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Summary. The maximum likelihood approach to jointly model the survival time and its longitudinal
covariates has been successful to model both processes in longitudinal studies. Random effects in the lon-
gitudinal process are often used to model the survival times through a proportional hazards model, and
this invokes an EM algorithm to search for the maximum likelihood estimates (MLEs). Several intriguing
issues are examined here, including the robustness of the MLEs against departure from the normal random
effects assumption, and difficulties with the profile likelihood approach to provide reliable estimates for the
standard error of the MLEs. We provide insights into the robustness property and suggest to overcome the
difficulty of reliable estimates for the standard errors by using bootstrap procedures. Numerical studies and
data analysis illustrate our points.
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1. Introduction
It has become increasingly common in survival studies to
record the values of key longitudinal covariates until the oc-
currence of survival time (or event time) of a subject. This
leads to informative missing/dropout of the longitudinal data,
which also complicates the survival analysis. Furthermore, the
longitudinal covariates may involve measurement error. All
these difficulties can be circumvented by including random
effects in the longitudinal covariates, for example, through a
linear mixed effects model, and modeling the longitudinal and
survival components jointly rather than separately. Such an
approach is termed “joint modeling” and we refer the readers
to the insightful surveys of Tsiatis and Davidian (2004) and
Yu et al. (2004) and the references therein. Numerical studies
suggest that the “joint maximum likelihood” (ML) method of
Wulfsohn and Tsiatis (1997), hereafter abbreviated as WT, is
among the most satisfactory approaches to combine informa-
tion. We focus on this approach in this article and address
several intriguing issues.

The approach described in WT is semiparametric in that
no parametric assumptions are imposed on the baseline haz-
ard function in the Cox model (Cox, 1972), while the random
effects in the longitudinal component are assumed to be nor-
mally distributed. An attractive feature of this approach, as
confirmed in simulations, is its robustness against departure
from the normal random effects assumption. It is in fact as ef-
ficient as a semiparametric random effects model proposed by
Song, Davidian, and Tsiatis (2002). These authors called for
further investigation of this intriguing robustness feature. We
provide a theoretical explanation in Section 2 and demon-
strate it numerically in Section 4. A second finding of this

article is to point out the theoretical challenges regarding
efficiency and the asymptotic distributions of the paramet-
ric estimators in the joint modeling framework. No distribu-
tional or asymptotic theory is available to date, and even the
standard errors (SE), defined as the standard deviations of
the parametric estimators, are difficult to obtain. We explore
these issues in Section 3, highlight the risks when adopting
a heuristic proposal in the literature to estimate the SE, and
provide numerical illustrations in Section 4. A bootstrap pro-
cedure is proposed instead to estimate the standard errors.
Furthermore, in Section 5, a data example demonstrates the
discussed issues as well as the effectiveness of the bootstrap
procedure.

2. Robustness of the Joint Likelihood Approach
Without loss of generality, we assume a single time-dependent
covariate, Xi (t), for the ith individual with i = 1, . . . , . . . ,n.
The survival time Li is subject to usual independent random
censoring by Ci , and we observe (Vi , Δi) for the ith individual,
where Vi = min(Li , Ci ) and Δi = 1(Li ≤ Ci ). The longitu-
dinal processes are scheduled to be measured at discrete time
points tij for the ith individual, and are terminated at the
endpoint Vi . Hence, the schedule that is actually observed is
ti, = {ti1, . . . , timi

} with timi
≤ V i < timi+1, and no longi-

tudinal measurements are available after time Vi , prompting
the need to incorporate the survival information and thus the
joint modeling approach to combine information. We further
assume a measurement error model for the longitudinal co-
variate, so in reality what is actually observed is

Wij = Xi(tij) + eij = Xij + eij , j = 1, . . . ,mi. (1)
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Here eij is measurement error that is independent of Xij and
has a parametric distribution, such as N(0, σ2

e). Hereafter, we
use boldface vector symbols Wi = (W i1, . . . ,W imi

) to denote
the observed longitudinal data. To recover the unobserved
Xi (t), we assume a parametric random effects model with a
k-dimensional random effects vector bi ∼ gα, denoted by Xi (t;
bi) = Xi (t). The covariate history X̄i(t;bi) = {Xi(s;bi) | 0 ≤
s ≤ t} is then related to the survival time through a time-
dependent Cox proportional hazards model. The hazard func-
tion for the ith individual is thus

λi(t | X̄i(t;bi)) = λ0(t)e
βXi(t;bi). (2)

The joint modeling of the longitudinal and survival parts is
specified by (1) and (2). The parameter that specifies the
joint model is θ = (β, λ0, α, σ2

e), where the baseline λ0 is
nonparametric.

