining part to have two RIRs representing

the direct sound with desired early reflections and late reverber-

ation noise. The two parts were then convolved with the original

utterance and the relative energy of the signals was measured to

be approximately 5 dB for room D. Accordingly, the level of

speech shaped noise was set to yield an SNR of 5 dB in the ane-

choic room.

The model parameters of the source, ,

were estimated under three different conditions: anechoic

room, anechoic room with additive noise, and rever-

berant room, to investigate the effect of additive and convolu-

tive noise. The degradation from the original models is mea-

sured based on the KL divergence [27] between the pdfs of the

noisy observations and those corresponding to the clean ane-

choic signal.

2Note that, was calculated over the following range of values for the param-

eters: , dB, ,

and dB.
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Unlike the KL divergence defined earlier that measures

the distance of the pdfs obtained from different sources at

different positions in the same environment in Section IV.B,

the KL divergence here measures the distance of the pdfs

obtained from the same source under different conditions,

either between the noiseless anechoic environment and the

additive-noise-corrupted anechoic environment, or between the

noiseless anechoic environment and the convolutive-noise-cor-

rupted reverberant environment. Take the KL divergence

based on MV cues, for example. Suppose the parameter set

is obtained from a source in the noiseless ane-

choic situation, and is estimated from the same

source at the same input angle in a noisy environment, then the

KL divergence here is calculated as:

(32)

In a similar way, the KL divergences based on IPD cues and

ILD cues, i.e. and , can also be obtained.

The results are given in Table I, which demonstrate that the

MV model is more affected by high reverberation with higher

KL divergence ( ) compared to the same level of

additive noise ( ). On the other hand, binaural cues are

more robust to reverberation especially IPD with ,

but more sensitive to additive noise with , which

confirms that MV and binaural cues play complementary roles

for dealing with different types of noise. This provides further

evidence that combing the cues can lead to a method that is more

robust to both additive and convolutive noise. Moreover, we can

see that MV and IPD are more reliable as compared to ILD with

less deviation from the original models, exhibiting a smaller KL

divergence. This observation motivated us to assign different

weights for each cue (as explained in Section V-C).

V. PRACTICAL IMPLEMENTATION ISSUES

OF THE PROPOSED ALGORITHM

A. Dealing with the Permutation Problem and Initialization

Since the EM algorithm can be initialized either from the

E-step or the M-step and also there is commonly no prior in-

formation about the mixing vectors, we propose to initialize the

probabilistic mask first and then estimate the initial values of

and based on the masked spectrogram.More specif-

ically, we initialize the mask based on the IPD and ILD cues de-

rived from the binaural model, and let the program run for two

iterations without any MV contribution.

For the first iteration, we set for all time

frames and frequencies in (17) to remove the effect of the

MV contribution. Once the mask

is obtained after two iterations based on only the information

in the binaural cues, the parameters of the MV distributions,

, are estimated from the next M-step to prevent

the permutation problem, as explained in [29].

Similar to [15], we initialize with one Gaussian distribu-

tion for each source, say , over with mean values corre-

sponding to the direct sound estimated by PHAT-histogram [20].

It is important to set an appropriate window length for

the PHAT-histogram approach. As the window length in-

creases, the number of segments available to generate the

histogram of time delays decreases, making the estimated pdfs

unreliable [20]. We examined various windows and achieved

the best result with .

Initial ILD parameters are set to zero mean and 10 dB stan-

dard deviation with phase residuals’ means and variances being

set to zero and one, respectively. After two iterations the proba-

bilistic mask is applied to initialize the MV parameters. There-

after, the occupation likelihoods are re-estimated and used to

update all model parameters in subsequent iterations.

To deal with the T-F units dominated by reverberation which

do not fit into the source models and degrade the parameter

estimation, [15] considers a garbage source. Assuming a dif-

fuse sound field due to reverberation, the ILD and IPD of the

garbage source should have broad distributions as the energy

comes from all directions with equal probability. Here the

garbage source is treated as another sound source with large

initial variance.

