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Abstract

In many clinical trials, studying neurodegenerative diseases including Parkinson’s disease (PD), 

multiple longitudinal outcomes are collected in order to fully explore the multidimensional 

impairment caused by these diseases. The follow-up of some patients can be stopped by some 

outcome-dependent terminal event, e.g. death and dropout. In this article, we develop a joint 

model that consists of a multilevel item response theory (MLIRT) model for the multiple 

longitudinal outcomes, and a Cox’s proportional hazard model with piecewise constant baseline 

hazards for the event time data. Shared random effects are used to link together two models. The 

model inference is conducted using a Bayesian framework via Markov Chain Monte Carlo 

simulation implemented in BUGS language. Our proposed model is evaluated by simulation 

studies and is applied to the DATATOP study, a motivating clinical trial assessing the effect of 

tocopherol on PD among patients with early PD.
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1 Introduction

In many longitudinal studies and clinical trials, researchers often collect some longitudinal 

outcomes y. The follow-up may be stopped by a dependent terminal event (e.g. death and 

dropout) whose probability of occurrence is non-ignorable, i.e. dependent on unobserved 

values of outcomes or latent variables related to outcomes. The scientific focus is often to 

study changes in outcomes over time and/or to analyze the relationship between y and time 

to the terminal event. It has been shown that the methods analyzing y alone are biased while 

a properly specified joint model provide consistent estimates.1 The approach of joint 

modeling constructs two sub-models for the longitudinal data and the event time data, linked 

by a set of subject-specific random effects.2 Many joint models involve a mixed effects 

model for the longitudinal data and a semiparametric Cox proportional hazard model for the 

event time.3 Many extensions have been proposed in the joint model literature such as using 
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both random effects and a latent stochastic process to link two sub-models 1; using a spline-

based approach to capture the non-linear shapes of subject-specific changes for longitudinal 

outcomes4; relaxation of the normality assumption on the random effects5; the incorporation 

of a cured fraction6; and multiple event times.7

However, in many clinical trials studying neurodegenerative diseases such as Parkinson’s 

disease (PD), Huntington disease, and Alzheimer’s disease, multiple longitudinal outcomes 

are collected to fully explore the multidimensional impairment caused by these diseases. To 

properly analyze these longitudinal data, one has to account for three sources of correlation, 

i.e. inter-source (different measures at the same visit time), longitudinal (same measure at 

different visit times), and cross correlation (different measures at different visits).8 

Multivariate generalized linear mixed effects models have been applied to analyze the 

multiple longitudinal outcomes in the joint model.4 But the computation associated with the 

high-dimensional integration is complicated and time-consuming. An alternative approach is 

the latent variable model.9 Specifically, a continuous latent variable is introduced to 

represent patients’ underlying disease severity and the observed longitudinal data can be 

viewed as measurements of the latent variable. Because all outcomes share the same latent 

variable, the dimensionality of the data can be reduced and fewer parameters are needed. To 

this end, multilevel item response theory (MLIRT) models have been widely used to analyze 

longitudinal data in social, behavioral, and health sciences.10–15 Within the MLIRT 

modeling framework, the observed measurements are viewed as imperfect manifestations of 

the interaction between subject-specific latent traits and measurement-specific parameters. 

The latent traits are regressed on covariates of interest (e.g. treatment and disease duration) 

as well as the confounding variables. All three sources of correlation are accounted for via 

either random effects or covariance matrix. Advantages of the MLIRT models include better 

reflection of multilevel data structure, simultaneous estimation of measurement-specific 

parameters and covariate effects, and accurate inference about high-level measures.16,17 

Marginal maximum-likelihood method18 and Bayesian method19 have been used for the 

MLIRT model inference. Skrondal and Rabe-Hesketh20,21 have provided detailed 

description and summary of the IRT models.

