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Joint Modeling and Estimation for Recurrent Event

Processes and Failure Time Data

Chiung-Yu Huang and Mei-Cheng Wang

Abstract

Recurrent event data are commonly encountered in longitudinal follow-up stud-
ies related to biomedical science, econometrics, reliability, and demography. In many
studies, recurrent events serve as important measurements for evaluating disease pro-
gression, health deterioration, or insurance risk. When analyzing recurrent event data,
an independent censoring condition is typically required for the construction of sta-
tistical methods. Nevertheless, in some situations, the terminating time for observing
recurrent events could be correlated with the recurrent event process and, as a result,
the assumption of independent censoring is violated. In this paper, we consider joint
modeling of a recurrent event process and a failure time in which a common subject-
specific latent variable is used to model the association between the intensity of the
recurrent event process and the hazard of the failure time. The proposed joint model is
flexible in that no parametric assumptions on the distributions of censoring times and
latent variables are made and, under the model, informative censoring is allowed for
observing both the recurrent events and failure times. We propose a ‘borrow-strength
estimation procedure’ by first estimating the value of the latent variable from recurrent
event data, and next using the estimated value in the failure time model. Some inter-
esting implications and trajectories of the proposed model will be presented. Properties
of the regression parameter estimates and the estimated baseline cumulative hazard
functions are also studied.

KEY WORDS: Borrow-strength method; Frailty; Informative censoring; Joint model; Non-

stationary Poisson process;.
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1 Introduction

Recurrent event data are often collected in longitudinal follow-up studies. During the obser-

vation period, recurrent events such as repeated tumor occurrences (Byar 1980), repeated

hospitalizations (Eaton et al. 1992a,b), or recurrent injuries (Wassel et al. 1999) are recorded

in the studies. The observation of recurrent events could be terminated (i.e., censored) by

loss to follow-up, end of the study, or a failure event such as death. Conventional analysis

usually focuses on either failure time data (Cox 1972; Cox and Oakes 1984) or recurrent

event data (Prentice, Williams, and Peterson 1981; Andersen and Gill 1982; Pepe and Cai

1993; Lin et al. 2000; Wang, Qin, and Chiang 2001). In this paper, the event process and

the failure time are both of interest, and we consider the joint modeling of a recurrent event

process and a failure time.

In analyzing recurrent event data an independent censoring condition is usually required

for the development of statistical methods under different types of models. When a failure

event serves as a part of the censoring mechanism, validity of the independent censoring

assumption is violated when the recurrent event process is correlated with the failure time.

Lancaster and Intrator (1998) considered a joint parametric model of the recurrent event

process and the failure time, and demonstrated the use of their methodology using AIDS

panel data. In their work, a latent variable is used to characterize the association between the

recurrent event process and the failure time, and a common baseline function is shared by the

intensity of the recurrent event process and the hazard of the failure time. In nonparametric

and semiparametric settings, Wang, Qin, and Chiang (2001) proposed estimation procedures

for estimating the cumulative rate function and regression parameters under multiplicative

intensity models with dependent censoring. In the WQC model, the focus was placed on the

distributional pattern of the recurrent event process where the censoring time was treated

as a nuisance, and the joint modeling of recurrent event process and failure time was not
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considered.

To jointly model recurrent events and failure time, Ghosh and Lin (2003) studied corre-

lated marginal models for these two outcomes. At the cost of censoring some of the originally

uncensored data, they developed estimation inferences with the correlation between recur-

rent events and failure time unspecified. Using a general censoring pattern, Huang and Wang

(2003) proposed statistical methods to study two nested joint models of a recurrent event

process and a failure time, where the correlation of the two outcomes is partially specified in

the conditional distribution of the recurrent event process given the failure time. Note that

neither of the two papers used frailty in their joint models. In this paper we consider joint

modeling of the recurrent event process and the failure time via frailty. This joint model

possesses attractive features of frailty models, especially in its interpretation of correlation,

and avoids parametric assumption on the frailty term.

This paper is organized as follows: In Section 2, we introduce a joint model of recurrent

event process and failure time in which a common subject-specific latent variable (frailty) is

used to model the association between intensity of the recurrent event process and hazard

of the failure time. The proposed joint model is flexible in that no parametric assumptions

on the distributions of censoring times and latent variables are made and, under the model,

informative censoring is allowed for observing both the recurrent events and failure times.

Section 3 presents theoretical implications and trajectories of the proposed model. In Section

4, we study a ‘borrow-strength estimation procedure’ by first estimating the value of the

latent variable from recurrent event data, and next using the estimated values in the failure

time models. Properties of the regression parameter estimators and the estimated baseline

cumulative hazard functions are studied. Section 5 reports results of simulation studies,

along with the application to a Denmark schizophrenia case cohort study. A discussion is

given in Section 6.

3
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2 Notation and the Joint Model

Let N(t) denote the number of events occurring before or at time t, and let D be the

failure time and C be the potential censoring time for reasons other than the failure event,

respectively. The research interest is to derive inferential results on N(·) and D within a

fixed time interval [0, T0], where the event process could potentially be observed beyond T0.

Let X be a 1 × p vector of covariates. We then make the following model assumptions:

(M1) There exists a non-negative valued latent variable Z so that, given X = x and Z = z,

the recurrent event process N(·) is a non-stationary Poisson process with intensity

function

λ(t) = zλ0(t) exp(xα), 0 ≤ t ≤ T0,

where α is a p × 1 vector of parameters and the baseline intensity function λ0(t) is a

continuous function with Λ0(T0) =
∫ T0
0 λ0(u)du = 1. The latent variable Z satisfies

E(Z | X) = E(Z).

(M2) Given (x, z), the hazard function of D takes the form

h(t) = zh0(t) exp(xβ),

where β is a p × 1 vector of parameters and the baseline hazard function h0(t) is

continuous.

(M3) Conditioning on (x, z), (N(·), D, C) are mutually independent.

The occurrence of recurrent events is modeled by a subject-specific Poisson process via a

latent variable. Conditioning on z, the rate function equals the intensity function since a

Poisson process is memoryless. Under (M1), the baseline intensity function λ0(t) is shared

by all subjects and is left unspecified. A multiplicative hazard function with the same latent
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variable but a different baseline function is assumed for the hazard of failure event in (M2).

Clearly, large value of z inflates both the intensity of recurrent events and the hazard of

the failure event. Under Assumption (M3), D, C and N(·) are allowed to be correlated via

their connection with (x, z). This model relaxes the requirement that a common baseline

function be shared by the intensity of N(·) and the hazard of D assumed by Lancaster and

Intrator (1998), and still keeps the semiparametric model features of Wang et al. (2001).

Define Y = min(C, D, T0), the time when the observation of the recurrent event process is

terminated and ∆i = I(Di ≤ Yi), the observed censoring indicator. By further conditioning

on z, the usual independent censoring condition that N(·) be independent of Y given x is

relaxed for recurrent events, and, interestingly, the independent censoring condition that D

be independent of C given x is also relaxed for failure time data.

Note that the rate function of event occurrence at time t in a random population, for

study subjects with explanatory variable x, is µZλ0(t) exp(xα), where µZ = E[Z]. In many

public health and biomedical studies, the rate function is preferred for analysis, especially

in identifying treatment effects and risk factors, because of its marginal interpretation. For

instance, the parameter α can be interpreted as the logarithm of the ratio of the rate function

for every unit increase in the explanatory variable.