B. Weighted Cue Likelihoods

In the first stage of combining the binaural and statistical cues,

we assumed that each cue is as influential as the others, so we

simply added their log-likelihoods to estimate the joint proba-

bility of each source being active at each T-F unit. However, as

explained in IV-C, the cues are not equally reliable especially in

the presence of reverberation. For example, the IPD cue seems

to be more robust in reverberant conditions compared to the ILD

cue. Therefore, it is more appropriate to adjust the contribution

of the cues by giving a different weight to each of them before

combining them.

The idea of cue weighting is related to that of [30] in which

different distributions are weighted and combined to achieve

a model that fits the real data better. In the absence of com-

pelling statistical counter evidence, a natural choice of the pdf

for modelling the cues is the normal distribution for which no

further assumption is needed. The Gaussian (normal) distribu-

tion was employed here for consistency with Mandel et al. [15]

and Sawada et al. [6]. It is also simple, with minimized entropy,

and fast efficient parameter re-estimation via a straightforward

EM algorithm. Moreover, the possibility of extension to GMMs

provides potential for greater flexibility and precision in mod-

eling the underlying statistics of sample data.

Another motivation for cue weighting is to make

the algorithm more comprehensive compared to that of

Mandel et al. [15] where the cues are weighted equally with

different modes introducing various degrees of freedom for

parameters. We decided to make the modes more general by

substituting the coefficients with adjustable weights:

(33)

where , and control the influence of IPD, ILD and

MV cues, respectively, at each T-F point .

Here, we investigated weights that are fixed over time and

frequency. However, based on Duplex theory [31], human per-

ception treats ILD as more reliable at high frequencies, as op-

posed to IPD which is favoured at low frequencies. Therefore,

further investigations are justified to assign weights for each

cue accordingly. In our work, the weights are found empiri-

cally based on a brute force grid search approach as detailed

in Section VII-D.
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C. Pseudocode of the Proposed Algorithm

The whole algorithm is summarized in Algorithm 1.

Algorithm 1 Soft mask generation to recover speech sources

1: Task: Binaural speech source separation

2: Input: , , , ,

3: Output: the estimate of the th source

4: Initialization: , , , dB,
.

5:
(11)
(12)

Normalization (6)
Pre - whitening and normalizing ( ) (8)

6: for do

7: (14)

(13)

8: if then

9:

10: else

11: (9)
{after 2 iterations the BSS parameters are
initialized}

12: end if

13:

14: (33)

15: (16)

16:

17: (17)

18: Update (18)–(21)
{For frequency independent mode, the average of the
parameters along is used, e.g.,

, and likewise for ,

, .}

19: if then

20: Update (22)–(24)

21: end if

22: Update (25)

23: end for

24:

25:

VI. EXPERIMENTS

This section explains how we selected utterances and con-

volved them with BRIRs with various acoustic properties to

generate the virtual microphone signals including realistic room

effects. Mixtures of 2 and 3 speakers with different relative posi-

tions were created to examine the effect of source configuration

on the performance of the algorithms. These provide tests for de-

termined (2-source) and underdetermined (3-source) cases. The

Mandel et al. [15], Sawada et al. [6] and our proposed algo-

rithms were then applied to the mixtures to recover the source

signals. The quality of the recovered signals was evaluated both

in terms of signal distortion and perceptual speech quality.

A. Data Source Selection

Similar to [15], we chose the TIMIT data set which is a

continuous speech corpus containing 6300 utterances spoken

by 630 native American English speakers [24]. 15 utterances,

spoken by both male and female speakers, with approximately

the same length (about 3 s), were selected randomly and then

shortened to 2.5 s for consistency. The two common sentences

spoken by all speakers (sa1 and sa2) were removed from the

selection set to avoid mixtures containing identical word se-

quences, which would violate the assumption of sparsity and be

unlikely from a practical perspective. All the utterances were

also normalized to have equal root mean square amplitude.

