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Summary

The accelerated failure time (AFT) model is an attractive alternative to the Cox model

when the proportionality assumption fails to capture the relation between the survival time

and longitudinal covariates. Several complications arise when the covariates are measured

intermittently at different time points for different subjects, possibly with measurement

errors, or measurements are not available after the failure time. Joint modelling of the

failure time and longitudinal data offers a solution to such complications. We explore

the joint modelling approach under the AFT assumption when covariates are assumed to

follow a linear mixed effects model with measurement errors. The procedure is based on

maximizing the joint likelihood function where random effects are treated as missing data.

A Monte Carlo EM algorithm is employed to estimate all the unknown parameters, includ-

ing the unknown baseline hazard function. The performance of the proposed procedure

is checked in simulation studies. A case study of reproductive egg-laying data for female

Mediterranean fruit flies and their relation to longevity demonstrate the effectiveness of

the new procedure.

Some key words: EM algorithm; measurement errors; missing data; Monte Carlo integration;

random effects, survival data.
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1. Introduction

In clinical trials or medical follow up studies, it has become increasingly common

to observe the event time of interest, called survival time or failure time, along with

longitudinal covariates. A growing interest in the health community is to model both

processes simultaneously to explore their relationship and to borrow strength from each

component in the model building process. Such a joint modelling approach has emerged

as an effective way to utilize the information available on both processes, and has become

feasible due to rapidly improving computing environments.

In the joint modelling approach, the longitudinal covariates are usually assumed to be

of parametric form with random effects, such as a linear mixed effects model. Moreover, the

longitudinal covariate may not be directly observed due to intermittent sampling schedule

and/or measurement errors. Let X(t) denote such a longitudinal covariate with additive

measurement error, e(t). So what is actually observed is another process

W (t) = X(t) + e(t), (1)

at discrete time points. For simplicity we assume that there is only one longitudinal

covariate, as the case of multiple longitudinal covariates and additional time independent

covariates can easily be adapted.

For the survival component, the Cox proportional hazards model has been used in the

literature to describe the survival information through the hazard rate function:

λ{ t|X̄(t)} = λ0(t) exp{βX(t)}, (2)

where X̄(t) = {X(s) : 0 ≤ s < t} is the covariate history up to time t, β is the regression

parameter, and λ0(t) is the unspecified baseline hazard rate function. The survival time is

often subject to random censoring, and a well known example are HIV clinical trials where

time dependent CD4 counts (or viral loads) and an event time (time to AIDS or death) are

recorded. Finding associations between time varying CD4 count and the event time is an
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important goal of these experiments and has been studied extensively in the literature, for

instance in Pawitan and Self (1993), Tsiatis, DeGruttola and Wulfsohn (1995), Wulfsohn

and Tsiatis (1997), and Wang and Taylor (2001).

If there were no measurement errors in (1) and the entire history of X(t) were avail-

able, one could use Cox’s partial likelihood to estimate the regression parameter β in (2).

However, either or both assumptions may fail, and it is thus necessary to find alternative

approaches. Intuitively, one could overcome both difficulties by imputing the unobserved

covariate process, X(t), in the partial likelihood. Such an approach is called ”two-stage

procedure” in the joint modelling literature, and has been studied in Tsiatis et al. (1995)

and Dafini and Tsiatis (1998) among others. This approach encounters bias when the ob-

servation of the longitudinal process was interrupted by the event time, that is, when death

strikes. In such situations, only measurements before death are available, which results in

informative missing longitudinal data. Bias will occur in both the longitudinal and sur-

vival components, if unmodified linear mixed effects model procedures were employed to

fit the longitudinal component. Various remedies were proposed and the most satisfactory

approach is perhaps the joint likelihood approach in Wulfsohn and Tsiatis (1997), who

constructed a joint likelihood of (1) and (2) under certain assumptions including normal

random effects. The EM algorithm has been employed to estimate the missing random

effects. The normality assumption for random effects was later relaxed in Tsiatis and Da-

vidian (2001) through a conditional score approach, and relaxed to a flexible parametric

class of smooth density functions in Song, Davidian and Tsiatis (2002). In addition to

linear mixed effects, Henderson et al. (2000) added an extra Gaussian process in X(t)

to explain additional correlation in time dependent covariates. Wang and Taylor (2001)

consider a similar model as Henderson et al. (2000) and applied a Bayesian framework

as well as MCMC methods to fit the joint model. For additional information about joint

modelling, see the insightful reviews in Tsiatis and Davidian (2004) and Yu et al. (2004).