Under (M1∼3), the distribution of Z, the baseline functions λ0(t) and h0(t), and the

distribution of C serve as nonparametric components in the model. In the next section we

will examine model implications with or without additional parametric assumptions on Z,

yet no parametric assumptions will be made on these components for our developments of

estimation inferences in Section 4.

5
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3 Model Implications

Let H(t) = {N(u) : 0 ≤ u ≤ t} be the event history up to t, and let t1 ≤ t2 ≤ . . . ≤ tN(t)

be the ordered event times before or at t. Define fZ(·) to be the probability density func-

tion of the latent variable Z, f(·) a general probability density function, and f(· | ·) a

general conditional probability density function. In this section, we will discuss model im-

plications under the proposed joint model with or without additional parametric assump-

tions on Z. To simplify the discussion, we consider the reduced model without covariates.

Similar results for regression models with covariates can be obtained with replacement of

(Λ0(t), λ0(t), H0(t), h0(t)) by (Λ0(t)e
xα, λ0(t)e

xα, H0(t)e
xβ, h0(t)e

xβ).

Implication 1. (Posterior mean of Z) Given the observed recurrent event data, we show in

Appendix A that the posterior mean of Z can be expressed as

E[Z | H(y), y] =
N(y) + 1

Λ0(y)
× f(N(y) + 1 | y)

f(N(y) | y)
,

where f(N(y) | y) is the conditional probability density function of N(Y ) given Y . One can

examine that, given the follow-up time y, the posterior mean depends on the event history

H(y) only through the number of observed events. The posterior mean can be used for

individual-specific prediction when additional model assumptions are available for obtaining

an explicit form of the formula.

Implication 2. (Residual life time) Let t and s be non-negative constants. For individuals

who survive beyond time t (D ≥ t), the conditional probability for the residual life time to

be longer than s units of time given H(t) is

P (D ≥ t + s | H(t), D ≥ t) =
E[e−Z{H0(t+s)+Λ0(t)}ZN(t)]

E[e−Z{H0(t)+Λ0(t)}ZN(t)]
.

The derivation is given in Appendix A. The computation implies that

P (D ≥ t + s | N(t), D ≥ t) = P (D ≥ t + s | H(t), D ≥ t);

6
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that is, the residual life time probability depends on the event history only through the

number of events occurring up to time t. Further, the median residual life time after time

t can be obtained by solving P (D ≥ t + s | N(t), D ≥ t) = 1/2. The residual life time

unconditional on the event history has the survival function

P (D ≥ t + s | D ≥ t) =
E[e−ZH0(t+s)]

E[e−ZH0(t)]
.

For the specific case that Z is distributed as gamma(a, b) with mean a/b, the residual

life time probability, given the event history, has the survivor function

P (D ≥ t + s | N(t), D ≥ t) =
( b + H0(t) + Λ0(t)

b + H0(t + s) + Λ0(t)

)N(t)+a
.

This conditional survival function has the following interesting interpretation: With each

additional event occurrence in the time interval [0, t], the survival probability at time t + s

is decreased by the constant factor, {b + H0(t) + Λ0(t)}/{b + H0(t + s) + Λ0(t)}, where the

constant factor has a value between 0 and 1 and it depends on (H0(t), H0(t + s), Λ0(t), b).

Additionally, with the assumption that Z is distributed as gamma(a, b), the survival function

for the residual life time unconditional on the event history can be expressed as

P (D ≥ t + s | D ≥ t) =
( b + H0(t)

b + H0(t + s)

)a
.

It is then interesting to see that P (D ≥ t + s | N(t) = 0, D ≥ t) ≥ P (D ≥ t + s | D ≥ t),

where the inequality relationship becomes strict if Λ0(t) > 0 and H0(t+ s) > H0(t) as s > 0.

That is, survivors at time t who experienced no events before t would have higher probability

to live s units of residual life time than those population survivors at time t.

Implication 3. (Residual life time for censored subjects) It is also possible to examine the

residual life time of those who are censored at time t given the event history

P (D ≥ t + s | Y = t, ∆ = 0,H(t)) =
E[e−Z{H0(t+s)+Λ0(t)}ZN(t)fc(t | Z)]

E[e−Z{H0(t)+Λ0(t)}ZN(t)fc(t | Z)]
,

7
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where ∆ = I(D ≤ C) is the censoring indicator and fc(t | z) is the conditional probability

density function of the censoring time, C, given Z . If we assume that the hazard function

of C given Z is λc(t | z) = zg0(t) and that Z is distributed as gamma(a, b), then we have

P (D ≥ t + s | N(t), Y = t, ∆ = 0) =
( b + H0(t) + Λ0(t) + G0(t)

b + H0(t + s) + Λ0(t) + G0(t)

)a+N(t)+1
,

where G0 is the cumulative distribution function of g0. With each additional event, the

probability of surviving extra s unit of time after being censored at t is decreased by a

constant factor, where the constant factor depends on (H0(t), H0(t + s), Λ0(t), G0(t), b).

Implication 4. (Effect of failure time on recurrent events) We derive in Appendix A the

mean function of the recurrent event process conditional on the failure time. For t ≥ s,

E[N(s) | D ≥ t] =
E[Ze−ZH0(t)]

E[e−ZH0(t)]
Λ0(s).

The mean function given failure time can be decomposed into two parts: one part depends on

the baseline cumulative rate function, and the other part depends on the baseline cumulative

hazard function and the frailty distribution. The function E[N(s) | D ≥ t] can be further

shown to be decreasing in t, where t ≥ s. This result is intuitive because our model implies

that the subject-specific event occurrence rate is positively correlated with the risk of failure

event: subjects who survive longer tend to have lower event occurrence rates.

4 Estimation Procedure and Asymptotic Properties

4.1 A Brief Review

Let subscript i be the index for a subject, i = 1, 2, . . . , n. For subject i, denote by Xi the time-

independent covariate, Zi the subject-specific latent variable, Yi the observed terminating

time for observing the event process Ni(·), Di the failure time, and ∆i = I(Di ≤ Yi) the

censoring indicator. We further denote by mi the number of recurrent events occurred before

8
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time Yi and ti1, . . . , timi
the observed event times for subject i. For ease of notation, we use

mi and tij, i = 1, 2, . . . , n, j = 1, 2, . . . , mi, to denote either random variables or realization

values. Assume that {(Xi, Zi, Ni(·), Di, Ci)} are independent and identically distributed

(iid), therefore the observed {(Xi, Zi,mi, (ti1, . . . , timi
), Yi)} are also iid.

Under assumption (M3), Y and N(·) are independent given the values of Z and X. The

estimation procedure of Wang et al. (2001) can then be adopted to estimate Λ0 and α.

A key step of their estimation procedure is to observe that, conditional on (xi, yi, zi,mi),

the observed event times, {ti1, ti2, . . . , timi
}, are the order statistics of a set of iid random

variables with the density function πi(t), where for zi > 0

πi(t) =
ziλ0(t) exp(αxi)

ziΛ0(yi) exp(αxi)
=

λ0(t)

Λ0(yi)
, 0 ≤ t ≤ yi.