Several RIR data sets were investigated to find the most

appropriate one for our aim which was evaluating the ef-

fects of source configuration and room reverberation on the

performance of the algorithms. The BRIRs measured by

Hummersone [32] were selected. These were recorded using a

dummy head and torso in 5 different types of room, named as X,

A, B, C and D at the University of Surrey. One advantage of this

database over other datasets, such as [33], is its higher angular

resolution which enabled us to evaluate the performance of the

algorithms over different configurations with finer resolution.

The other positive aspect of this dataset is that the BRIRs

were measured in rooms with different acoustical properties,

which facilitates comparison of the algorithms over a range

of conditions. Table II shows the acoustical properties of the

rooms in which the signals were recorded. For the anechoic

condition, X, the impulse responses were recorded in a very

large room and the reflections were then truncated. The head

related transfer function (HRTF) is incorporated in the BRIR

which makes the signals similar to what a person would hear

in that position.

For each and angular configuration, 15 pairs from those

15 selected utterances were chosen in such a way that no signal

would be mixed with itself. The mixtures were then generated

by simply adding the reverberant target and interferer signals

which is equivalent to assuming superposition of their respec-

tive sound fields. Even though the time-frequency masks to re-

cover all the sources at different azimuths are calculated in our

proposed algorithm, the algorithms’ performance is reported

based on the quality of the recovered target source located at

the 0 azimuth, while the interferer’s azimuth varied from 10

to 90 with steps of 5 . All sources were 1.5 m away from the

head (this defines 17 different configurations). This is an eco-

logically valid approach to investigating the effect of target-in-

terferer angular displacement on the system performance, given

that we typically turn to face the target [34]. In the case of

2-source mixtures, the interferer was located on the right of the

target, whereas for 3-source mixtures, the two interferers were

located symmetrically on the right and left of the target source,

as in [15].

Since there were 5 different rooms and 17 different configura-

tions, 85 sets of mixtures were created each of which contained

15 different mixtures (1275 mixtures in total). Mandel’s algo-

rithm (based on only binaural cues), Sawada’s algorithm (based

on the MVs) and our proposed algorithm were used to separate

the source signals.

For our proposed algorithm we examined various window

lengths and found the optimum 1024 sample Hann window

(64 ms with kHz) with overlap. To recover the
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target signal, as shown in line 25 in Algorithm 1, the average

of the separated signals at the left and right microphones is

calculated. Although this summation favors frontal sources, we

have applied the same routine as in the two baselines [6], [15]

to facilitate a fair comparison. Each recovered signal was then

compared to the original utterance to measure the performance

of the algorithm. This evaluation will be explained in more

detail below.

B. Evaluation

We considered two measures of the speech separation accu-

racy: signal-to-distortion ratio (SDR) [35] and Perceptual Eval-

uation of Speech Quality (PESQ) [36]. The performance of the

algorithms was primarily evaluated based on the SDR. The SDR

is the ratio of the energy in the recovered signal resembling

the original signal to the remaining energy related to interfer-

ence from other signals and unexplained artefacts. Since sound

coloration by room reflections is acceptable to some extent by

human listeners, it can be counted towards the target energy.

Accordingly, the recovered signals were not compared with the

original signals but a filtered version of them which was also

normalized for any delays or scaling. Therefore, we applied an

FIR Wiener filter (up to 32 ms) to the original signal with the

recovered target signal as the reference signal, as in [15]. Thus,

any energy in the estimated signal corresponding to a filtered

version of the original utterance was considered as an accept-

able representation of the target signal. Any remaining energy

was assumed as distortion [15].

Although SDR is an objective evaluation method based

on physical signal characteristics and is widely used, it may

not always correlate well with perceived sound quality. Con-

sequently, we also applied PESQ to evaluate the algorithms

for human applications. PESQ is highly correlated with the

mean opinion score (MOS) of human listeners, and provides

an objective measure of the most perceptually relevant signal

characteristics. PESQ provides a score in the range of 1 to 5

where 1 is bad and 5 is great.