Let f(Wi; α, σe) and f(Wi |bi; σ
2
e) be, respectively, the

marginal and conditional density of Wi, and f(Vi , Δi |bi, β,
λ0) the conditional p.d.f. (probability density function) corre-
sponding to (2). Under the assumptions of an “uninformative”
time schedule as illuminated in Tsiatis and Davidian (2004),
the contribution of the ith individual to the joint likelihood is

Li(θ) = f(Wi;α, σe)E
∗
i{f(Vi,Δi |bi; θ)}, (3)

where E∗
i denotes conditional expectation with respect to the

posterior density of bi given Wi, which is g(bi |Wi; α, σ2
e) =

f(Wi |bi; σ
2
e)gα(bi)/f(Wi; α, σ2

e).
Two facts emerge. First, E∗

i{f(Vi , Δi |bi; θ)} carries infor-
mation on the longitudinal data. If it is ignored, the marginal
statistical inference based on f(Wi; α, σ2

e) alone would be in-
efficient and even biased (due to informative dropout). This
sheds light on how a joint modeling approach eliminates the
bias incurred by a marginal approach and also why it is more
efficient. Second, the random effect structure (gα) and Wi

are relevant to the information for survival parameters (β and
λ0) only through the posterior density g(bi |Wi, α, σ2

e), which
can be approximated well by a normal density through a
Laplace approximation technique (Tierney and Kadane, 1986)
when reasonably large numbers of longitudinal measurements
are available per subject. This explains why WT’s proce-
dure is robust against departure from the normal prior as-
sumption. Similar robust features were observed for other
likelihood-based procedures (Solomon and Cox, 1992; Breslow
and Clayton, 1993; Breslow and Lin, 1995). See Section 4 for
further discussion.

3. Relation of EM Algorithm and Fisher Information
Direct maximization of the joint likelihood in (3) is impos-
sible due to the nonparametric component λ0. However, the
nonparametric maximum likelihood estimate (MLE) of λ0(t),
as defined in Kiefer and Wolfowitz (1956), can be used and
it has discrete mass at each uncensored event time Vi . The
semiparametric problem in (3) is thus converted to a para-
metric problem with the parameter representing λ0 being a
discrete probability measure of dimension in the order of n.
The expectation maximization (EM) algorithm was employed
successfully in WT to treat the unobserved random effects bi

as missing data, leading to a satisfactory nonparametric MLE
approach; compare formulae (3.1)–(3.4), and the subsequent
discussion on page 333 of WT. While there are some com-

putational costs incurred by the imputation of the missing
random effects in the EM algorithm, the real challenge lies in
theory. A major challenge is the high-dimensional nature of
the baseline hazards parameter so that standard asymptotic
arguments for MLEs do not apply. A profile likelihood ap-
proach would be an alternative but it encounters difficulties
as well, as elaborated below.

3.1 Implicit Profile Estimates
We begin with the nonparametric MLE denoted as
λ̂0(α, σe, β), given the parameter (α, σe, β). Substituting this
nonparametric MLE into (3) to produce a profile likelihood
L(α, σe, β, λ̂0(α, σe, β)) and then maximizing this likelihood
would yield profile estimates of (α, σe, β). However, for the
profile approach to work as in the classic setting, the pro-
file likelihood L(α, σe, β, λ̂0(α, σe, β)) with the nonparametric
MLE λ̂0 in place should not involve λ0. Unfortunately, this is
not the case here because the nonparametric MLE λ̂0(α, σe, β)
cannot be solved explicitly under the random effects structure.
Instead, the EM algorithm is employed to update the profile
likelihood estimate for λ0(t). The resulting estimate is

λ̂0(t) =

n∑
i=1

Δi1(Vi=t)
n∑

j=1

Ej [exp{βXj(t;bj)}]1(Vi≥t)

. (4)

Strictly speaking, this is not an estimate as it involves func-
tions in the E-step, Ej , which are taken with respect to the
posterior density involving λ0(t) itself. Specifically, the poste-
rior density is

h(bi |Vi,Δi,Wi, ti; θ)

=
g
(
bi |Wi, ti;α, σ2

e

)
f(Vi,Δi |bi, β, λ0)∫

g
(
bi |Wi, ti;α, σ2

e

)
f(Vi,Δi |bi, β, λ0) dbi

. (5)

We can now see that (4) yields an implicit profile estimate
since Ej involves λ0(t). The implication is that although a
point estimator of λ0 can be derived via the EM algorithm (4),
the usual profile approach to calculate the Fisher information
cannot be employed. The asymptotic covariance matrix for λ0

cannot be evaluated through derivatives of the implicit pro-
file likelihood as in traditional situations, where an explicit
form of profile likelihood exists. We will resume this informa-
tion issue in Section 3.2 after we discuss the remaining profile
estimates.