In this article, we propose a joint model with a MLIRT sub-model for the multiple 

longitudinal data and a Cox proportional hazard sub-model for time to the dependent 

terminal event. Two sub-models are linked by random effects denoting the subject-specific 

disease characteristics. We develop a Bayesian approach via Markov Chain Monte Carlo 

(MCMC) method for parameter estimation. To the best of our knowledge, there has been no 

previous work on the joint analysis based on the MLIRT modeling framework. The rest of 

the article is organized as follows. In Section 2, we describe the joint model, Bayesian 

inference, and model selection criterion. In Section 3, we apply the joint model to a 

motivating study. In Section 4, simulation studies are conducted to assess the performance of 

the proposed method. Section 5 provides a summary and discussion.
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2 Model

2.1 Model Formulation and Likelihood

Let yijk be the observed outcome k from patient i at time point j, where i = 1, …, N, j = 1, 

…, J, and k = 1, …, K. We have coded all outcomes such that larger values are worse 

clinical conditions. Let yij = (yij1, …, yijk, …, yijK)′ be the vector of observation for patient i 

at visit j and let yi = (yi1, …, yiK)′ be the outcome vector across visits. Let ti be the observed 

event time for patient i, and δi (1 if the event is observed and 0 otherwise) be the event 

indicator. We use a MLIRT sub-model for the multiple longitudinal outcomes and a Cox 

proportional hazard sub-model for the event time. In level 1 measurement model within the 

MLIRT framework, we model the binary outcome, the cumulative probabilities of ordinal 

outcome, and the continuous outcome by a two-parameter model,19 graded response 

model,19 and common factor model,22 respectively.

(1)

(2)

(3)

where random error for continuous outcomes , ak and bk (positive) are the 

outcome-specific “difficulty” parameter and “discrimination” parameter, respectively. For 

the ordinal outcome with nk categories, the order constraint ak1 < · · · < akl < · · · <aknk−1 

must be satisfied, and the probability of being in a particular category is p(Yijk = l) = p(Yijk 

≤ l |θij) − p(Yijk ≤ l − 1|θij). The continuous latent variable θij represents disease severity for 

patient i at time j, with higher value denoting more severe status. In the second level latent 

trait regression model, we postulate

(4)

where Xi0 and Xi1 are the covariates of interest associated with the disease severity, Xi0 and 

Xi1 can share part of or all the covariates. The variable tj is the visit time with t1 = 0 for 

baseline. The random effects ui0 and ui1 represent the subject-specific baseline disease 

severity and disease progression rate, respectively, and they follow normal distribution with 

mean 0 and variances 1 and , respectively, and correlation coefficient ρ. The regression 

parameter vectors β0 and β1 represent the covariate effects on the baseline disease severity 

and disease progression rate, respectively. For example, if θij = β01xi + ui0 + [β10 + β11xi + 

ui1]tj, where xi is an indicator variable of treatment (1 if treatment, 0 otherwise), then β01 is 
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the baseline group difference, and β10 and β10 + β11 are the disease progression rates for the 

placebo and treatment patients, respectively. The negative significant variable β11 indicates 

that the treatment is efficacious in slowing down the disease progression. Note that IRT 

models are over-parameterized because they have more parameters than can be estimated 

from the data.19 Additional constraints are usually required to make models identifiable. In 

the aforementioned models, we set Var[ui0] = 1 to obtain Var[θij] = 1 at t = 0 (baseline) to 

make the discrimination parameter bk identifiable.

One key assumption in the MLIRT model is that all measurements from each patient are 

independent conditioning on the random effect vector ui = (ui0, ui1)′.19 The conditional 

likelihood of the multiple longitudinal outcomes for patient i is

(5)

where p(yijk|ui) is the conditional density function of yijk obtained from Models (1)–(4). 