VII. RESULTS

In this section we first examine the performance of Mandel’s

algorithm and the proposed algorithm with different source

model complexities (known as modes in [15]) to choose the one

that gives the best results. Once the model complexity is set,

the Sawada, Mandel and proposed algorithms are employed to

separate the mixtures under various acoustic conditions for both

the determined and underdetermined cases, i.e., for 2 sources

and 3 sources with just 2 microphones. The detailed results for

diverse configurations are reported to study and compare the

methods thoroughly. All the results in the following sections

were obtained for equal weight , except

those in Section VII-D where different weights are applied to

the cues in order to assess the potential performance improve-

ment by cue weighting. Finally, we present separation results

for the mixtures corrupted by spatially diffuse noise.

A. Model Complexity

As explained in Section III, model parameters can be fre-

quency-dependent or wrapped up over all frequency bins to be

frequency-independent. There are different modes representing

Fig. 6. Performance of the Mandel method [15] (solid bar), and proposed

algorithm (white bar) with all possible model complexities averaged over 15

different mixtures in 4 rooms (except anechoic) and 6 different configurations

( ), 360 mixtures, for the determined (2-source)

case.

different types of source model from having frequency-depen-

dent parameters, where the mean and variance for ILD and

IPD distributions are different for each frequency bin, ,

to being frequency-independent where the parameters of each

source model are the same for all frequency bins, . The

superscript stands for using the garbage source. For the

simplest mode, , the means for residual IPD and ILD are

set to zero and do not get updated, with ILD variance also set

to . In mode the degree of freedom is increased and

so the IPD parameters get updated but remain constant across

frequency. Mode represents updating ILD cues and fixed

IPD parameters. In summary, the indexes 0,1 and stand for

‘fixed,’ ‘frequency-independent’ and ‘frequency-dependent’

parameters for ILD and IPD cues, respectively (see Table I

in [15]).

A pilot study with simulated data [37] and no HRTF showed

that the moderate mode of with frequency-independent

IPD and ILD cues that incorporated a garbage source gave

the best performance for our proposed algorithm, in which the

MV-based technique is combined with the binaural cues [38].

Although [15] showed that the most complex model with the

garbage source gave the best performance (both ILD and IPD

cues being frequency-dependent), they did not examine all of

the modes with frequency-independent parameters. In addition,

we incorporated the garbage source for all possible modes to

have a comprehensive comparison.

Fig. 6 shows that the Mandel algorithm with fixed ILD pa-

rameters ( , , ) results in lower SDRs. It is due to

the fact that the PHAT-based initialization provides some infor-

mation about ITD of the sources for all the modes whereas ILD

information is only incorporated to the modes when updating

ILD parameters. Another interesting observation is that by ex-

ploiting the garbage source, not only the most complex mode,

, but also simplermodes such as give high SDRs. Thus,

it is more efficient to apply with less computational expense

for very similar results.

In the case of our proposed method, all the modes gave com-

parable results with (i.e., frequency dependent ILD and fre-

quency-independent IPD) having slightly better performance.
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Fig. 7. SDR of the recovered target source averaged over 15 mixtures with

mode , at each angular displacement in anechoic

conditions, (a) 2-source and, (b) 3-source case.

However, as shown in Section IV-C, ILD models are sensitive

to noise and so it is safer to set this cue as frequency independent

as in mode which gives similar results. In this way the bin-

aural model parameters will be fixed for all frequency bins, pre-

venting the permutation problem introduced by bin-wise clus-

tering and reducing the model complexity.

B. Anechoic Conditions

This section investigates the performance of the algorithms

under anechoic conditions, to examine their behavior without

the effects of room reflections and reverberation. For these ane-

choic experiments, pilot tests confirmed our expectation that the

garbage source was unnecessary, as there was no reverberation

for it to model. Indeed, use of the garbage model produced a

slight degradation, so this feature was disabled for these tests,

whose results are plotted in Fig. 7 with error bars.