Likewise, the maximum “profile” likelihood estimates of α
and σ2

e are both implicit because the posterior expectations
Ej involve both parameters. The estimation of β is more com-
plicated. To see this, note that only the second term, E∗

i , in
(3) involves β and E∗

i involves the posterior density of bi ,
given Wi . This posterior density is the g-function in (5) and
not the posterior density h. Thus, E∗

i and Ei are different, but
after some rearrangement the score equation for β can be ex-
pressed as Sβ =

∑n

i=1 Ei{Sc(β;λ0,bi)}, where Sc(β;λ0,bi) =∑n

i=1
∂
∂β

log f(Vi,Δi |bi, β, λ0).
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Substituting λ0(t) by λ̂0(t) in equation (4), the maximum
profile score of β is again in implicit form and is denoted as

SIP
β =

n∑
i=1

Ei{Sc(β; λ̂0(t),bi)}

=

n∑
i=1

Δi[Ei{Xi(Vi;bi)}]

−

n∑
j=1

Ej [Xj(Vi;bi) exp{βXj(Vi;bi)}]1(Vj≥Vi)

n∑
j=1

Ej [exp{βXj(Vi)}]1(Vj≥Vi)

. (6)

The EM algorithm then iterates between the E-step, to
evaluate the conditional expectations Ei with parameter val-
ues obtained from the previous iteration θ̂(k−1), and the
M-step, to update the estimated values via the above score
equation. Since (6) has no closed-form solution, the Newton–
Raphson method is applied: β̂k = β̂k−1 + I−1

β̂k−1
SIP
β̂k−1

, where

SIP
β̂k−1

is the value of the incomplete profile score in (6) with

β = β̂k−1, and the slope I−1
β̂k

is obtained through the following

working formula:

IWβ

=

n∑
i=1

Ei

{
− ∂

∂β
Sc(β;λ0,bi)

}

=

n∑
i=1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
j=1

Ej

[
Xj(Vi;bi)

2 exp{βXj(Vi;bi)}
]
1(Vj≥Vi)

n∑
j=1

Ej [exp{βXj(Vi;bi)}]1(Vj≥Vi)

−

⎛
⎜⎜⎜⎜⎝

n∑
j=1

Ej [Xj(Vi;bi) exp{βXj(Vi;bi)}]1(Vj≥Vi)

n∑
j=1

Ej [exp{βXj(Vi;bi)}]1(Vj≥Vi)

⎞
⎟⎟⎟⎟⎠

2
⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

(7)

The above iterative procedure is implemented until a con-
vergence criterion is met. We next examine what has been
achieved by the EM algorithm at this point.

3.2 Fisher Information
The iterative layout of the EM algorithm is designed to
achieve the MLEs and hence the consistency of parameters
(α, β, σ2

e) and the cumulative baseline hazard function. There
is no complication on this front. However, the working formula
IWβ in (7) at the last step of the EM algorithm has been sug-
gested in the literature to provide the precision estimate for
the standard deviation (standard error) of the β-estimator
via (Iwβ )−1/2. This is invalid. It was derived by taking the
partial derivative of the implicit profile score in equation (6)
with respect to β, by treating the conditional expectation

Ei [·] as if it does not involve β. There are two gaps. First, Ei

does involve β through the posterior density, so the proper
way to take the derivative of (6) should involve the multi-
plication rule. Second, since (6) is an implicit score, its par-
tial derivative with respect to β does not yield the correct
Fisher information. Instead, the projection method needs to
be applied to the Hessian matrix, − ∂2

∂θ2 logL(θ), based on the
likelihood L(θ) =

∏
n
1 Li (θ) to properly pin down the correct

Fisher information.
For illustration purposes we consider a simpler case and

assume for the moment that α and σ2
e are known so that

θ = (β, λ0). For this θ denote Iββ = − ∂2

∂β2 logL(θ), Iβλ0 =

− ∂2

∂β∂λ0
logL(θ), and define Iλ0λ0 and Iλ0β similarly. The cor-

rect projection to reach the Fisher information for β is Iββ −
Iβλ0 [Iλ0λ0 ]

−1Iλ0β , which involves inverting a high-dimensional
matrix Iλ0λ0 . In the general situation with four unknown para-
metric components the correct Fisher information would be
even more difficult to compute, as this Hessian matrix has
4× 4 block matrices corresponding to the four parametric
components in θ, and the projection would be complicated.
We recommend bootstrapping to estimate the standard de-
viation for all finite-dimensional parameters (α, σe, β) and
illustrate its effectiveness in Section 4.