Under the Cox proportional hazard sub-model, the hazard of having a terminal event at time 

ti is

(6)

where ν0 and ν1 measure the association between the two sub-models. Two sub-models are 

linked together via the shared random effects ui0 and ui1, which is a popular approach in 

joint modeling.1,3 The covariate vector Xi can be the same or different from Xi0 and Xi1. We 

have selected piecewise constant function to approximate the baseline hazard function h0(t) 

because models using a piecewise constant baseline hazard yield good estimators for both 

fixed effects and frailty,23,24 although fixed cut points need to specified a priori. Given a set 

of fixed time points 0 = τ0 < τ1 < · · · < τm, and the baseline hazard vector g = (g0, g1, …, 

gm−1), we define the piecewise constant hazard function as , with 

indicator function Il (t) = 1 if τl ≤ t < τl+1 and 0 otherwise. The likelihood of event outcome 

ti and δi for patient i is

(7)

where the survival function . Conditional on the random effect 

vector ui, yi is assumed to be independent of ti. The full likelihood of the joint model for 

patient i is
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(8)

where p(ui) is the density function of ui. For notation convenience, we let the difficulty 

parameter vector be , with ak being numeric for binary and 

continuous outcomes and ak = (ak1, …, aknk−1)′ for ordinal outcomes. Let the 

discrimination vector be b = (b1, …, bK)′ and . The unknown parameter vector 

Φ = (a′, b′, β′, γ′, σu, ρ, σk, ν0, ν1, g′)′. We refer to the proposed joint modeling 

framework (8) as joint model. We refer to as reduced model, the model assuming the 

occurrence of the terminal event is independent to the longitudinal outcomes (i.e. ν0 = ν1 = 

0).

2.2 Bayesian Estimation and Model Selection

We develop a fully Bayesian approach via the MCMC method to estimate the unknown 

parameters. The model fitting is implemented using the BUGS language. Vague prior 

distributions are imposed on all parameters. Specifically, a normal distribution N(0, 100) is 

used for all components in a, β, and γ and for ν0 and ν1. We let all components in b and g 
have Uniform[0, 20] as prior distribution to ensure non-negativity. To satisfy the order 

constraint of ak for the ordinal outcome with nk categories, we let ak1 ~ N(0, 100), and akl = 

ak,l−1 + ωl for l = 2, …, nk − 1, with ωl ~ N(0, 100)I(0, ), i.e. normal distribution left 

truncated at 0. We use the prior distributions σk ~ Gamma(0.01, 0.01) and ρ ~ Uniform[−1, 

1]. Multiple chains with over-dispersed initial values are run to analyze data and the 

Gelman–Rubin diagnostic25 is used to ensure the scale reduction R̂ of all parameters are 

smaller than 1.1. Moreover, we use the trace plots and autocorrelation functions25 to ensure 

the chain convergence.

We have adopted two model selection criteria, i.e. Deviance Information Criterion (DIC)26 

and Bayes factor (BF).27 The deviance statistics is defined as D(θ) = −2 log f(y|θ) + 2 log 

h(y), where f(y|θ) is the likelihood function for the observed data y given the parameter 

vector θ, and h(y) is some standardizing function of the data alone. The DIC is defined as 

DIC = D ̄+ pD, where D ̄= Eθ|y[D(θ)] is the posterior expectation of the deviance, D(θ̄) = 

D(Eθ|y[θ]) is the deviance evaluated at the posterior mean of parameters, and pD = D̄ − D(θ̂) 
is the effective number of parameters, which captures model complexity. A smaller DIC 

indicates a better fit when comparing models.

BFs is a Bayesian alternative to p values for testing hypotheses and for quantifying the 

degree to which observed data support or conflict with a hypothesis. Let two competing 

models be M1 and M2. The BF in favor of model M1 over M2 is defined as:

(9)
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where p(Mi) is the prior probability of model Mi, where i = 1, 2, p(Mi|y) is the posterior 

probability of model Mi, and p(y|Mi) is the predictive probability of observing y under model 

Mi, and p(y|Mi) = ∫ f(y|θi, Mi) p(θi|Mi)dθi, where p(θi|Mi) is the prior distribution for 

parameter vector θi under model Mi. When the BF is greater than 100, decisive evidence is 

shown in favor of model M1. To avoid the integral involved in computation of BF, the 