Note that πi(t) depends on neither zi nor xi, and it is a truncated density function of λ0(t)

with observations truncated from the right side of yi. As a result, the conditional likelihood

function Lc given (xi, yi, zi,mi), where

Lc ∝
n

∏

i=1

mi
∏

j=1

λ0(tij)

Λ0(yi)
,

does not require information on xi and the unobserved zi. Although the data are correlated,

computationally the conditional likelihood has the form of the nonparametric likelihood for

independently right-truncated data. The nonparametric MLE of Λ0, Λ̂0, based on randomly

truncated data is known to have a product-limit representation,

Λ̂0(t) =
∏

s(l)>t

(

1 − d(l)

R(l)

)

,

where {s(l)} are the ordered and distinct values of the event times {tij}, d(l) is the number of

events occurring at s(l), and R(l) is the total number of events with event time and observation

terminating time satisfying {tij ≤ s(l) ≤ yi}.

It follows E[mi | Xi, Yi, Zi] = Zi exp(Xiα)Λ0(Yi) that

E[miΛ
−1
0 (Yi) | Xi, Yi] = E[E[mi | Xi, Yi, Zi]Λ

−1
0 (Yi) | Xi, Yi] = µZ exp(Xiα),

9
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Thus a class of estimating equations for α is defined as

n−1
n

∑

i=1

wiX̄
T
i (miΛ0(Yi)

−1 − exp(X̄iγ)) = 0, (1)

where X̄i = (1, Xi), γT = (ln(µZ), αT ), and wi is a weight function depending on (Xi, γ, Λ0).

An estimate, α̂, of α can be obtained by solving the estimating equation with Λ0(Yi) replaced

by Λ̂0(Yi).

It is clearly seen that the estimation focus of Wang et al.(2001) was placed on the re-

current event process where the occurrence of the failure event is treated as a nuisance. In

section 4.2 we shall consider inferential results for the failure event as well as the joint model.

4.2 A Borrow-Strength Method

Let Ê and E represent the sample empirical means and the limit of average expectation,

respectively. More specifically, for any function a of (X, Y, Z, ∆), let Ê{a(X, Y, Z, ∆)} =

n−1 ∑n
i=1 a(Xi, Yi, Zi, ∆i) and E{a(X,Y, Z, ∆)} = limn→∞ n−1 ∑n

i=1 E[a(Xi, Yi, Zi, ∆i)], as-

suming existence of the limit.

Conditional on {(Xi, Yi, Zi), i = 1, . . . , n}, under (M2) the score function derived from

the partial likelihood can be expressed as

U(β) =
1

n

n
∑

i=1

∆i

{

Xi −
∑n

j=1 XjZj exp(Xjβ)I(Yj ≥ Yi)
∑n

j=1 Zj exp(Xjβ)I(Yj ≥ Yi)

}

I(Yi ≤ T0)

= Ê{X∆I(Y ≤ T0)} −
∫ T0

0

Ê{XZ exp(Xβ)I(Y ≥ s)}
Ê{Z exp(Xβ)I(Y ≥ s)}

dÊ{∆I(Y ≤ s)}. (2)

U defines a functional of four empirical processes for each fixed β. It is known that, under

mild regularity conditions, U(β) converges almost surely to U(β) for each fixed β, where

U(β) = E{X∆I(Y ≤ T0)} −
∫ T0

0

E{XZ exp(Xβ)I(Y ≥ s)}
E{Z exp(Xβ)I(Y ≥ s)} dE{∆I(Y ≤ s)}.
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Under (M3) and minor regularity conditions, it can be proved that the two equalities

dE{∆I(Y ≤ s)} = E{Z exp(βX)I(Y ≥ s)}h0(s)ds

and

dE{X∆I(Y ≤ s)} = E{XZ exp(βX)I(Y ≥ s)}h0(s)ds

hold when β satisfies (M2). It follows that U(β) = 0 if β is the true regression parameter.

By applying the Cauchy-Schwartz inequality to the derivative of U , it can be further shown

that the true regression parameter is the unique root (zero-crossing) of U .

In reality, we are not able to observe the value of Z, and therefore cannot have the

direct use of the score function U . Conditioning on (Xi, Yi, Zi), the expected value of mi is

Zi exp(Xiα)Λ0(Yi). It is natural to estimate Zi by

Ẑi =
mi

Λ̂0(Yi)eXiα̂
,

where Λ̂0(·) and α̂ are obtained from the estimation procedure discussed in the previous

section. We propose a “borrow-strength estimation procedure” as follows: First, compute

the individual frailty value Ẑi. Next, estimate the empirical processes in the score function

(2) by plugging in (Ẑ1, . . . , Ẑn), and, in the final step, use this working score function to

estimate β.

Note that the estimate of Λ̂0(t), and hence Ẑi, is obtained from the entire collection

of recurrent event data, and Ẑi captures the subject-specific characteristics under Model

(M1∼3). The proposed estimator Ẑi possesses desirable moment properties: the two pro-

cesses Ê{Ẑ exp(Xβ)I(Y ≥ s)} and Ê{XẐ exp(Xβ)I(Y ≥ s)} will be shown in the next sec-

tion to converge almost surely to the limits E{Z exp(Xβ)I(Y ≥ s)} and E{XZ exp(Xβ)I(Y ≥

s)}, respectively, for each fixed β. Therefore this strength-borrowing method allows the work-

ing score function to attain the same limit U as if the latent variable were observed. The

zero-crossing of the working score function serves as an estimator of the zero-crossing of U ,

11
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that is, β. To be specific, the working score function Û of U is given by

Û(β) = Ê{X∆I(Y ≤ T0)} −
∫ T0

0

Ê{XẐ exp(Xβ)I(Y ≥ s)}
Ê{Ẑ exp(Xβ)I(Y ≥ s)}

dÊ{∆I(Y ≤ s)}, (3)

with the usual convention that 0/0 = 0. It will be shown in Section 5 that Û converges to

U almost surely in a neighborhood of β. We then estimate β by β̂, where Û(β̂) = 0.

If Z were observed, the Breslow estimator H̃0(t) of the baseline cumulative hazard func-

tion, H0, would be

H̃0(t) =
∫ t

0

dÊ{∆I(Y ≤ s)}
Ê{Z exp(Xβ̂)I(Y ≥ s)}

,

which is a functional of two empirical processes. Under the conditional independence assump-

tion of C and D, given (X, Z), we can show that the baseline cumulative hazard function,

H0(t), is the limit of H̃0(t).

As with the estimation procedure for the regression parameters, we propose an estimator

of H0(t) as

Ĥ0(t) =
∫ t

0

dÊ{∆I(Y ≤ s)}
Ê{Ẑ exp(Xβ̂)I(Y ≥ s)}

. (4)

The limit of the estimator Ĥ0(t) can be shown to be the functional of the limits of the

two processes in (4), i.e., Ĥ0(t) → H0(t) almost surely. The asymptotic normality of the

proposed estimator Ĥ0(t) will be studied in the next section.

5 Large Sample Properties

In order to study the large sample properties of the proposed estimators, we impose the

following regularity conditions:

(A1) Pr(Y ≥ T0, Z > 0) > 0,
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(A2) X is uniformly bounded,

(A3) EZ2 < ∞, and

(A4) G(u) = E[ZI(Y ≥ u)] is a continuous function for u ∈ [0, T0].