So far the literature on joint modelling of survival and longitudinal data only focused on

the Cox proportional hazards model to characterize the relation between the longitudinal
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covariates and the survival information. There are, however, many situations (such as the

fecundity data in section 5) where the proportionality assumption in (2) fails. For such

situations an accelerated failure time (AFT) model is a viable alternative. The AFT model

was introduced in Cox (1972) to model the effects of covariates directly on the length of

survival time as:

log T = −β′X + e (3)

where T is the survival time, X a time independent covariate and e the random error.

Suppose that S0 is the baseline survival function of T given X = 0, then S0 is also the

survival function of U = exp(e).

For time dependent covariates X(t), Cox and Oakes (1984, chapter 5, pages 64-65)

propose the following extension of the AFT model:

U ∼ S0, where U = ψ{X(T ); β} =

∫ T

0

exp{βX(s)}ds. (4)

With this transformation, the survival function for an individual with covariate history

X̄(t), is S{t|X̄(t)} = S0{ψ(X(t; β)}. This means that individuals age on an accelerated

schedule , ψ{X(t); β}, under a baseline survival function S0(·). Such a model is biologically

meaningful and allows the influence of the entire covariate history on subject specific risk.

For an absolutely continuous S0, the hazard rate function for an individual with covariate

history X̄(t) can thus be expressed as

λ{t|X̄(t)} = λ0[

∫ t

0

exp{βX(s)}ds]exp{βX(t)} = λ0[ψ{X(t); β}]ψ′{X(t); β}, (5)

where λ0(·) is the hazard function for S0 and ψ′ is the first derivative of ψ. Here, U serves

the role of a baseline failure time variable and we thus refer to λ0(·) as the baseline hazard

function, which is usually left unspecified. Thus, (5) corresponds to a semi-parametric

model, which has been studied first by Robins and Tsiatis (1992) using a certain class

of rank estimating equations for β. These rank estimates were shown to be consistent

and asymptotically normal by Lin and Ying (1995). Recently, Hsieh (2003) proposed an

over-identified estimating equation approach to achieve semiparametric efficiency and to
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extend (5) to a heteroscedastic version. All this aforementioned work assumes, however,

that the entire covariate process, X(t), can be observed without measurement errors.

For the rest of the paper, we consider the joint AFT model as specified by (1) and (5)

(or equivalently, (1) and (4)), subject to the further complication that the observation of

the longitudinal coavriate process is truncated by the event time. Our goal is to provide

effective estimators for the regression parameter β without assuming a parametric baseline

hazard function λ0(·) in the survival components (4) (or (5)); as well as effective estima-

tors for the model components of the longitudinal process. This is accomplished via the

likelihood approach, so one could consider our proposal the counterpart of the approach

in Wulfsohn and Tsiatis (1997) for the proportional hazards mode.

As with the traditional time-independent AFT model, the AFT structure in the joint

modelling setting is much harder to handle than the proportional hazards model. We

assume that the baseline hazard function is a step function in section 2 when specifying

the joint likelihood of T and X(t). This is different from the approaches in Tsiatis and

Wulfsohn (1997), where the baseline hazard function is assumed to be discrete. The step

function structure is prompted by the continuous nature of the AFT model in (5), and it

allows us to implement the EM algorithm in section 3. The simulation studies in section

4 show that the proposed estimating procedures perform reasonably well.