For the determined case in Fig. 7(a) with 2-source mixtures,

the proposed method gave an average 3.5 dB SDR improve-

ment over Mandel’s approach when the sources were close (15

or less). The advantage reduced to 1.0 dB when the interferer

was positioned at 45 or more. The average enhancement over

Sawada’s approach was approximately 2.0 dB for all target-in-

terferer configurations.

For the underdetermined case, a considerable difference

of almost 5.0 dB is seen in Fig. 7(b) between the proposed

method over Sawada’s but, compared with Mandel’s, this large

difference only occurs at 10 and is otherwise much more

modest. The overall average separation performance for the

3-source case was dB for the proposed method, dB

for Mandel’s and dB for Sawada’s, which is consistent

with the anechoic results reported in [15].

C. Reverberation Effect

For any practical system, it is vital to test its performance

in typical acoustical conditions including room reflections and

reverberation. To study the effect of reverberation on the per-

formance of the algorithms, all the configurations were tested

across a range of environmental conditions, as in Table II in

Section VI.

Fig. 8 presents the SDRs of the recovered signals with the in-

terfering source positioned at different azimuths. It can be seen

that with different s and DRRs in all 4 reverberant envi-

ronments the proposed algorithm shows the best performance.

It is also evident that the proposed method outperforms the two

TABLE II

ROOM ACOUSTICAL PROPERTIES IN INITIAL TIME DELAY GAP

(ITDG), DIRECT-TO-REVERBERANT RATIO IN TERMS OF (DRR)

AND REVERBERATION TIME [32]

Fig. 8. SDR of the recovered target source averaged over 15 mixtures with

mode , at each angular displacement in 2-source

case under different rooms: room A with s, room B with

s, room C with s and room D with s.

baselines especially when the angle between the target and the

other source is less than 45 . For example, the average improve-

ment for room A with angles less than 35 over Mandel’s is

about dB, which decreases for larger angular displacements.

The Mandel algorithm works well when the sources are well

away from each other. Therefore, the average results over all

rooms (A, B, C, D) and configurations show a smaller but statis-

tically significant improvement of dB with critical p-value

of ( number of mixtures=1020). In case of PESQ,

an improvement of 0.026 is shown to be significant with p-value

of .

The improvement over Sawada is consistent for all the

various interferer positions, but varies with environmental

conditions. For example, it is especially high in room D with

s. A summary of the results is represented in

Tables III and IV.

Fig. 9 presents the results for the underdetermined case with

two interfering sources on the right and left hand sides of the

target, respectively. It is clear that the proposed method gen-

erally outperforms the two baselines. However, there are some

weak results at larger azimuths due to poor initialization in room

D with its high reverberation. Overall, an average improvement

of 0.33 dB over 4 reverberant rooms is achieved, which is signif-

icant with p-value ( number of mixtures=1020).
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TABLE III

RESULTS OF THE BASELINE METHODS AND PROPOSED METHOD

WITHOUT ( ) AND WITH WEIGHTING

( ) FOR ANECHOIC, X, AND REVERBERANT

MIXTURES WITH THE AVERAGE OVER ROOMS A, B, C AND D, IN SDR [DB]

TABLE IV

RESULTS OF THE BASELINE METHODS AND PROPOSED METHOD

WITHOUT ( ) AND WITH WEIGHTING

( ) FOR ANECHOIC, X, AND REVERBERANT

MIXTURES WITH THE AVERAGE OVER A, B, C AND D IN PESQ

Fig. 9. SDR of the recovered target source averaged over 15 mixtures with

mode , at each angular displacement in 3-source

case under different rooms: room A with s, room B with

s, room C with s and room D with s.

In case of PESQ, an improvement of 0.014 is shown to be sig-

nificant with p-value of .

Furthermore, from Figs. 8 and 9 we see that the performance

not only depends on the but also the DRR. For example,

although the of room C is higher than that of room B, the

SDRs of the recovered signals are higher in room C due to the

higher direct-to-reverberant ratio ( dB) compared

to that of room B ( dB). Therefore, it is important

to consider other acoustical factors such as DRR of the rooms

to examine and report the performance of an algorithm. The

reverberation time ( ) is not the only acoustic parameter that

affects the source separation.