Under these regularity conditions, the large sample properties of Λ̂0 and α̂ were es-

tablished in Wang et al. (2001). We denote the following asymptotic representations:
√

n(Λ̂0(t) − Λ0(t)) = n−1/2 ∑n
i=1 Λ0(t)bi(t) + op(1), for inf{y : Λ0(y) > 0} < t < T0,

and, provided E[∂ei/∂γ] is nonsingular,
√

n(α̂ − α) = n−1/2 ∑n
i=1 fi(α) + op(1), where

γT = (ln(µZ), αT ) and bi(t), fi, and ei are defined in Appendix B. Note that in the WQC

model, the baseline cumulative intensity function was not assumed to satisfy Λ0(T0) = 1 as

we assumed in (M1). The forementioned asymptotic representations have been modified in

order to accommodate the current model assumptions.

The weak convergence of
√

n(Ê{X∆I(Y ≤ T0)}−E{X∆I(Y ≤ T0)}) and
√

n(Ê{∆I(Y ≤

t)} − E{∆I(Y ≤ t)}) follow from the classical central limit theorem and Example 2.11.16

of van der Vaart and Wellner (1996). The two empirical processes converge weakly to a

zero-mean normal distribution, W1, and a zero-mean Gaussian process, W2, respectively.

Furthermore, by denoting V the joint probability density function of (X,Y,m) and

arguing as in the proof of Theorem 1 in Wang et al. (2001), we are able to show that
√

n
(

Ê{Ẑ exp(Xb)I(Y ≥ t)} − E{Z exp(Xb)I(Y ≥ t)}
)

= n−1/2 ∑n
i=1 ψ3i(t; b) + op(1), where

ψ3i(t; b) =
∫

mΛ−1
0 (y)ex(b−α)I(y ≥ t)(xfi(α) + bi(y))dV (x, y,m)

+miΛ
−1
0 (Yi)e

Xi(b−α)I(Yi ≥ t) − E{ZeXbI(Y ≥ t)},

with the usual convention 0/0 = 0. Note that ψ3i’s are uncorrelated random variables since

ψ3i(t; b) depends only on observed data from the ith individual. It follows the law of large

numbers that Ê{Ẑ exp(Xb)I(Y ≥ t)} − E{Z exp(Xb)I(Y ≥ t)} → 0 almost surely, for each

13
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fixed b. Furthermore, by the central limit theorem, the process converges in finite dimension

to a zero-mean Gaussian process W3 on the time interval [0, T0]. The explanatory variable X

is assumed to be bounded, without loss of generality we assume that X ≥ 0. Because items

in ψ3i(t; b) are monotone processes for each b, the process ψ3i(t; b) is tight and converges

weakly to W3 (see Example 2.11.16 of van der Vaart and Wellner 1996). Similar arguments

hold for Ê{XẐ exp(Xb)I(Y ≥ t)} − E{XZ exp(Xb)I(Y ≥ t)} → 0 almost surely, and the

process
√

n(Ê{XẐ exp(Xb)I(Y ≥ t)} − E{XẐ exp(Xb)I(Y ≥ t)}) has the asymptotically

iid representation n−1/2 ∑n
i=1 ψ4i(t; b) + op(1), where ψ4i is defined by

ψ4i(t; b) =
∫

mxΛ−1
0 (y)ex(b−α)I(y ≥ t)(xfi(α) + bi(y))dV (x, y, m)

+mixiΛ
−1
0 (Yi)e

Xi(b−α)I(Yi ≥ t) − E{XZeXbI(Y ≥ t)}.

Moreover, the process converges weakly to a zero-mean Gaussian process, denoted by W4.

We establish the consistency of β̂ as follows. Define the two functions

An(b) = Ê{(X∆I(Y ≤ T0)}(b − β) −
∫ T0

0
ln

( Ê{Ẑ exp(Xb)I(Y ≥ s)}
Ê{Ẑ exp(Xβ)I(Y ≥ s)}

)

dÊ{∆I(Y ≤ s)},

and

A(b) = E{(X∆I(Y ≤ T0)}(b − β) −
∫ T0

0
ln

( E{Z exp(Xb)I(Y ≥ s)}
E{Z exp(Xβ)I(Y ≥ s)}

)

dE{∆I(Y ≤ s)}.

One can easily verify that Û(b) and U(b) are derivatives of An(b) and A(b), respectively, and

β is the unique maximum of A. Furthermore, β̂ can be shown to be the unique maximum

of An.

From the foregoing discussions, the four processes in Û has the
√

n-convergence rate,

hence the four processes converge almost surely to their limits. Applying Lemma 3 of Gill

(1989) and the chain rule, one can show that the functional defined by Û is continuous

with respect to the supremum norm under regularity conditions (A1∼4). Then, for some
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compact neighborhood B of β, as n → ∞, supb∈B | Û(b) − U(b) |→ 0 almost surely. Apply

Taylor expansion and by the fact that An(β) = A(β) = 0, one has An(b)−A(b) = {Û(β∗)−

U(β∗)}(b − β), where β∗ lies between b and β. Now it is clear that, for n → ∞, supb∈B |

An(b) − A(b) |→ 0 almost surely.

Define Γ̂(b) = dÛ(b)/db = d2An(b)/db2 and Γ̂(b) = dU(b)/db = d2A(b)/db2, that is,

Γ̂(b) =
∫ T0

0
−Ê{X2ẐeXbI(Y ≥ s)}

Ê{ẐeXbI(Y ≥ s)}
+

Ê{XẐeXbI(Y ≥ s)}2

Ê{ẐeXbI(Y ≥ s)}2
dÊ{∆I(Y ≤ s)},

and

Γ(b) =
∫ T0

0
−E{X2ZeXbI(Y ≥ s)}

E{ZeXbI(Y ≥ s)} +
E{XZeXbI(Y ≥ s)}2

E{ZeXbI(Y ≥ s)}2
dE{∆I(Y ≤ s)}

One can show that Γ̂(b) and Γ(b) are both negative definite, and it follows that An and A

are concave. By Lenglart’s theorem (Appendix II in Andersen and Gill 1982), the unique

maximum of An, β̂, converges in probability to the unique maximum of A, i.e., β. Hence we

establish the consistency of β̂.

Note that {Ẑ1, . . . , Ẑn} are correlated because these values are estimated from the entire

collection of recurrent event data; therefore, martingale theory does not apply to the working

score function, Û . In this paper the large sample properties of β̂ and Ĥ0(t) are studied by

empirical process theories and the functional delta method. For convenience we denote

a2 = aaT for any vector a. We present asymptotic theories in Lemmas 1 through 3, with

proofs given in Appendix B, and summarize these results in Theorem 1.

Lemma 1. Under regularity conditions (A1∼4) and the assumption that Ψ = E[∂e1/∂γ] is

nonsingular, n1/2Û(β) is the sum of asymptotically uncorrelated random variables: n1/2Û(β) =

n−1/2 ∑n
i=1 ψi(β) + op(1), where ψi(β) is defined in Appendix B. Moreover,

√
nÛ(β) con-

verges weakly to a normal distribution with zero mean and variance-covariance matrix

Σ(β) = E[ψi(β)2].
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Note that the variance-covariance matrix Σ can be consistently estimated by Σ̂(β̂), where

Σ̂(β̂) is defined in Appendix B. To study the large sample property of β̂, we further define

Γ(β) = ∂U(β)/∂β, and Γ̂(β) = ∂Û(β)/∂β.