We close this section by further showing that the working
SE, (IWβ )−1/2, is smaller than the real SE based on the sample
Fisher information of β. Hence statistical inference based on
(Iwβ )−1/2 would be too optimistic. Note that the contribution
of the ith individual to the true Hessian is

Ii(β,β) = − ∂

∂β
Ei[S

c(β;λ0,bi)]

= Ei

[
− ∂

∂β
Sc(β;λ0,bi)

]

−Ei

[
Sc(β;λ0,bi)S

h(β;λ0,bi)
]
, (8)

with

Sh(β;λ0,bi) =
∂

∂β
log h(bi |Vi,Δi,Wi, ti; θ)

= Sc(β;λ0,bi) −Ei

{
Sc(β;λ0,bi)

}
(9)

being the score function pertaining to the posterior density
h(bi |Vi , Δi, Wi, ti; θ) in (5). It is interesting to note that
the second term in (8) is equal to Vari[S

c(β; λ0, bi)], the con-
ditional variance with respect to the posterior density, which
is also equal to the amount of Fisher information of β con-
tained in this posterior density. Recall from the first equality
in (7) that IWβ is the sample Fisher information of β, pertain-
ing to the likelihood of f(Xi , Δi | bi , β) in the parametric Cox
model. It now follows from (7)–(9) that the true Hessian is

Iββ = IWβ −
n∑
i=1

Vari
{
Sc(β;λ0,bi)

}
. (10)

The implication of this relation is that under the joint mod-
eling with random effects structure on the covariate Xi, some
information is lost and that this loss is unrecoverable. There-
fore, IWβ is not the true Hessian, and would be too large when
compared with the true Hessian, Iββ , in (10). The actual
amount of information loss,

∑n

i=1 Vari{Sc(β;λ0,bi)} in (10),
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Table 1
Simulated results for case (1) when the longitudinal data have normal random effects

( 1
4σ22, σ

2
e) (4σ22, σ

2
e) (σ22,σ

2
e) (σ22, 4σ2

e) (σ22,
1
4σ

2
e) (σ22, 0σ2

e)
(0.0025, 0.1) (0.04, 0.1) (0.01, 0.1) (0.01, 0.4) (0.01, 0.025) (0.01, 0)

SD for β̂ 0.132 0.098 0.112 0.169 0.108 0.103
Mean of (IW

β̂
)−1/2 0.118 0.085 0.104 0.103 0.103 0.102

Mean of β̂ 1.008 0.998 1.004 1.007 0.984 0.987
Divergence 0% 0% 0% 4% 0% 0%

involves the posterior variances. Intuitively, we would expect
these posterior variances to increase as the measurement er-
ror increases, and this is confirmed in the numerical study
reported in Tables 1 and 2 in Section 4.

This missing information phenomenon, first introduced by
Orchard and Woodbury (1972), applies to all the finite-
dimensional parameters such as α and σ2

e, as well as λ0(t)
in the setting considered in this article. It is not unique to the
joint modeling setting and would persist even for a fully para-
metric model whenever the EM algorithm is employed. Louis
(1982) provided a specific way to calculate the observed Fisher
information, but this would be a formidable task under our
setting due to the large number of parameters involved.

4. Simulation Study
In this section, we examine the gap between the working SE
formula (IWβ )−1/2 for β̂ and a reliable precision estimate from
the Monte Carlo sample standard deviation. A second goal is
to explore the robustness issue in Section 2. Three cases were
considered in the simulations. In all cases, a constant baseline
hazard function is used for λ0 with measurement error eij ∼
N(0, ασ2

e), where α = 0, 1
4 , 1, or 4. The longitudinal covariate

Xi (t) = b1i + b2it is linear in t. The random effects bi = (b1i,
b2i) were generated from either a bivariate normal distribu-
tion (with E(b1i) = μ1, E(b2i) = μ2, var(b1i) = σ11, var(b2i) =
γσ22 with γ = 1

4 , 1, or 4, and cov(b1i, b2i) = σ12), or a trun-
cated version where βb2i is restricted to be nonnegative. The
various values of α and γ allow us to examine the effects of
the variance components on the accuracy of the working for-
mula. The case of no measurement error (α = 0) illustrates
that the working formula is now correct as the random effects
are determined from the observations Wi so that there is no
information loss.