Laplace–Metropolis estimator based on the normal distribution28 is adopted to approximate 

the predictive probability. Specifically, p(y|Mi) ≈ (2π)di/2|Σi|
1/2f(y|θ̄i, Mi) p(θ̄i|Mi), where di 

is the number of the parameters in θi, Σi is the posterior covariance matrix of θi, θ̄i is the 

posterior mean of parameters, p(θ̄i|Mi) is the prior probability of parameters evaluated at θ̄i, 

and f(y|θ̄i, Mi) is the likelihood when parameters are at the posterior mean values.

3 Application

Our work is motivated by the Deprenyl And Tocopherol Antioxidative Therapy of 

Parkinsonism (DATATOP) study. DATATOP was a double-blind, placebo-controlled 

multicenter clinical trial to determine whether deprenyl or tocopherol, alone or in 

combination, administered to patients with early PD will prolong the time until 

dopaminergic therapy to treat emerging disability.29 Totally 800 patients were randomly 

assigned in a 2 × 2 factorial design to receive double-placebo, active tocopherol alone, active 

deprenyl alone, and both active tocopherol and deprenyl. In this article, we investigate the 

effect of tocopherol and we define the placebo group as patients who did not receive 

tocopherol (double-placebo and active deprenyl alone groups, 401 patients), and the 

treatment group as patients who received tocopherol (active tocopherol alone and both active 

tocopherol and deprenyl groups, 399 patients). The longitudinal outcomes are Unified 

Parkinson’s Disease Rating Scale (UPDRS) total score, Schwab and England activities of 

daily living (SEADL), Mini-Mental State Exam (MMSE), and Hamilton rating scale for 

depression (HRSD) collected at baseline, months 1, 3, 9, and 15. UPDRS total score 

evaluates patients’ mentation, behavior, activities of daily living, and motor function. It is an 

approximate continuous variable with integer value from 0 (normal) to 176 (severe).30 

SEADL is a measurement of activities of daily living and it is an ordinal variable with 

integer value from 0 (severe) to 100 (normal) incrementing by 5.31 MMSE measures 

patients’ cognitive impairment and it is an ordinal variable with integer value from 0 (severe) 

to 30 (normal). HRSD, a depression test measuring the severity of clinical depression 

symptoms, is an ordinal variable with integer value from 0 (normal) to 52 (severe). During 

the course of the study, 192 and 184 patients in the placebo and treatment groups, 

respectively, reached a level of functional disability sufficient to warrant the initiation of 

dopaminergic therapy, which is a symptomatic therapy to provide temporary relief of PD 

symptoms. In this case, only the observed outcomes before the initiation of dopaminergic 

therapy can be used in the assessment of treatment efficacy because dopaminergic therapy 

can significantly change the values of the outcomes for a short period. Therefore, these 

individuals would have missing data after the initiation of dopaminergic therapy. Figure 1 

displays the mean UPDRS, SEADL, MMSE, and HRSD measurements over time for 

DATATOP patients with follow-up time less than 6 months (dotted line), 6–12 months 

(dashed line), and more than 12 months (solid line). Patients with shorter follow-up time 

tend to have higher UPDRS and HRSD values and lower SEADL and MMSE values, 
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indicating worse clinical outcomes. This phenomenon suggests the existence of association 

between the longitudinal outcomes and the time to dopaminergic therapy.