Standard errors for the estimator for β turn out to be a difficult issue due to the miss-

ing information on random effects in the EM step. We propose a bootstrap method to

estimate the standard error of β̂ and illustrate it through a data set in Section 5, where

a case study for this fecundity data from Carey et al. (1998) is discussed. An intriguing

parametric model is proposed to model the longitudinal covariate which consists of the

daily egg-laying history of each of 251 female Mediterranean fruit flies (medflies). This

data is unique in that the entire history of the longitudinal process is available and there

is no censoring involved. We can thus artificially select part of the longitudinal data to

examine the performance of our procedure. This data also motivate the joint AFT and

longitudinal models proposed in this paper.
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2. Joint AFT and longitudinal model

Consider n subjects and let Ti be the event time of subject i, which is subject to

right censoring by Ci. The observed time is denoted by Vi = min(Ti, Ci), and ∆i is the

event time indicator, which is equal to 1 if Ti ≤ Ci, and 0 elsewhere. Without lose of

generality, assume a single time dependent covariate Xi(t) for subject i, as the case of

multiple covariates can be handled similarly. The covariate processes Xi(·) are scheduled

to be measured (with error) at times tij, but no measurements are available after the

event time. Thus, the measurement schedule of subject i is ti = (tij, tij ≤ Vi) and there

are mi repeated measurements for subject i, so that j = 1, ...,mi. The measurements

for subject i are Wi = (Wij) with measurement error ei = (eij), j = 1, ..., mi, where

Wij = Xi(tij) + eij. Therefore, the observed data for each individual is (Vi, ∆i,Wi, ti),

with all variables independent across i.

As with the practice for joint modelling, we restrict the longitudinal covariate to be a

Gaussian model specified via linear mixed effects,

Xi(t) = bT
i ρ(t), (6)

where ρ(t) = {ρ1(t), · · · , ρp(t)}T and ρ(t) are known functions; bT
i = (b1i, · · · , bpi) are p-

dimensional multivariate normal distributions, Np(µ,Σ), independent of the measurement

errors ei. The measurement errors, ei, are also assumed to be multivariate normal with

independent and identically distributed components eij ∼ N(0, σ2
e). The random effect

vectors bi, which are not observed and treated as missing data in the likelihood approach

to follow, are estimated by the EM-algorithm. If p = 2 and {ρ1(t), ρ2(t)} = (1, t), then

(6) is the linear growth curve model considered in the joint model literature. Higher order

polynomials {ρ1(t), · · · , ρp(t)} = (1, · · · , tp−1) can be used to include more complicated

growth curves model at high computational cost, as the EM steps involve evaluation of p-

dimensional integrals. Because of this, only a few random effects are employed in practice
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and different base functions ρk(t) may be called for if the trajectory of Xi(t) is nonlinear

over time. This occurs for the egg-laying trajectories of the medfly data in section 5,

where we show that {ρ1(t), ρ2(t)} = (logt, t− 1) is a good choice. This data illustrates the

flexibility of model (6). With a good choice of the basis functions ρk(t), one can model

effectively the longitudinal covariates jointly with the corresponding survival times.

Under the AFT assumption and the parametric longitudinal model (6), the hazard

function in (5) now takes the form:

λ{t|X̄(t)} = λ(t|β,bi) = λ0{ψ(t; β,bi)}ψ′
(t; β,bi), (7)

where λ0(·) is the unspecified baseline hazard function, and

ψ(t; β,bi) =

∫ t

0

exp{βX(s)}ds =

∫ t

0

exp{βbT
i ρ(s)}ds,

corresponds to the transformation in (4) and (5) with derivative

ψ
′
(t; β,bi) = exp{βX(t)} = exp{βbT

i ρ(t)}.