In each setting, the sample size is n = 200 and the number
of replications is 100. The censoring time for each subject is
generated from exponential distribution with mean 25 for the
first setting and 110 for the other two settings, resulting in

Table 2
Simulated results for case (2) with nonsparse longitudinal data and nonnormal random effects

( 1
4σ22, σ

2
e) (4σ22, σ

2
e) (σ22,σ

2
e) (σ22, 4σ2

e) (σ22,
1
4σ

2
e) (σ22, 0σ2

e)
(0.003, 0.6) (0.048, 0.6) (0.012, 0.6) (0.012, 2.4) (0.012, 0.15) (0.012, 0)

SD for β̂ 0.130 0.111 0.119 0.196 0.114 0.103
Mean of (IW

β̂
)−1/2 0.113 0.090 0.100 0.098 0.103 0.103

Mean of β̂ −0.977 −0.981 −0.995 −0.987 −0.992 −1.002
Divergence 0% 1% 0% 3% 0% 0%

about 25% censoring. The EM algorithm procedure used here
is the same as in WT except for the numerical integration
to evaluate the conditional expectation in the E-step. Instead
of using the Gauss–Hermite quadrature formula we applied
Monte Carlo integration, as suggested by Henderson, Diggle,
and Doboson (2000) to calculate conditional expectations. Pa-
rameters and time schedules for the longitudinal and survival
parts under the three settings are specified below.

(a) tij = (0, 1, . . . , 12), β = 1, λ0 = 0.001, σ2
e = 0.1, (μ1,

μ2) = (2, 0.5), and (σ11, σ12, σ22) = (0.5, −0.001, 0.01).
(b) tij = (0, 2, 4, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80), β =

−1, σ2
e = 0.6, λ0 = 1, (μ1, μ2) = (4.173, −0.0103), and

(σ11, σ12, σ22) = (4.96, −0.0456, 0.012).
(c) Same as (b) except that we reduce σ2

e to 0.15, and for
each subject we only select the measurement at an ini-
tial time point and randomly one or two more points
between the initial and event time.

The first setting yields normally distributed random effects
while the second one yields very skewed truncated-normal
random effects (46% of the positive b2i were discarded), but
with a sufficient amount of longitudinal measurements to in-
voke the robustness feature as discussed in Section 2. The
third case also yields truncated-normal random effects, but
with at most three longitudinal measurements per subject.
This sparse design for the longitudinal measurements con-
firms our remark in Section 2 that it has an adverse effect to
the robustness of a likelihood-based procedure. The choice of
a much smaller σ2

e for the sparse design is due to the high
rates of nonconvergence observed for the EM algorithm (over
40% when the same σ2

e as in case [b] was used). A smaller
nonconvergence rate as reported in Table 3 provides a stable
background for illustrating the breakdown of the procedure
against model violations.

The simulation results are summarized in Tables 1–3 corre-
sponding to the three settings described above. We focus on
the parameter β to save space. Nonconvergence rates of the
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Table 3
Simulated results for case (3) with sparse longitudinal data and nonnormal random effects

β μ1 μ2 σ11 σ12 σ22 σ2
e

Simulated value −1 4.173 −0.0103 4.96 −0.0456 0.012 0.15
Empirical target −1 4.5032 −0.0913 4.7950 −0.0175 0.0046 0.1533
Mean −1.3498 4.4172 −0.2366 3.4356 0.0130 0.0067 3.2903
SD 0.1647 0.1573 0.0169 0.4413 0.0246 0.0015 0.3574

EM algorithm are in the fourth row of Tables 1 and 2, and
mean of the 100 β-estimates in the third row. This suggests
that the EM algorithm works well in these settings with low
nonconvergence rates, and the likelihood-based joint model-
ing approach indeed provides unbiased estimates under the
true random effects distribution setting in Table 1. When
the normal random effects assumption is violated (as in Ta-
ble 2), it provides roughly unbiased estimates, a confirmation
of the robustness of the procedure. The same robustness phe-
nomenon was observed in Table 1 of Tsiatis and Davidian
(2004) where the random effects were a mixture of two bivari-
ate normal distributions leading to symmetric but bimodal
distributions. Our setting in (b) has a skewed (truncated-
normal) random effects distribution and thus complements
their findings. Other simulations not reported here with heav-
ier tail distributions, such as multivariate t-distributions, en-
joy the same robustness property as long as the longitudinal
measurements are dense enough. Note that there are at most
13, and often much fewer, longitudinal measurements for each
individual in Table 2, so this is a rather encouraging finding
in favor of the normal likelihood-based approach.