Lemma 2. Assume that Ψ and Γ = Γ(β) are both nonsingular. Then, under regular-

ity conditions (A1∼4),
√

n(β̂ − β) = n−1/2 ∑n
i=1 Γ−1ψi(β) + op(1), where ψ(β) is defined

in Appendix B. Thus
√

n(β̂ − β) converges weakly to a normal distribution with mean

zero and variance-covariance matrix Γ−1Σ(Γ−1)T , which can be consistently estimated by

Γ̂(β̂)−1Σ̂(β̂){Γ̂(β̂)−1}T .

Lemma 3. Under regularity conditions (A1∼4) and by assuming that Ψ and Γ are non-

singular, the cumulative hazard function, H0(t), can be expressed as the sum of asymptoti-

cally uncorrelated random variables: n1/2{Ĥ0(t) − H0(t)} = n−1/2 ∑n
i=1 φi(t) + op(1), where

t ∈ [0, T0] and φi(t) is defined in Appendix B. Then n1/2{Ĥ0(t) − H0(t)} converges weakly

on [0, T0] to a zero mean Gaussian process with variance-covariance function E[φ1(t1)φ1(t2)].

Along with the results stated in Section 4.1 and following directly from Lemmas 2 and

3, we state the main asymptotic theorem below:

Theorem 1. Assume that Γ and Ψ are nonsingular. Under regularity conditions (A1∼4),

for each fixed s, inf{Λ0(y) > 0} < s < T0, and fixed t, t ∈ [0, T0], the random vector
√

n(α̂ − α, β̂ − β, Λ̂0(s) − Λ0(s), Ĥ0(t) − H0(t)) converges weakly to a multivariate normal

distribution with mean 0 and variance covariance matrix E[η2
1], where ηi’s are uncorrelated

random vectors defined by ηi = (fi(α), Γψi(β), Λ0(s)bi(s), φi(t)).
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6 Simulations and Data Analysis

6.1 Monte Carlo Simulations

Simulation studies have been conducted to assess the performance of the proposed estimators.

For all simulation studies, 1,000 simulated data sets are generated, each with n = 200 and

n = 500 independent subjects. The explanatory variable X was generated from a Bernoulli

distribution with P (X = 0) = P (X = 1) = 0.5, and the subject specific latent variable Z

was generated from a discrete (poisson with mean 10) and a continuous (gamma with mean

10 and variance 50) distribution. Given X = x and Z = z, the subject’s underlying recurrent

event process {N(t), t ∈ [0, 10]} is a non-stationary Poisson process with the corresponding

intensity function zλ0(t) exp(xα) and the subject’s failure time D has a hazard function

zh0(t) exp(xβ). To examine the performance of proposed estimators under different choices

of (α, β) and (λ0(·), h0(·)), we also consider combinations corresponding to (α, β) = (0, 0)

and (−1,−1.5) and the following two sets of functions for λ0(t) and h0(t). Scenario I:

λ0(t) = 1/10, and h0(t) = t/400; Scenario II: h0(t) = (t + 1)/10, h0(t) =
√

t/200. Finally,

the censoring time C is either a exponential variable with mean 10 when x = 1, or a

exponential variable with mean 300/z2 when x = 0. Given (x, z), the triplets (N(·), D, C)

are mutually independent.

Suppose the censoring time C is the potential dropout time. The justification of such a

design for the censoring variable is the following: Suppose the frailty is an unobserved health

indicator, in the control group (X = 0), sick patients with high occurrence rate of recurrent

events drop out early due to large values of frailty; in the treatment group (X = 1), on the

other hand, because the treatment has effectively reduced the event occurrence rates, the

dropout is non-informative for both the recurrent event process and the failure time.

As summarized in Table 1, the average death rate ranges from 13% to 28%, the aver-
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age length of follow-up time ranges from 3.9 to 4.91, and the average number of observed

recurrent events ranges from 1.57 to 3.65 in the conducted simulation studies. It is noted

that the average follow-up time is approximately the same under different choices of (λ0, h0),

but the average number of observed events is smaller under Scenario II. The result of sim-

ulation studies is summarized in Table 2. For each simulation study, the empirical bias,

standard error, and correlation coefficient of proposed estimators were calculated based on

1,000 samples. Figures 1 and 2 show the estimates and the pointwise 95% confidence inter-

vals of the baseline cumulative intensity function and baseline cumulative hazard function.

As shown in Table 2 and Figures 1 and 2, the proposed estimator performs reasonably well;

that is, the empirical bias in the estimates of regression parameters are small and the av-

erages of Λ̂0(t) and Ĥ0(t) are almost indistinguishable from the true curves. Note that the

parameter estimates under Z ∼ poisson(10) have smaller standard errors than those under

Z ∼ gamma(2, 5), and the empirical correlation coefficients between α̂ and β̂ are smaller

under the assumed poisson distribution; this is because the poisson(10) distribution has

smaller variability than the gamma(2, 5) distribution, i.e., the defined population is more

homogeneous under Z ∼ poisson(10).

With data generated by Model (M1∼3), it is interesting to see results from the use of

a popular but incorrect model, i.e., the proportional hazards model, h(t) = h∗
0(t) exp(xβ∗),

for the failure time data. By using the partial likelihood method (Cox, 1972), Table 2 also

reports the average and empirical standard error of the 1000 estimates of β∗. It is observed

that using the Cox proportional hazards model, which incorrectly assumes the independent

censoring assumption, results in biased estimation of the treatment effect. This phenomenon

can be explained as follows: In the simulated control group (X = 0) sicker patients with

higher hazards tend to drop out at earlier times, therefore, risk sets are likely to consist

of healthier patients at later time points. As a result, the estimates given by the Cox

proportional hazards model based on comparisons of subjects within risk sets underestimates
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the treatment effect when treatment reduces the risk of death and conclude that treatment

is associate with increased risk of death when the treatment does not affect the mortality

rate.

6.2 Data Analysis

A Denmark registry data set recorded the initial and recurrences of hospitalizations and

associated patient information from 8,811 patients whose first schizophrenia-related hospi-

talization occurred between April 1, 1970 and March 25, 1988 (Eaton et al. 1992a, b). The

catchment area for the register is the entire nation of Denmark. The data provide a large

collection of repeated psychiatric measurements as well as recorded hospitalization episodes.

All death records in Denmark are linked into to the register.

Table 3 summarizes numbers of hospital admissions and deaths for subgroups by gender

and age of onset. Comparing crude proportions seems to suggest that patients whose first

hospitalization occurred after age 20 tend to have fewer hospitalizations but are more likely

to die before the end of study. The hospitalizations and survival experiences do not look

very different in males and females based on these summary statistics.

We apply the proposed joint model to the Denmark schizophrenia cohort data and in-

vestigate the effects of gender and age of onset on the rate of hospitalization and the risk of

death. The gender indicator is set to be 1 for male and 0 for female, and the indicator of

age onset is set to be 1 if less than 20 years of age and 0 if greater than or equal to 20.