To construct the likelihood function, we assume noninformative censoring and mea-

surement schedule tij, which is also independent of future covariate history and random

effects bi. With such assumptions, both probability mechanisms of censoring and mea-

surement schedule can be factorized out of the likelihood function, and the joint observed

likelihood for model (1) and (7) can be expressed as:

L(θ) = L(β, µ, Σ, σ2
e , λ0) (8)

= Πn
i=1[

∫
{Πmi

j=1f(Wij|bi, ti, σ
2
e)}f(Vi, ∆i|bi, ti, λ0, β)f(bi|Σ,µ)dbi],

where f(Wij|bi, ti, σ
2
e)and f(bi|Σ, µ) are the density of N{bT

i ρ(t), σ2
e} and N(µ, Σ) re-

spectively. The function, f(Vi, ∆i|bi, ti, λ0, β), from the survival component of the model

is given as

f(Vi, ∆i|bi, ti, λ0, β) = [λ0{ψ(Vi; β,bi)}ψ′
(Vi; β,bi)]

∆iexp{−
∫ ψ(Vi;β,bi)

0

λ0(t)dt}. (9)
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Difficulties in Baseline Estimation : The expression in (9), representing the contri-

bution of the survival component to the joint likelihood, is much more complicated than its

counter part in the Cox proportional hazards model. Under the Cox model, the baseline

hazard function does not involve other unknown quantities and is assumed in Wulfsohn

and Tsiatis (1997) to take the form of its nonparametric MLE, which is a point mass func-

tion with masses assigned to all uncensored Vi. The parameters representing the baseline

hazards in the joint Cox and longitudinal model are thus the collection of all those masses,

which has a dimension of the order of the subject size n. While this growing parameter size

creates theoretical difficulties, it has no computational complications. However, the base-

line function under the AFT model now becomes a computational challenge, as the AFT

model in (5) or (9) excludes discrete survival times and hence the point mass approach

for baseline hazards. Moreover, direct maximum likelihood estimate for baseline hazard

function fails for (9), as it involves a set of transformed variables (or baseline failure time),

Ui = ψ(Vi; β,bi), which are not observed and further involve both the random effects and

the unknown parameter β. This makes it difficult to preassign a fixed set of parameters

to represent the baseline function λ0(t) in a likelihood setting. In fact, even the issue of

MLE under the time-independent AFT model has not been resolved. To circumvent this

problem, we assume that λ0(·) is constant between two consecutive estimated baseline

failure times, i.e. λ0(·) is a step function. This allows the feasibility of the EM algorithm

described in the next section to impute the unobserved random effects bi’s in (8) and

(9). Such a step function assumption on the baseline hazard function resembles the sieves

method approach to MLE as proposed in Grenander (1981), and thus provides hope that

the resulting procedures in this paper will be quite efficient. The simulation study and

data application in sections 4 and 5 later demonstrate the satisfactory performance of the

proposed procedure and its computational algorithm. The theoretical properties of the

new procedure is a complex problem and is currently under investigation. In fact, even

the simpler procedure in Wulfsohn and Tsiatis (1997) poses theoretical challenges and

remains unsolved due to the high dimensional nature of the problem.
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3. EM Algorithm

The joint likelihood in (8) will be maximized via the EM algorithm. For this, we

need to construct the complete data likelihood. The complete data for each subject is

(Vi, ∆i,Wi, ti,bi) and the complete data likelihood is

L∗(θ) = Πn
i=1[{Πmi

j=1f(Wij|bi, ti, σ
2
e)}f(Vi, ∆i|bi, ti, λ0, β)f(bi|Σ, µ)]. (10)

We will then compute the expected log likelihood of the complete data, conditioning on ob-

served data and current parameter estimates in the E-step, and maximize the conditional

expected log likelihood to update estimates of current parameters in the M-step. This is

repeated until the parameter estimates converge. The detailed procedure is described in

the next two subsections.