D. Cue Weighting

Up to this point, the cues were applied with equal weighting

in our experiments (equal to 1), which is not necessarily the best

way to model the data and estimate the parameters most reliably,

as discussed in Section V-C. Therefore, we decided to adjust the

weights of each cue to try to improve the performance with our

proposed algorithm.

We first started by adjusting just one cue at a time and

keeping the other weights at 1 to discover the general effect

of weighting on each cue. As a pilot experiment, mixtures

were selected with room A for the sources that were close to

each other ( ). We found that values of

greater than one increased the SDR of the recovered signals,

suggesting that the IPD cue is more reliable than the other two

cues which is consistent with our observation in IV-C. Then,

we varied ( ) and observed that giving less

weight to ILD increased the quality of the results. This finding

also supports the results in IV-C where ILD is degraded due to

reverberation. Finally, we examined and discovered that it

did not affect the result considerably. Moreover, we observed

that the variation of the results over , and was

smooth, enabling us to reduce the search resolution to identify

the optimum combination. Overall, weighting the MV cue

did not change the performance of the algorithm significantly.

Weighting the IPD improved the results slightly while ILD

weighting had the most influence on the outcome.

Although and gave the optimum values

while the other two cues were fixed at 1, the combination of

and was not optimal. A coarse

search (testing many combinations on all four rooms and var-

ious source positions) led us to the optimum set of ,

and . It confirms that the relative weights

of the cues are more important than the actual coefficients.

We compared the proposed algorithm with no weighting and

this optimum weighting of with a t-test which

showed that the averaged improvement of 0.32 dB over 240

mixtures was highly significant ( ).

Although this set of weightings gives the optimum results for

binaural mixtures, it should be adjusted for mixtures recorded

by alternative configurations, e.g., spaced omnidirectional mi-

crophones. Comparing the results in [38] with those represented

in Section VII-C, one can see that the improvement (between

Mandel’s and the unweighted proposed method) based on mix-

tures without HRTF is higher than that based on binaural record-

ings. This suggests that the MV contribution is more effective

for mixtures without HRTF. Therefore, a different set of weights

with higher and lower would improve the performance

of the algorithm under those conditions.

In reverberant and anechoic conditions with two and three

speakers, the proposed algorithm with weighted cues produced

SDRs 0.69 dB and 1.96 dB higher than Mandel’s and Sawada’s

algorithm, respectively. Overall, the proposed method is more

robust as compared to the baselines whose performance depends
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on the type of recording. For example, Mandel’s method works

better for binaural recordings as it is mainly based on binaural

cues, whereas Sawada’s method performs better for microphone

recordings without HRTF.

E. Spatially Diffuse Noise

We have also evaluated the performance of the proposed

algorithm, in comparison with the two baseline algorithms,

for separating the mixtures corrupted by spatially diffuse

noise. Diffuse noise has the property of sound energy arriving

at a sensor from every direction with equal probability. For

two sensors sufficiently separated in space (as in our case),

we approximately simulate these conditions by adding two

independent white noise sequences to the left-channel and

right-channel mixture respectively. We have performed two

sets of experiments. In the first set of experiments, we repeat

the experiments performed in Section VII-B by adding spatially

diffuse noise to each of the mixtures used. All the other set-ups

(including the parameters set-up, the mode for the IPD/ILD

model and the weights for integrating the cues) were exactly

the same as those in Section VII-B. In the second set of ex-

periments, we repeat the experiments for reverberant rooms

as performed in Section VII-C, where we followed the same

set-ups except that we added spatially diffuse noise to each of

the mixtures in these new tests. Due to the space constraint, we

only report results for room C here (similar performance trends

are observed for other rooms). In both sets of experiments,

two different levels of noise in terms of signal-to-noise-ratios

(SNRs), were tested, 10 dB and 20 dB, respectively. We will

only show the results for dB (again, due to space

constraint).