The SD reported in the first row of Tables 1 and 2 corre-
sponds to the sample standard deviation of the β-estimates
from 100 Monte Carlo samples, and the working SE reported
in the second row is the mean of the 100 estimated (IW

β̂
)−1/2

in equation (7), with all unknown quantities estimated at the
last step of the EM algorithm. From these two tables, we can
see that the working SE formula underestimates the stan-
dard deviation of β̂ in all cases except in the last column,
corresponding to no measurement error. The size of observed
differences is directly related to the size of the measurement
errors (see columns 3–6). The discrepancy ranges from almost
none (when measurement error is small or 0) to as large as
40% in Table 1 and 50% in Table 2. This confirms empirically
that the working slope should not be used for statistical infer-
ence of β, especially in the case of large σ2

e . We re-emphasize
that this applies equally to all other parameters among
(α, σe, λ0).

An interesting finding from the first three columns of
Tables 1 and 2 is that the discrepancies are noticeable but they
do not vary much when one changes only the variance compo-
nent of b2i . Larger σ22, however, gives more precise estimates
for β as the associated SD is smallest for the second column in
both tables. This is perhaps not surprising and is consistent
with usual experimental design principles in cross-sectional
studies. Typically, larger variations in covariates lead to more
precise regression coefficients, which would correspond to β
in the joint modeling setting. So our simulations suggest that
the same design principle continues to hold in this setting.

Increased variation among individual longitudinal processes
provides more information on how the longitudinal covariate
of a subject relates to its survival time.

The robustness enjoyed in situations with rich longitudinal
data information is in doubt for the sparse data situation in
case (c). Table 3 shows 35% bias in estimating β for this case.
The mean of the working SE is 0.1163 while the simulated SD
is 0.1647, and a large discrepancy is exhibited here. In addi-
tion to β, we were also curious about the robustness of other
parameters. Since the original simulated values (reported in
row 1) are no longer the target because of truncation, the tar-
get values are estimated empirically in Table 3 and reported
in row 2. This then should be the comparison base for the bias
of other parameters, which reveals significant, and sometimes
serious, biases as well.

4.1 Bootstrap Estimate for the Standard Error
As there is no reliable SE formula available due to the the-
oretical difficulties mentioned in Section 3, we propose a
bootstrap method to estimate the SE. The bootstrap sample
{Y ∗

i , i = 1, . . . ,n}, where Yi = (Vi , Δi, Wi, ti), is gener-
ated from the original observed data as defined in Section 2.
The EM algorithm is then applied to the bootstrap sample,
Y ∗

i , i = 1, . . . ,n, to derive the MLE θ̂∗, and this is repeated
B times. The bootstrapped SD estimates for θ come from
the diagonal elements of the covariance matrix, Cov(θ̂∗) =

1/(B − 1)
∑B

b=1(θ̂
∗
b − θ̄b)(θ̂

∗
b − θ̄b)

T , where θ̄b =
∑B

b=1 θ̂
∗
b/B.

To check the stability of the above bootstrap procedure we
conducted a small simulation study, using the design in the
first setting as reported in the third column of Table 1. Of
the 100 Monte Carlo samples, we resampled B = 50 boot-
strap samples for each single Monte Carlo sample. The SD
for β̂ based on the 100 Monte Carlo samples is 0.1193 and the
mean of the 50 bootstrap standard deviation estimates for β
is 0.1210 with a standard deviation of 0.0145. This suggests
that the bootstrap SD is quite stable and reliable as it is close
to the Monte Carlo SD. Moreover, the EM algorithm has a
low nonconvergence rate of 0.44%, which is 22 out of the 5000
Monte Carlo bootstrap samples.

5. Egg-Laying Data Analysis
The lifetime (in days) and complete reproductive history, in
terms of number of eggs laid daily until death, of 1000 female
medflies (Mediterranean fruit fly) were recorded by Carey
et al. (1998) to explore the relation between reproduction and
longevity. Since we have the complete egg-laying history with-
out missing or censored data, we could use standard software
to check the proportional hazards assumption without relying
on the last-value-carry-forward procedure, known to be prone
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Table 4
Analysis of lifetime and log-fecundity of medflies with lifetime reproduction less than 300 eggs. The bootstrap

SD and the working SE, (IW
θ̂

)−1/2, are reported in the last two rows.