To estimate the standard errors of α̂, β̂, and Λ̂0(t) and Ĥ0(t) at selected time points,

a nonparametric bootstrap method for clustered data was adopted by repeatedly sampling

8811 subjects with replacement, using subject as the sampling unit, from the schizophrenia

cohort data. The results of data analysis are summarized in Table 4. Estimates of Λ0(t) and

H0(t), and their pointwise 95% bootstrap confidence intervals are given in Figure 3. Table
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4 shows that patients with early onset (≤ 20 y/o) are hospitalized more often (21% higher)

and have decreased risk of death (57% lower). Moreover, being a male will decrease one’s

occurrence rate of hospitalization episodes and the risk of death by 16% (≈ 1 − e−0.18) and

10% (≈ 1− e−0.11), respectively. The estimated covariate effects are statistically significant,

except for the gender effect on the risk of death, which is marginally significant. It is

interesting to see that the age of onset has opposite effects on hospital admissions rate and

the hazard of death - this is not surprising, however, since young patients tend to have longer

life expectancy. Also, the analysis confirms the theory in schizophrenia that patients with

early onset age tend to be hospitalized more often than those with later onset age.

In the case of a degenerate frailty, the Cox proportional hazards model gives estimates

of −0.74 (S.E.= 0.12) and −0.14 (S.E.= 0.06) for the effects of early onset and gender,

respectively. The direction of covariate effects estimated in the Cox proportional hazards

model are consistent with the estimates under the proposed model.

7 Discussions

Frailty models are commonly adopted in modeling multivariate survival time data (Clay-

ton, 1978; Oakes 1982) and in jointly modeling repeated measures and survival time data

(Henderson, Diggle, and Dobson, 2000; Lin, Turnbull, McCulloch, and Slate, 2002). In this

paper, we propose a semiparametric joint model for the recurrent event process and failure

time data. A latent variable (frailty) is assumed to act as a multiplicative factor in both

the intensity function and the hazard function, and hence induces the correlation between

the event process and the failure time. Unlike the usual setting of frailty models where a

parametric distribution is assumed for the frailty, a specific feature of our model is that the

frailty distribution is treated as nuisances and no parametric assumptions were imposed.

Additionally, via the use of frailty, the proposed model relaxes the independent censoring

20

http://biostats.bepress.com/jhubiostat/paper25



condition for observing both the recurrent event process and the failure time data.

For a semiparametric model like (M1∼3), model checking is expected to be a difficult task

in general. This paper does not intend to develop methods for formal model checking and

we simply suggest possible approaches for the validation of model assumptions. Rigorous

study of model checking methods will be conducted elsewhere. To test the assumption of

a common baseline intensity function shared by all subjects, we utilize the fact that, under

(M1) and conditioning on (mi, xi, yi, zi), tij are iid with the cdf F (t)I(0 ≤ t ≤ yi)/F (yi).

Define Vij = F (tij)I(0 ≤ tij ≤ yi)/F (yi) then Vij are order statistics of iid uniform(0, 1)

random variables. Let V̂ij = F̂ (tij)I(0 ≤ tij ≤ yi)/F̂ (yi), then a necessary condition to

validate the assumption of sharing a common intensity function is to check if the empirical

distribution of {V̂ij : j = 1, . . . , mi; i = 1 . . . , n} is approximately uniform(0, 1) distribution.

To check on the proportional rate and hazards model assumption imposed by (M1) and (M2),

respectively, replace Z with Ẑ to derive the Schoenfeld residuals (Schoenfeld 1982). If the

assumption of proportional hazards holds, the derived residuals are expected to randomly

fluctuate around zero.

In this paper, a borrow-strength procedure was proposed by first estimating the value

of the latent variable from recurrent event data, and next using the estimated value in the

failure time models. The central idea of estimation is to utilize moment properties of Ẑ so

that the partial score functions, with Z or Ẑ, attain the same convergence function. The

proposed Ẑ requires no parametric assumption on Z and is easy to compute. As opposed to

this approach, an alternative choice is to estimate Z by the posterior mean of Z given the

observed recurrent event data; however, as discussed in Implication 1, the posterior mean

does not have an explicit form in our model setting, and is therefore not a useful choice in

theory or application.

The proposed estimation procedure is not without constraints - it is applicable only to
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time-independent covariates. In some applications, it would be desirable to develop estima-

tion procedures that allow for both time-invariant and time-dependent covariates. Also, the

implications and trajectories described in Section 3 help understand the general relationship

between the recurrent event process and the failure time. However, the probability formulas

established in Section 3 can not be made explicit unless the unknown parameters in the for-

mulas are known or estimable, and, to accomplish such a task, it requires more parametric

modeling and alternative estimation procedures. Such work will be considered elsewhere in

the future. Finally, the proposed time-to-events models assume a common baseline inten-

sity/rate function be shared by all subjects and the intensity/rate function does not change

after the occurrence of an event. To characterize the possible change in the risk of event oc-

currence after each event time, techniques for time-between-events models by, say, Prentice,

Williams, and Peterson (1981) and Chang and Wang (1999) can be adopted.

Appendix A

Implication 1: The probability density function of the event history given the value of the

frailty and the termination time can be expressed as

f(H(y) | z, y) = f(H(y) | N(y), z, y)f(N(y) | z, y) =





N(y)
∏

j=1

λ0(tj)

Λ0(y)



 f(N(y) | z, y),

where f(N(y) | z, y) is the probability density function of the number of observed recurrent

events given the value of the frailty and the termination time. Consequently,

f(H(y) | y) =
∫

f(H(y) | z, y)f(z | y)dz =





N(y)
∏

j=1

λ0(tj)

Λ0(y)



 f(N(y) | y) .

Thus we can write the posterior mean of Z, given the observed recurrent event data, as

E[Z | H(y), y] =
∫

zf(H(y) | z, y)
f(z | y)

f(H(y) | y)
dz =

∫

zf(N(y) | z, y) × f(z | y)

f(N(y) | y)
dz

=
∫

z × exp(−zΛ0(y))(zΛ0(y))N(y)

N(y)!
× f(z | y)

f(N(y) | y)
dz
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=
N(y) + 1

Λ0(y)

∫

f(N(y) + 1 | z, y)
f(z | y)

f(N(y) | y)
dz

=
N(y) + 1

Λ0(y)
× f(N(y) + 1 | y)

f(N(y) | y)
.

Implication 2: For 0 ≤ t ≤ t + s ≤ T0, the survival function of the residual life time after

time t, given the event history before and up to time t, can be expressed as P (D ≥ t + s |

H(t), D ≥ t) = P (D ≥ t + s,H(t))/P (D ≥ t,H(t)), where

P (D ≥ t + s,H(t)) =
∫

P (D ≥ t + s | z)f(H(t) | z)fZ(z)dz

=
∫

P (D ≥ t + s | z)f(H(t) | N(t), z)f(N(t) | z)fZ(z)dz

=
∫

e−zH0(t+s) ×




N(t)
∏

j=1

λ0(tj)

Λ0(t)



 × e−zΛ0(t)(zΛ0(t))
N(t)

N(t)!
fZ(z)dz

=
1

N(t)!

N(t)
∏

j=1

λ0(tj) × E[e−Z{H0(t+s)+Λ0(t)}ZN(t)],

and, similarly, P (D ≥ t,H(t)) = (N(t)!)−1 ∏N(t)
j=1 λ0(tj) × E[e−Z{H0(t)+Λ0(t)ZN(t)}]. We then

simplify the formula

P (D ≥ t + s | H(t), D ≥ t) =
E[e−Z{H0(t+s)+Λ0(t)}ZN(t)]

E[e−Z{H0(t)+Λ0(t)}ZN(t)]
.