To analyze the DATATOP dataset, we have recoded the outcomes SEADL and MMSE so 

that higher values in all outcomes are worse clinical conditions. Moreover, we combine 

some categories in the outcomes SEADL, MMSE, and HRSD with zero or small number of 

individuals so that they have 7, 7, and 10 categories, respectively. The median follow-up 

time is 14 months (range: 0–25 months). We first perform the Schoenfeld residual test, the 

non-significant result (p = 0.43) indicates the validity of the proportionality assumption. To 

use the MLIRT sub-model, we let Xi0 = 0 and consider the treatment variable xi (1 

treatment, and 0 if placebo) as the only covariate in Xi1. Hence, the level 2 model (4) is θij = 

ui0 + (β10 + β11xi + ui1)tij, with visit time being tij = (0, 1, 3, 9, 15) and the random effects 

ui0 and ui1 representing the subject-specific baseline disease severity and disease progression 

rate, respectively. The survival time is time to the initiation of dopaminergic therapy. The 

treatment variable is the single covariate in the Cox sub-model so that h(ti) = h0(ti) exp(γxi + 

ν0ui0 + ν1ui1) in Model (6).

For model selection and comparison, we compute the DIC and BF illustrated in Section 2.2. 

The joint model has smaller DIC (53,168), comparing with 53,502 from the reduced model. 

The BF in favor of the joint model over the reduced model is much larger than 100, 

indicating decisive evidence in favor of the joint model according to the interpretation 

proposed by Kass and Raftery.27 Table 1 compares the posterior mean, standard deviation 

(SD), and 95% equal-tail credible intervals from the reduced and the best fit joint models. 

The results from the joint model indicate that the placebo patients have significant disease 

progression at the rate of 0.392 units per month (β̂10, 95% CI: [0.343, 0.446]). In 

comparison, the treatment patients have disease progression rate of 0.345 units per month 

(β̂10 + β̂11, 95% CI: [0.237, 0.461]) with insignificant tocopherol treatment effect of slowing 

down the disease progression rate by −0.047 per month (β1̂1, 95% CI: [−0.106, 0.015]). 

Moreover, tocopherol decreases the hazard of the initiation of dopaminergic therapy by 5% 

(γ ̂= −0.054, 1 − exp(−0.054) = 0.05, 95% CI: [−0.27,0.24]). The insignificant tocopherol 

effect is consistent with Shoulson.29 We observe that ν̂0 and ν̂1 are positive and significantly 

different from zero, (ν̂0 = 0.348, 95% CI: [0.144, 0.511], and ν̂2 = 3.854, 95% CI: [2.497, 

5.642]), suggesting that the patients with worse baseline disease severity (larger ui0) and 

faster disease progression rate (larger ui1) tend to have higher hazard of need for 

dopaminergic therapy and vice versa. Both the reduced and joint models give similar 

estimates to the outcome-specific parameters (a and b

To visualize the difference in the disease progression rates in two groups, Figure 2 displays 

the estimates of the latent disease severity θij of 100 randomly selected patient at each visit, 

together with the lowess smooth curves (based on all patients) denoted by the dashed 

(placebo group) and solid (treatment group) lines, respectively. Figure 2 suggests that two 

groups have similar disease progression rate before month 9 and the placebo patients 

deteriorate at a slightly faster rate starting from month 9, as manifested by the departure of 

two curves.
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Table 1 also shows positive correlation coefficient ρ between ui0 and ui1 (0.415, 95% CI: 

[0.294,0.535]), suggesting that the patient with worse baseline disease severity tend to have 

faster disease deterioration and vice versa. To obtain more insight into ui0, ui1, and ρ, we 

plot in Figure 3 ui0 (upper panel) and ui1 (lower panel) with their 95% credible intervals. 

Patients are sorted so that patients at the left have milder disease at baseline and slower 

disease progression rate (larger ranks), while patients at the right have more severe disease at 

baseline and faster disease progression rate (smaller ranks). For clarity purpose, only 

patients with the smallest 100 and the largest 100 ranks are displayed in the figure. We use 

two patients as an example to illustrate the effect of ρ. Patient 551 has the worst baseline 

disease severity and he/she ranks No. 8 in the disease progression rate. Patient 528 has the 

fastest disease progression rate and he/she ranks No. 5 in the baseline disease severity.