β μ1 μ2 σ11 σ12 σ22 σ2
e

EM estimate 0.5597 0.6950 −0.0542 0.7656 −0.1123 0.0196 0.9883
Bootstrap mean 0.5676 0.6932 −0.0541 0.7621 −0.1121 0.0198 0.9858
Bootstrap SD 0.0921 0.0736 0.0156 0.1056 0.0207 0.0043 0.0606
(IW

θ̂
)−1/2 0.0801 0.0663 0.0141 0.0988 0.0176 0.0039 0.0495

to biases. The proportional hazards assumption failed for flies
that are highly productive, so we restrict our attention to the
less productive half of the flies. This includes female medflies
that produced less than a total of 749 eggs during their life-
times. To demonstrate the effects of wrongly employing the
working SE formula to estimate the standard errors of the es-
timating procedures in Section 3, we further divide these flies
into two groups. The first group includes 249 female medflies
that have produced eggs but with a lifetime reproduction of
less than 300 eggs. The second group includes the 247 fe-
male medflies producing between 300 and 749 eggs in their
lifetimes.

As daily egg production is subject to random fluctuations
but the underlying reproductive process can be reasonably as-
sumed to be a smooth process, the measurement error model
(1) is a good prescription to link the underlying reproductive
process to longevity. Because we are dealing with count data,
it is common to take the log transformation, so we take W (t)
= log{m(t) + 1}, to avoid days when no eggs were laid. An ex-
amination of the individual egg-laying trajectories in Carey
et al. (1998) suggests the following parametric longitudinal
process for X(t):

X(t) = b1 log(t) + b2(t− 1),

where the prior distribution of (b1, b2) is assumed to be bi-
variate normally distributed with mean (μ1, μ2), and σ11 =
var(b1), σ12 = cov(b1, b2), σ22 = var(b2). Note here that the
longitudinal data are very dense as daily observations were
available for all flies, so the model fitting should not be sen-
sitive to this normality assumption as supported by the ro-
bustness property discussed in previous sections.

The Cox proportional hazard regression model assumptions
were checked via martingale residuals for both data sets and
were reasonably satisfied with p-values 0.9 and 0.6, respec-
tively. We thus proceeded with fitting the joint models in (1)
and (2). Tables 4 and 5 summarize the EM algorithm esti-
mates of θ together with their bootstrap means and standard

Table 5
Analysis of lifetime and log-fecundity of medflies with lifetime reproduction between 300 and 749 eggs. The

bootstrap SD and the working SE, (IW
θ̂

)−1/2, are reported in the last two rows.

β μ1 μ2 σ11 σ12 σ22 σ2
e

EM estimate −0.1997 1.7618 −0.1730 1.0540 −0.1734 0.0301 1.4344
Bootstrap mean −0.2036 1.7659 −0.1739 1.0487 −0.1766 0.0309 1.4333
Bootstrap SD 0.0836 0.0800 0.0145 0.0784 0.0151 0.0033 0.0356
(IW

θ̂
)−1/2 0.0672 0.0576 0.0120 0.0572 0.0112 0.0023 0.0282

deviations based on 100 bootstrap replications. The corre-
sponding working SE, (IW

θ̂
)−1/2, is also reported on the last

row of each table for a contrast.
From Tables 4 and 5, we can see that the sample bootstrap

means are close to the corresponding EM estimates, suggest-
ing the feasibility of the bootstrap approach. On the other
hand, the working SE corresponding to the last step of the
EM algorithm produced estimates that are noticeably smaller
than the bootstrap SD estimate. For β, it yielded an estimate
of 0.0801 under the setting of Table 4, which is about a 15%
departure from the bootstrap SD (0.0921). The discrepancy
increases to 25% (working SE is 0.0672) for the second data
set in Table 5 due to a higher measurement error (1.4344 in
Table 5 vs. 0.9883 in Table 4), consistent with the simulation
findings in Section 4. Similar discrepancies can also be seen
between Tables 4 and 5 for all other parameters.