For the anechoic mixtures, the average SDR results are shown

in Fig. 10 for dB. From Fig. 10, it can be observed in

the anechoic case that, the proposed algorithm performs better

than the MV algorithm (i.e. Sawada’s algorithm), especially for

the angles between 20 and 60 in diffuse noise. It also out-

performs the binaural cue based algorithm (i.e. Mandel’s algo-

rithm) for nearly all the angles. By comparing Fig. 10(a) and

Fig. 10(b), we can further observe that the performance ad-

vantage of the MV cue over the binaural cues in diffuse noise

tends to drop considerably with the increase of the number of

sources. In the three-source case, our proposed algorithm also

performs better than Sawada’s algorithm for angles between

and , and gives comparable results to Sawada’s algorithm

for the other angles. We observed in our experiments that when

the noise level was not very high, e.g. 20 dB SNR, the binaural

cues performed well (results not shown), similar to the case of

noise-free conditions (shown in Fig. 7). Yet our proposed algo-

rithm gave consistently better performance as compared with

both baseline algorithms, for both two source and three source

situations.

For the reverberant case (i.e. room C), the average SDR re-

sults are shown in Fig. 11 for dB. From Fig. 11 with

10 dB noise corruption, it can be observed that, similar to the

anechoic case, Mandel’s method is greatly affected by the dif-

fuse noise, while Sawada’s method is less affected. In this case,

Sawada’s method exhibits advantages over our proposed algo-

rithm as well as Mandel’s method. The reason that the proposed

algorithm does not show benefit over Sawada’s algorithm in dif-

fuse noise is related to the combination of these cues. However,

Fig. 10. SDR of the recovered target source averaged over 15 mixtures with

mode , at each angular displacement in ane-

choic conditions, with 10 dB spatially diffuse noise corruption, (a) 2-source

and, (b) 3-source case.

Fig. 11. SDR of the recovered target source averaged over 15 mixtures with

mode , at each angular displacement in room

C, with 10 dB spatially diffuse noise corruption, (a) 2-source and, (b) 3-source

case.

the results further confirm that the MV cue can be complemen-

tary to the IPD/ILD cues since the proposed algorithm improves

Mandel’s algorithm in diffuse noise. We also observed in our

experiments that, when the noise level is not as high, e.g. with

20 dB diffuse noise (results omitted), our proposed algorithm

outperforms the two baseline methods, for both two source and

three source conditions. Overall, the results are very consistent

with the SDR evaluations in the noise-free conditions for room

C, as shown previously in Figs. 8 and 9. We would like to note

that incorporating a precedence model would be expected to im-

prove the performance of binaural method in reverberation as

suggested by our preliminary work in [39].

VIII. CONCLUSION

We have studied stereo speech mixtures and analyzed the dif-

ference between the MV and the binaural cues. We have shown

that the MV cue tends to be more distinct when the sources are

close to each other, while the binaural cues, and specially IPD,

are more robust to high reverberation for which the MV models

degrade. This has led us to combine the cues to compensate for

their limitations. We have presented a new algorithm for sepa-

rating speech mixtures under challenging conditions by consid-

ering both additive and convolutive noise models in parallel. It

has been shown that this approach improves the quality of the

recovered signals in comparison with the two baseline state-of-

the-art algorithms named as Mandel [15] and Sawada [6]. We
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have shown the potential benefits by weighting each cue to ad-

just their contributions for the T-F unit classification.

Another interesting point is the difference in the performance

of the algorithms in four different rooms. We observed that

is not the only important factor affecting the performance of the

algorithms. Other acoustic properties of the recording environ-

ment such as DRR also have a great influence on the results.

Tests on mixtures corrupted by spatially-diffuse noise also con-

firmed these findings.

Here the cue weights are fixed over all frequencies whereas

frequency-dependent coefficients may yield additional gains in

performance. We observed that, the initialization fails at high

reverberation, which should be addressed in further work. Fi-

nally, as we have concentrated on SDR enhancement, the PESQ

results have not changed considerably. This could be achieved

by cepstral smoothing to improve the perceptual quality of the

signals.
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