4 Simulation

In this section, we conduct two simulation studies to compare the performance of the 

proposed joint model and the reduced model. In the first simulation study, there is a strong 

correlation between the survival time and the longitudinal outcome (i.e. ν0 = 0.4, ν1 = 1), 

whereas in the second simulation study, there is no correlation (i.e. ν0 = ν1 = 0). The 

simulated datasets have a data structure and parameters similar to the DATATOP study. In 

each simulation study, we simulate 500 datasets with sample size N = 800 (400 in both 

treatment and placebo groups).

We simulate one continuous (yij1) and three ordinal (denoted by yij2, yij3, and yij4 with 7, 7, 

and 10 categories, respectively) outcomes at five visits (e.g. baseline, months 1, 3, 9, 15). 

Treatment variable (xi = 1 if treatment, and 0 if placebo) is the only covariate under 

consideration and we assume that the treatment is effective. The level 2 model (4) is θij = ui0 

+ (β10 + β11xi + ui1)tij, with visit time being tij = (0, 1, 3, 9, 15), and the Cox sub-model (6) 

is h(ti) = h0(ti) exp(γxi + ν0ui0 + ν1ui1). We set β10 = 0.4, β11 = −0.5, and γ = −0.7. Note 

that β11 is negative so that we expect the treated patients to have smaller θij and better 

clinical status. Similarly, γ is negative so that the treated patients are expected to have 

smaller event hazard at any specific time. We simulate random effects ui = (ui0, ui1)′ ~ 

N2(0, Σ), where  and ρ = 0.4, σu = 1.3. For continuous outcome 

yij1, we set a1 = 25, b1 = 10 and σ1 = 5, and simulate from . For ordinal 

outcomes, we let a2 = (−2.7, − 0.6, 2, 2.8, 5, 6), b2 = 2, a3 = (−0.1, 1, 1.8, 2.6, 3.3, 4), b3 = 

0.4, a4 = (−1, − 0.1, 0.5, 1, 1.5, 2, 2.4, 2.8, 3.3), b4 = 0.7, and use Model (2) to obtain the 

probability of being in each category for each ordinal outcome at every visit. Then, three 

ordinal outcomes are simulated from multinomial distributions.

The time to terminal event is simulated from the Cox sub-model with a piecewise constant 

baseline hazard function. Given a set of fixed time points 0 = τ0 < τ1 < · · · < τm and the 

baseline hazard vector g = (g0, g1, …, gm−1), we define the piecewise constant baseline 

hazard function as , with Il (t) = 1 if τl ≤ t ≤ τl+1. For a given interval τa 

≤ ti< τa+1 with a = 0, …, m − 1, the survival function is 
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. To solve this 

equation for ti, we have

(10)

The condition τa ≤ ti< τa+1 imposes the following constraint: 

. To generate the event time ti, we set the piecewise baseline hazard vector g = (0.01, 0.05, 

0.13) at the fixed time points τ = (0, 8, 13, 30). We generate the censoring time from 

Uniform[10, 20] and δi = 1 if the event time generated from equation (10) is not larger than 

the censoring time.

In each simulation study, we run two parallel MCMC chains with over-dispersed initial 

values. Each chain is run for 10,000 iterations. The first 5000 iterations are discarded as 

burn-in, and the remaining 5000 samples are used to obtain the posterior distribution of the 

parameters. We have computed the bias (the average of the posterior means minus the true 

values), standard error (SE, the square root of the average of the posterior variance), SD (the 

standard deviation of the posterior means), and coverage probabilities (CPs) of 95% equal-

tail credible intervals from the reduced and joint models.