3·1. M-step

For a function h of bi, let E{h(bi)|Vi, ∆i,Wi, ti, θ̂} = Ei{h(bi)} be the conditional ex-

pected log likelihood based on the current estimate θ̂ = (µ̂, Σ̂, σ̂2
e , λ̂0, β̂). By differentiating

Ei{logL∗(θ)}, we can derive the following maximum likelihood estimates:

µ̂ =
n∑

i=1

Ei(bi)/n, (11)

Σ̂ =
n∑

i=1

Ei(bi − µ̂)(bi − µ̂)T /n, (12)

σ̂2
e =

n∑
i=1

mi∑
j=1

Ei{Wij − bT
i ρ(tij)}2/

n∑
i=1

mi. (13)

To estimate the baseline hazard function, we need to parameterize λ0, which is the hazard

function of the baseline failure times, U , defined in (4). Ideally, we could approximate
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λ0 by step functions, which leads to a natural parametrization of the baseline hazard

function. Since we cannot observe the baseline failure times, we estimate them through

(4). Let T1, . . . , Td denote the d distinct observed failure times among the n subjects.

That is, the Ti correspond to those distinct Vi with ∆i = 1. Then the baseline failure

times, as specified by (4), for these d subjects are: uk =
∫ Tk

0
exp{β bT

k ρ(s)}ds, k = 1, ..., d.

They can then be estimated by plugging in the current estimate of β and the current

empirical Bayes estimate of bk. Let ûk denote these estimates in ascending order. We

have 0 = û(0) ≤ û(1) ≤ · · · ≤ û(d), and a natural parametrization of the baseline hazard

function as piecewise constants between two consecutive ûj’s. That is, we restrict the

baseline hazard function to take the form :

λ0(u) =
d∑

j=1

Cj1{û(j−1)≤u<û(j)}. (14)

Similarly, the cumulative baseline hazard function Λ0 can be denoted by

∫ ψ(Vi;β,bi)

0

λ0(s)ds =

∫ ui

0

λ0(s)ds =
d∑

j=1

Cj{û(j) − û(j−1)}1{û(j)≤ui}. (15)

Differentiating Ei{logL∗(θ)} with respect to Ck, 1 ≤ k ≤ d, we have

∂

∂Ck

Ei{logL∗(θ)}

=
∂

∂Ck

n∑
i=1

Ei[∆ilog λ0(ui)− Λ0{ψ(Vi; β,bi)}]

= 0. (16)

Substituting λ0(ui) and
∫ ui

0
λ0(t)dt in (16) by (14) and (15) respectively, (16) becomes

∂

∂Ck

n∑
i=1

Ei[∆ilog

d∑
j=1

Cj1{û(j−1)<ui≤û(j)} −
d∑

j=1

Cj{û(j) − û(j−1)}1{û(j)≤ui}]

=
n∑

i=1

Ei

[
∆i

1{û(k−1)<ui≤û(k)}∑d
j=1 Cj1{û(j−1)<ui≤û(j)}

− {û(k) − û(k−1)}1{û(k)≤ui}

]

= 0.

Therefore, the maximum likelihood estimate for Ck is

Ĉk =

∑n
i=1 Ei[∆i1{û(k−1)≤ui<û(k)}]∑n

i=1 Ei[{û(k) − û(k−1)}1{û(k)≤ui}]
. (17)
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Now that we have overcome the difficulty in estimating the baseline hazard function,

we only have one task left, namely, the estimation of β. This turns out elusive as under

the assumption that λ0(·) is piecewise constant, Ei{logL∗(θ)} is equal to

n∑
i=1

Ei

(
∆ilog

[
d∑

j=1

Cj1{û(j−1)<ui≤û(j)}

]
+ ∆iβ{bT

i ρ(Vi)} −
d∑

j=1

Cj{û(j) − û(j−1)}1{û(j)≤ui}

)

+
n∑

i=1

Ei{logf(bi|Σ, µ)}+
n∑

i=1

Ei{
mi∑
j=1

log f(Wij|bi, σ
2
e)}. (18)

There is no closed form expression for the maximum likelihood estimate β̂ in (18)

since the u′is involve β. Furthermore, the score for β is not easy to derive because of the

complexity of u(·) and the indicator functions that are involved in β in (18). Therefore,

instead of the Newton-Raphson method to obtain the slope for β̂, one can estimate β by

directly maximizing the likelihood when β is low dimensional.