Implication 4: Following (M3), the mean function of the recurrent event conditional on

the failure time can be expressed as

E[N(s) | D ≥ t] =
∫ E[N(s) | z] P (D ≥ t | z)

P (D ≥ t)
fZ(z)dz

=
∫ zΛ0(s) × e−zH0(t)

E[e−ZH0(t)]
fz(z)dz =

E[Ze−ZH0(t)]

E[e−ZH0(t)]
Λ0(s). (5)
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The partial derivative of the right-hand-side term in (5) with respect to t can be derived as

E[Ze−ZH0(t)]2 − E[Z2e−ZH0(t)]E[e−ZH0(t)]

E[e−ZH0(t)]2
h0(t)Λ0(s).

The partial derivative can be shown to be nonpositive by applying the Cauchy-Schwartz

inequality, and, as a result, the mean function in (5) is decreasing in t, t ≥ s.

Appendix B

Denote tij the jth event time of the ith subject, and define the functions G(t) = E[Z1I(Y1 ≥

t)], R(t) = G(t)Λ0(t), Q(t) =
∫ t
0 G(u)dΛ0(u), and, for i = 1, . . . , n,

bi(t) =
mi
∑

i=1

{

∫ T0

t

I(tij ≤ u ≤ Yi)dQ(u)

R2(u)
− I(t < tij ≤ T0)

R(tij)

}

.

Under regularity conditions (A1∼4), it has been shown in Wang et al. (2001) that Λ̂0(t) −

Λ0(t) = n−1 ∑n
i=1 Λ0(t)bi(t) + op(n

−1/2), for inf{Λ0(y) > 0} < t < T0, and
√

n(Λ̂0(t) − Λ0(t))

converges weakly to a normal distribution with zero mean and variance Λ0(t)
2E[b2

1(t)].

Define V ∗ to be the joint probability measure of (w, X̄,m, Y ) and

ei = −
∫ wx̄tmbi(y)

Λ0(y)
dV ∗(w, x̄,m, y) + wix̄

t
i

{

miΛ0(yi)
−1 − exp(x̄iγ)

}

.

Then the left-hand-side of the estimating function (1) can be expressed as n−1 ∑n
i=1 ei +

op(n
−1/2). Assuming E[∂e1/∂γ] is nonsingular, one has

√
n(α̂−α) = n−1/2 ∑n

i=1 fi(α)+op(1),

where fi(α) is the vector function E[−∂e1/∂γ]−1ei without the first entry, and
√

n(α̂ − α)

converges to a multivariate normal distribution with zero mean and variance E[f2
1 ].

Proof of Lemma 1.

Straightforward algebra yields

n1/2Û(β) =
1√
n

n
∑

i=1

∫ T0

0
Xi −

Ê{XẐeXβI(Y ≥ s)}
Ê{ẐeXβI(Y ≥ s)}

{

d∆iI(Yi ≤ s) − Ẑie
XiβI(Yi ≥ s)h0(s)ds

}

.
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Since the mapping of Û from the four empirical processes, under the regularity conditions, is

compactly differentiable with respect to the supremum norm and the four empirical processes

converge weakly to their limits, we apply the functional delta method to Û and establish its

asymptotic representation n1/2Û(β) = n−1/2 ∑n
i=1 ψi(β) + op(1), where

ψi(β) = Xi∆iI(Yi ≤ T0) − E{X∆I(Y ≤ T0)}

+
∫ T0

0

ψ3i(s; β)E{XZeXβI(Y ≥ s)}
E{ZeXβI(Y ≥ s)}2

dE{∆I(Y ≤ s)}

−
∫ T0

0

ψ4i(s; β)

E{ZeXβI(Y ≥ s)}dE{∆I(Y ≤ s)}

−
∫ T0

0

E{XZeXβI(Y ≥ s)}
E{ZeXβI(Y ≥ s)} d

(

∆iI(Yi ≤ s) − E{∆I(Y ≤ s)}
)

.

Note that ψi’s are uncorrelated random variables because ψi depends only on the observed

data of the ith individual. Following the classical central limit theorem, n1/2Û(β) is asymp-

totically normal with zero mean and variance-covariance matrix Σ(β) = E[ψi(β)2]. De-

fine ψ̂i(β) by substituting empirical processes for their limits in ψi, and define Σ̂(β) =

n−1 ∑n
i=1{ψ̂i(β)−ψ∗(β)}{ψ̂i(β)−ψ∗(β)}T , where ψ∗(β) is the average over ψ̂1(β), . . . , ψ̂n(β).

It can be shown that the second moment of ψ̂i(β) exists, and it follows from the strong

law of large numbers that Σ̂(β) converges to its limit, Σ(β), uniformly. Arguing as in

the proof for the consistency of β̂, we can show that the functional defined by Σ̂ satisfies

supb∈B | Σ̂(b) − Σ(b) |→ 0 almost surely. By the consistency of β̂, as well as the continuity

of Σ(b) at β, we are able to show that Σ̂(β̂) is a consistent estimator of Σ(β). Moreover, in

terms of the notations used before, we can rewrite the limit of
√

nÛ(β) as

W1 −
∫ T0

0
W4(s)h0(s)ds −

∫ T0

0

E{XZeXβI(Y ≥ s)}
E{ZeXβI(Y ≥ s)} {dW2(s) −W3(s)h0(s)ds}.

Proof of Lemma 2.
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Define Γ̂(b) = dÛ(b)/db, that is,

Γ̂(b) =
∫ T0

0
−Ê{X2ẐeXbI(Y ≥ s)}

Ê{ẐeXbI(Y ≥ s)}
+

Ê{XẐeXbI(Y ≥ s)}2

Ê{ẐeXbI(Y ≥ s)}2
dÊ{∆I(Y ≤ s)}.

It can be shown that Γ̂(b) defines a functional of four empirical processes. Arguing as in the

proof of consistency of β̂, one can show that Γ̂(b) → Γ(b) in a neighborhood B of β, where

Γ(b) is the derivative of U and

Γ(b) =
∫ T0

0
−E{X2ZeXbI(Y ≥ s)}

E{ZeXbI(Y ≥ s)} +
E{XZeXbI(Y ≥ s)}2

E{ZeXbI(Y ≥ s)}2
dE{∆I(Y ≤ s)}

Applying Taylor expansion, we have Û(β̂) − Û(β) = Γ̂(β∗)(β̂ − β), where β∗ lies on the

segment between β̂ and β. In light of the consistency of β̂, and therefore β∗, for β as

well as the continuity of Γ(β) at β, Γ̂(β∗) converges to Γ(β) almost surely. By Slutsky’s

theorem,
√

n(β̂ − β) converges to a normal distribution with mean zero and covariance

matrix Γ(β)−1Σ(β){Γ(β)−1}T , where Σ(β) = E[ψ1(β)ψ1(β)T ]. Arguing as before, Γ(β) can

be consistently estimated by Γ̂(β̂), and, as a result, Γ̂(β̂)−1Σ̂(β̂){Γ̂(β̂)−1}T is a consistent

variance estimator.

Proof of Lemma 3.

Define the functions Ĥ0(t; b) =
∫ t
0

dÊ{∆I(Y ≤s)}
Ê{ẐeXbI(Y ≥s)} and H0(t; b) =

∫ t
0

dE{∆I(Y ≤s)}
E{ZeXbI(Y ≥s)} . Ĥ0(t; b)

is a continuous functional of two processes since the denominator is bounded away from

zero. The almost sure convergence of the two processes can be established from the previous

discussions. It can be shown that supt∈[0,T0],b∈B | Ĥ0(t; b)−H0(t; b) |→ 0 almost surely. Then

the consistency of Ĥ0(t, β̂) for H0(t) follows the strong consistency of β̂ for β.