Table 2 displays the results from the first simulation study in which the occurrence of the 

terminal event is strongly correlated with the longitudinal outcomes. The joint model 

generally provides estimates with negligible bias, SE close to SD, and the CPs reasonably 

close to 0.95. We notice that the CP of ν1 is slightly off from 0.95, indicating some difficulty 

in distinguishing the random effects as reported in Henderson et al.1 These results suggest 

that the joint model can generally recover the true values in the presence of dependent 

terminal event. In contrast, the reduced model gives severely biased estimates and the CPs 

are far away from the nominal value. Specifically, the treatment effect parameter β11 is 

biased toward zero and it is thus less likely to detect the treatment effect if the treatment 

effect is present. Because the parameters ν0 and ν1 are set to be positive, the patients with 

worse baseline disease severity (larger ui0) and faster disease progression rate (larger ui1) 

tend to have a terminal event earlier. By ignoring this phenomenon and treating the missing 

data after the terminal event as missing at random, the reduced model tends to reduce the 

difference between two groups and therefore underestimate the treatment effect. This finding 

is consistent with the literature of the univariate longitudinal data analysis with dependent 

dropout.32 In addition, both models provide reasonable estimates to the difficulty and 

discriminating parameter vectors a and b

Table 3 displays the results from the second simulation study in which the reduced model is 

the correct model. The reduced model provides estimates with small bias and CPs 

reasonably close to the nominal level. The results indicate that the reduced model can 

successfully recover the true values under independent terminal event. In comparison, under 
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model overparameterization, the results from the joint model still have reasonably small 

bias, CPs close to nominal level, and it does not inflate the SEs. The estimates of the 

parameters ν0 and ν1 are correctly close to zero, suggesting that the joint model is still a 

reasonable model even when it is overparameterized. Moreover, both models provide 

reasonable estimates to the difficulty and discriminating parameter vectors a and b

In conclusion, the simulation results suggest that in the presence of dependent terminal 

event, the joint model provide more accurate estimates for the MLIRT and Cox regression 

parameters and the random effects parameters. Under independent terminal event, the joint 

model provides results comparable with the reduced model.

5 Discussion

In clinical trials, it is quite common to have longitudinal outcomes subject to dependent 

terminal event. Previous work of joint modeling for this type of data has been mainly 

focused on a single longitudinal outcome accounting for the dependent censoring. In this 

article, we have proposed a joint modeling framework to jointly analyze the multiple 

longitudinal data subject to dependent terminal event using the MLIRT sub-model and the 

Cox proportional hazard sub-model. Two sub-models are linked together via shared random 

effects representing the subject-specific baseline disease severity and disease progression 

rate, respectively. The proposed joint model has a better fit than the reduced model in the 

analysis of the DATATOP dataset. We have found that the treatment tocopherol is 

insignificant in slowing the PD disease progression. Moreover, we have identified a 

significant positive correlation between the multiple longitudinal outcomes and the terminal 

event, in addition to the positive significant correlation between the baseline disease severity 

and disease progression rate. The simulation studies have shown that in the presence of 

dependent terminal event, the joint model successfully recovers the true parameters whereas 

the reduced model underestimates the treatment effect and has large bias in the regression 

and random effects parameters. Under the scenario of independent terminal event, the joint 

model provides results comparable with the reduced model.

Our method can be extended to robust inference to handle outlying observations in the 

longitudinal outcomes. One direction is to relax the normality assumption for the random 

errors of the continuous outcome to some long-tailed or heavy-tailed distributions, e.g. 

normal/ independent distributions,33 skew-normal independent distributions,34 and 

generalized skew-elliptical distributions.35 Another issue is about the assumption of 

homogeneous random covariance matrix (the matrix is the same for all subjects). 

Accounting for heterogeneity in random covariance matrix has been investigated in 

generalized linear models,36 non-linear mixed models,37 and linear mixed models.38 The use 

of the heterogenous random covariance matrix in the joint modeling framework of the 

MLIRT models warrants further investigation.
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Figure 1. 
Mean longitudinal measures over time. Follow-up time: less than 6 months (dotted line), 6–

12 months (dashed line), and more than 12 months (solid line).
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Figure 2. 
Estimates of the subject-specific disease severity 1 θij at each visit and the lowess curve for 

two groups.
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Figure 3. 
The ranking of subject-specific baseline disease severity (upper panel) and disease 

progression rate (lower panel) with point estimates and 95% CI. The numbers in the figures 

are patient numbers.
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