3·2. E-step

The M-step above involved Ei, which requires knowledge of f(bi|Vi, ∆i,Wi, ti, θ̂). This

can be obtained through the Bayes rule,

f(bi|Vi, ∆i,Wi, ti, θ̂)

=
f(bi, Vi, ∆i|Wi, ti, θ̂)

f(Vi, ∆i|Wi, ti, θ̂)

=
f(Vi, ∆i|bi, ti, θ̂) · f(bi|Wi, ti, θ̂)∫∞

−∞ f(Vi, ∆i|bi, ti, θ̂) · f(bi|Wi, ti, θ̂)dbi

,

where f(Vi, ∆i|bi, ti, θ̂) is the same as in (10) with parameters replaced by current estimates

and f(bi|Wi, ti, θ̂) is a density of conditional multivariate normal distribution, whose

exact form can be derived. More specifically, let ρ∗= {ρT (ti1)µ, · · · ,ρT (timi
)µ}T and A =

{ρ(ti1), · · · ,ρ(timi
)}T . Given ti, we have

(
Wi

bi

)
∼ N

{(
ρ∗

µ

)
,

(
Σ11 Σ12

Σ21 Σ22

)}
,
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where Σ11 = AΣAT , Σ12 = ΣT
21 = AΣ and Σ22 = Σ. Hence

bi|Wi, ti, θ̂ ∼ N{µ+Σ21Σ
−1
11 (Wi − Aµ), Σ22 − Σ21Σ

−1
11 Σ12}. (19)

The empirical Bayes estimate or BLUP for bi is thus the estimated mean of (19). Moreover,

Monte Carlo integration is used to derive all Ei(·), similar to Henderson et al.(2000), by

generating a number, M , of multivariate normal sequences for bi|Wi, ti, θ̂, denoted by

Ni = (Ni1, · · ·NiM)T . Then for any function, h(·) of bi, we have

Ei{h(bi)} =

∫∞
−∞ h(bi)f(Vi, ∆i|bi, ti, θ̂) · f(bi|Wi, ti, θ̂)dbi∫∞

−∞ f(Vi, ∆i|bi, ti, θ̂) · f(bi|Wi, ti, θ̂)dbi

≈

M∑
j=1

h(Nij)f(Vi, ∆i|Nij, ti, θ̂)

M∑
j=1

f(Vi, ∆i|Nij, ti, θ̂)

, when M is large.

The accuracy of the Monte Carlo integration increases as M increases, at the cost of

computational time. In order to have higher accuracy and less computing time, we may

follow the suggestion for Monte Carlo EM in Wei and Tanner (1990). That is, to use small

values of M in the initial iterations of the algorithm, and increase the values of M as the

algorithm moves closer to convergence. This strategy is found effective in the simulation

studies.

3·3. Summary and remarks

The EM-algorithm can be summarized as follows:

Obtain reasonable initial values for all parameters θ̂(0), and at the kth step:

1. Estimate bi by the empirical Bayesian estimate as specified in (19), and then estimate

the ordered baseline failure times {û(1), ...û(d)}.

2. Compute (11), (12), (13) and (17) to get µ̂(k), Σ̂(k), σ̂
2(k)
e , λ̂

(k)
0 , where Ei in those

formulae are performed according to the E-step in section 3.2.
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3. Find the maximizer β̂(k)of the conditional expected log likelihood from all vicinal

grid points of current β̂(k−1) .

Repeat steps 1-3 until all parameters converge.

Computation Remarks :

1. The monotonicity property of the EM algorithm is lost due to the Monte Carlo

integrals in the EM algorithm. However, following a suggestion of Chan and Ledolter

(1995), under suitable regularity conditions, the EM algorithm will approach the

maximizer of the likelihood with high probability, and this probability increases as

the Monte Carlo sample size increases.