A Taylor expansion of Ĥ0(t; β̂) about β gives

Ĥ0(t; β̂) = Ĥ0(t; β) +
∂Ĥ0(t; b)

∂b
|b=β∗t

(β̂ − β), (6)

where β∗
t depends on t and lies on the line segment between β̂ and β. By similar argument

used above, one can show that ∂Ĥ0(t; b)/∂b |b=β∗t
converges in probability to ∂H0(t; b)/∂b |b=β
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for t ∈ [0, T0]. Moreover, the functional delta method applied to Ĥ0(t, β) yields

√
n(Ĥ0(t; β) − H0(t; β)) =

∫ t

0
−
√

n(Ê{ẐeXβI(Y ≥ s)} − E{ZeXβI(Y ≥ s)})
E{ZeXβI(Y ≥ s)}2

dE{∆I(Y ≤ s)}

+
∫ t

0

d
√

n(Ê{∆I(Y ≤ s)} − E{∆I(Y ≤ s)})
E{ZeXβI(Y ≥ s)} + op(1).

Following Theorem 2,
√

n(β̂−β) = −Γ(β)
√

nÛ(β)+op(1), and by definition H0(t, β) = H0(t).

From (6) the estimator of the baseline cumulative hazard function can be expressed as

√
n

{

Ĥ0(t; β̂) − H0(t)
}

=
√

n
{

Ĥ0(t; β) − H0(t; β)
}

+
∂Ĥ0(t; b)

∂b
|b=β∗t

√
n(β̂ − β)

=
1√
n

n
∑

i=1

φi(t) + op(1),

where φi(t) is defined by

φi(t) =
∫ t

0
−ψ

(3)
i (s; β)dE{∆I(Y ≤ s)}
E{ZeXβI(Y ≥ s)}2

+
∫ t

0

d(∆iI(Yi ≤ s) − E{∆I(Y ≤ s)})
E{ZeXβI(Y ≥ s)} − ∂H0(t; β)

∂β
Γ(β)ψi(β).

Since φi(t) is a linear combination of monotone processes with bounded second moments,

the weak convergence of
√

n(Ĥ0(t; β̂)−H0(t)) follows from Example 2.11.16 of van der Vaart

and Wellner (1996).
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Table 1: Summary of the simulated data

Z ∼ poisson(10) Z ∼ gamma(2, 5)
(α, β) P (death) Y m P (death) Y m

Scenario I: λ0(t) = 1/10, h0(t) = t/400

(0, 0) 0.27 3.90 3.64 0.26 4.44 3.40

(−1,−1.5) 0.14 4.41 2.34 0.14 4.91 2.19

Scenario II: λ0(t) = (t + 1)/60, h0(t) =
√

t/200

(0, 0) 0.28 3.80 2.40 0.26 4.35 2.26

(−1,−1.5) 0.15 4.36 1.59 0.14 4.87 1.58
P (death) is the average death rate; Y is the average terminating time;
m is the average number of recurrent events

Table 2: Summary statistics of the simulation studies

Z ∼ poisson(10) Z ∼ gamma(2, 5)

(α, β) Bα Vα Bβ Vβ ρ Avg β̂∗ Vβ∗ Bα Vα Bβ Vβ ρ Avg β̂∗ Vβ∗

Scenario I: λ0(t) = 1/10, h0(t) = t/400

n = 200
(0, 0) 0 181 -3 383 0.43 0.383 334 4 274 -4 438 0.61 0.584 331

(−1,−1.5) -8 255 -25 487 0.49 -1.228 406 -5 277 -25 484 0.50 -0.769 395

n = 500
(0, 0) -3 151 -1 243 0.58 0.244 191 7 199 21 283 0.67 0.599 207

(−1,−1.5) 0 176 -6 307 0.54 -1.211 249 -13 212 -1 324 0.63 -0.752 244

Scenario II: λ0(t) = (t + 1)/60, h0(t) =
√

t/200

n = 200
(0, 0) -13 412 2 496 0.75 0.211 305 17 511 23 608 0.83 0.539 319

(−1,−1.5) -38 422 -44 558 0.64 -1.253 400 -51 553 -17 681 0.78 -0.846 410

n = 500
(0, 0) 10 243 15 303 0.72 0.208 197 4 358 16 399 0.86 0.538 192

(−1,−1.5) -23 287 -16 373 0.71 -1.246 246 -18 369 -15 445 0.81 -0.822 246

Bα and Bβ are the empirical bias (×1000) of α̂ and β̂; Vα and Vβ are the empirical standard error (×1000) of α̂ and β̂;

ρ is the empirical correlation coefficient of α̂ and β̂; Avg β̂∗ is the empirical average and Vβ∗ is the empirical standard
error (×1000) of the estimator based on the Cox proportional hazards model.
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Figure 1: Plots of estimated Λ̂0(t) and Ĥ0(t) with pointwise 95% confidence intervals for
n = 200. Scenario I: λ0(t) = 1/10, and h0(t) = t/400; Scenario II:λ0(t) = (t+1)/60, h0(t) =√

t/200. —: True curve, - - - : empirical average, · · ·: pointwise 95% confidence intervals.
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Figure 2: Plots of estimated Λ̂0(t) and Ĥ0(t) with pointwise 95% confidence intervals for
n = 500. Scenario I: λ0(t) = 1/10, and h0(t) = t/400; Scenario II:λ0(t) = (t+1)/60, h0(t) =√

t/200.—: True curve, - - - : empirical average, · · ·: pointwise 95% confidence intervals.
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Table 3: Hospital admissions and deaths for different subgroups

No. No. No. of hospital admissions since entry
Subgroup patients deaths 0 1 2 3 4 5 ≥6

Male 3318 368 984 581 394 331 200 157 671
(%) 100 11.1 29.7 17.5 11.9 10 6 4.7 20.2

Female 5493 685 1392 945 636 470 363 279 1408
(%) 100 12.5 25.3 17.2 11.6 8.6 6..6 5.1 25.6

Onset Age≤20 1065 76 187 130 144 90 82 59 373
(%) 100 7.1 17.6 12.2 13.5 8.5 7.7 5.5 35.0

Onset Age>20 7746 977 2189 1396 886 711 481 377 1706
(%) 100 12.6 28.3 18.0 11.4 9.2 6.2 4.9 22.0

Table 4: Summary of Denmark PCR data analysis

Risk factor Estimate SE 95% bootstrap CI

Hospital admissions:
Onset Age≤ 20 0.19 0.04 ( 0.10, 0.27)

Gender -0.18 0.04 (-0.26, -0.09)

Death:
Onset Age≤ 20 -0.84 0.13 ( -1.10, -0.62)

Gender -0.11 0.07 (-0.25, 0.01)
Note: SE= standard error of estimates from the 200 bootstrap samples;

95% bootstrap CI= (2.5%, 97.5%) quantiles of the 200 estimates.
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Figure 3: Plots of Λ̂0(t) and Ĥ0(t) for the Denmark schizophrenia cohort data, with pointwise
95% bootstrap confidence intervals.
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