6. Conclusions
We have accomplished several goals in this article: (i) Rein-
forcing the merit of the joint modeling approach in WT by
providing a theoretical explanation of the robustness features
observed in the literature. This suggests that the likelihood-
based procedure with normal random effects can be very ef-
ficient and robust as long as there is rich enough information
available from the longitudinal data. Generally, this means
that the longitudinal data should not be too sparse or carry
too large measurement errors. (ii) Demonstrating the miss-
ing information and implicit profile features in joint modeling
both theoretically and empirically to alert practitioners. The
efficiency loss due to missing random effects can be quite sub-
stantial, as observed in numerical studies. (iii) Recommending
until further theoretical advances afford us reliable standard
error estimates to use the bootstrap SD estimate for estimat-
ing the standard errors of the EM estimators.

However, theoretical gaps remain to validate the asymp-
totic properties of the estimates in WT and the validity of
the bootstrap SE estimates. The theory of profile likelihood



Joint Modeling of Survival and Longitudinal Data 1043

is well developed for parametric settings (Patefield, 1977), but
not immediately applicable in semiparametric settings (Mur-
phy and van der Vaart, 2000; Fan and Wong, 2000). The com-
plexity caused by profiling nonparametric parameters with
only implicit structure creates additional difficulties in the-
oretical and computational developments for joint modeling.
Further efforts will be required in future work to resolve these
issues and to provide reliable precision estimates for statistical
inference under the joint modeling setting.

Acknowledgements

The research of Jane-Ling Wang was supported in part by
the National Science Foundation and National Institutes of
Health. The authors greatly appreciate the suggestions from
a referee and an associate editor.

References

Breslow, N. E. and Clayton, D. G. (1993). Approximate infer-
ence in generalized linear mixed models. Journal of the
American Statistical Association 88, 9–25.

Breslow, N. E. and Lin, X. (1995). Bias correction in gen-
eralized linear mixed models with a single component
dispersion. Biometrika 82, 81–91.

Carey, J. R., Liedo, P., Müller, H. G., Wang, J. L., and Chiou,
J. M. (1998). Relationship of age patterns of fecundity
to mortality, longevity, and lifetime reproduction in a
large cohort of Mediterranean fruit fly females. Journal
of Gerontology—Biological Sciences 53, 245–251.

Cox, D. R. (1972). Regression models and life tables (with
discussion). Journal of the Royal Statistical Society, Series
B 34, 187–220.

Fan, J. and Wong, W. H. (2000). Comment on “On profile
likelihood” by Murphy and van der Vaart. Journal of the
American Statistical Association 95, 468–471.

Henderson, R., Diggle, P., and Doboson, A. (2000). Joint mod-
eling of longitudinal measurements and event time data.
Biostatistics 4, 465–480.

Kiefer, J. and Wolfowitz, J. (1956). Consistency of the max-
imum likelihood estimator in the presence of infinitely
many incidental parameters. Annals of Mathematical
Statistics 27, 887–906.

Louis, T. A. (1982). Finding the observed Fisher information
when using the EM algorithm. Journal of the Royal Sta-
tistical Society, Series B 44, 226–233.

Murphy, S. and van der Vaart, A. W. (2000). On profile like-
lihood (with discussion). Journal of the American Statis-
tical Association 95, 449–465.

Orchard, T. and Woodbury, M. A. (1972). A missing informa-
tion principle: Theory and applications. In Proceedings of
the 6th Berkeley Symposium on Mathematical Statistics
and Probability, Volume 1, p. 697–715. Berkeley: Univer-
sity of California Press.

Patefield, W. M. (1977). On the maximized likelihood func-
tion. Sankhya, Series B 39, 92–96.

Solomon, P. J. and Cox, D. R. (1992). Nonlinear component
of variance models. Biometrika 79, 1–11.

Song, X., Davidian, M., and Tsiatis, A. A. (2002). A semipara-
metric likelihood approach to joint modeling of longitu-
dinal and time-to-event data. Biometrics 58, 742–753.

Tierney, L. and Kadane, J. B. (1986). Accurate approxima-
tion for posterior moments and marginal densities. Jour-
nal of the American Statistical Association 81, 82–86.

Tsiatis, A. A. and Davidian, M. (2004). Joint modelling of
longitudinal and time-to-event data: An overview. Sta-
tistica Sinica 14, 809–834.

Wulfsohn, M. S. and Tsiatis, A. A. (1997). A joint model
for survival and longitudinal data measured with error.
Biometrics 53, 330–339.

Yu, M., Law, N. J., Taylor, J. M. G., and Sandler, H. M.
(2004). Joint longitudinal-survival-cure models and their
application to prostate cancer. Statistica Sinica 14, 835–
862.

Received July 2004. Revised December 2005.
Accepted January 2006.