2. Due to potential multiple modes of the likelihood function, it is necessary to choose

various initial values to make sure the global maximum likelihood estimates are

obtained. A reasonable initial value is needed to speed up convergence. A simple

two-stage procedure can be employed for the initial value, with the procedure in

Hsieh (2003) providing the initial estimate for β at the second stage. Alternatively,

one could also apply the last-value-carry-forward technique to implement Hsieh’s

procedure at the second stage. We remind the reader that any two-stage approach

is likely to induce biased due to truncation at lifetime, but could be used to gain

initial estimates.

3. Even with all precautionary measures taken as above, the EM-algorithm may still

take a long time to converge, especially if a large number of basis functions is used

in (6). It is thus very important to find good but few basis functions. We illustrate

in the case study in section 5 how to accomplish this.

3·4. Bootstrap estimate of the standard errors
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When estimating the standard error of β̂, we encounter two difficulties. The first is

that implementation of the EM algorithm involves missing information, and as noted in

Orchard and Woodbury (1972) the exact information matrix of parameters of interest can

not be obtained directly in the EM algorithm. This is the so called ”missing information

principle”. Various remedies have been proposed in Louis (1982) and McLachlan and

Krishnan (1997, chapter 4) by approximating the observed Fisher information matrix.

It is noted that these approximations are asymptotically valid for a finite dimensional

parameter space. Since we consider the baseline hazard to be unspecified, the asymptotic

validity of such approximations is dubious for infinite dimensional parameter space.

The second difficulty is that a promising way to derive the information matrix is provided

by profile likelihood. However, the mixture structure of the joint AFT model results in no

explicit profile likelihood. Hence we need to project onto all other parameters, including

the infinite dimensional parameter, λ0, to derive estimated standard errors for β̂. This

projection, which involves the infinite dimensional parameter λ0, is very difficult to derive.

Due to the above difficulties, we suggest using a bootstrap technique for missing data

by Efron (1994) to derive the standard error estimates. The following is an outline of the

procedure:

1. Generating bootstrap sample w∗ from original observed data w.

2. The EM algorithm is applied to the bootstrap sample w∗ to derive the MLE θ̂∗

3. Repeat step 1 and 2 B times.

4. Compute Cov(θ̂∗) = 1/(B − 1)
B∑

b=1

(θ̂∗b − θb)(θ̂
∗
b − θb)

T , where θb =
B∑

b=1

θ̂∗b/B

The data example in Section 5 supports the use of such bootstrap estimates for standard

errors.

4. Simulation studies
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We study the performance of the EM-procedures in section 3 through simulations

with n=100 subjects and 100 simulated samples. In the survival model (5), the baseline

function is set to be constant with λ0 ≡ 0.01, and β = 1. For the longitudinal component,

we consider the linear growth model (6) with ρ1(t) = 1 and ρ2 = t, normal random

effects with mean µ = (1, 0.5)T , and measurement errors with σ2
e = 0.25 in (1). The

preliminary scheduled measure times for each subject are (0, 1, · · · , 7), but no measurement

are available after death or censoring time. Three different settings are considered for the

variance components, Σ and censoring schemes: (i) (σ11, σ12, σ22) = (0.01,−0.001, 0.001),

and no censoring on scheduled measure times; (ii) with the same values of σij as (i),

but the lifetime is subject to censoring by exponential distribution with mean 25. This

resulted in about 20% censoring among all subjects. (iii) same setting as (ii) except σ22 =

0.3. Because of the larger variation, b2i may become negative in (iii), leading to improper

survival distributions with positive point mass at ∞. While this causes no problem as the

data would be censored at the censoring time in such a case, they are unnatural in that

this assumes infinite survival time like in the cure model setting. We choose to discard the

negative values and the resulting bi is thus actually generated from a truncated bivariate

normal distribution with 35% of the bivariate vectors truncated. This deviation from the

normality assumption allows us to check the robustness of our procedure which assumes a

normal random effect.

These three different settings allow us to exam the impact of censoring and violations

of the Gaussian random effects model on the performance of the proposed joint AFT

procedure. In the first and second setting the random effects are normally distributed as

assumed, but in the third setting the random effects depart from the normality assumption.

Table 1. Simulation (i) with no censoring and normal random effects

β µ1 µ2 σ11 σ12 σ22 σ2
e

target 1 1 0.5 0.01 -0.001 0.001 0.25
mean 1.0075 0.9955 0.5013 0.0087 -0.0011 0.0009 0.2528
SD 0.0945 0.0163 0.0055 0.0015 0.0002 0.0002 0.0135
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Table 2. Simulation (ii) with 20% censoring and normal random effects.

β µ1 µ2 σ11 σ12 σ22 σ2
e

target 1 1 0.5 0.01 -0.001 0.001 0.25
mean 0.9918 0.9944 0.5015 0.0083 -0.0011 0.0009 0.2516
SD 0.1272 0.0249 0.0056 0.0023 0.0004 0.0002 0.0198

Table 3. Simulation (iii) with 20% censoring and random effects that are truncated bivari-

ate normal distribution.

β µ1 µ2 σ11 σ12 σ22 σ2
e

parameter values 1 1 0.5 0.01 -0.001 0.3 0.25
empirical target 1 0.9993 0.6758 0.0104 -0.0058 0.1358 0.2753

mean 0.9950 1.0007 0.6682 0.0099 -0.0006 0.1627 0.2500
SD 0.1091 0.0140 0.0535 0.0004 0.0036 0.0318 0.0223

Table 1 and Table 2 show the simulation results of the first and second setting respectively.

The proposed joint AFT procedure provides approximately unbiased estimates in both

settings, and censoring mostly affects the variances of the estimators but not the biases.

In Table 3, simulation of the third setting, the original parameter values reported in the

second row are no longer the actual model parameters due to the truncation of the normal

random effects. The actual targets were estimated empirically and reported in the third

row. This should be the actual base of comparison for the mean estimates reported in

the fourth row. As can be seen from Table 3, the proposed joint AFT procedure also

resulted in good estimates for all parameters. Although the estimates for µ2, σ12 and

σ22 now have much larger standard deviations than their counterparts in Tables 1 and 2,

this is probably due to the increase in the target variance components rather than the

stability of the procedures. Comparing Table 3 to Table 2, violation of the normality

assumption on random effects has little impact on the biases of the procedures, yet the

standard deviation of β̂ is smaller when the target values of the variance components are

bigger. This is intriguing but can be explained by the design feature that bigger variance

components on the random effects may offer larger information on β̂ and hence a smaller

standard error for β̂.
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To summarize, the simulation results reported in Table 1 , 2 and 3 reveal that the

estimates for β are approximately unbiased, and so are all the other parameter estimates.

This is true even when the random effects are not normally distributed (cf. Table 3), sug-

gesting the robustness of the joint likelihood approach. This robustness property was also

observed in Song et al. (2002) and Tsiatis and Davidian (2004) for the joint Cox model

setting when the true random effects have bimodal or skew distributions. This is probably

due to the fact that when there are sufficient repeated measurements on the longitudinal

data, the posterior density of bi given the Wi,µ, Σ, has a mode near the true parameters

regardless of the random effects distribution. Thus, one could comfortably apply the AFT

procedure in this paper by assuming normal random effects, whenever there are enough

measurements on the longitudinal data. Caution, however, must be taken when the data

are sparse, as departure from the normal random effects assumption may have due effects

on the estimating procedures.

In addition to those estimates in Table 1-3, we plot the average estimated cumulative

baseline hazard function vs. the true one for each simulation setting. All curves ended at

the 95% percentile of the true survival distribution. Figure 1 (a), (b), and (c) show that

these average estimated cumulative baseline hazard functions derived from our proposed

approach are all close to the true ones. Pointwise 95% confidence bands based on the

Monte carlo simulations are also reported in Figure 1, and all of them include the true

cumulative baseline hazard functions. Therefore, the proposed EM-algorithm also provides

approximately unbiased estimates for the cumulative baseline hazard function.

5. Application to Medfly fecundity data

We apply our procedures to the egg-laying data in Carey, et al. (1998), which moti-

vated our joint AFT model. The original data set consists of 1000 female Mediterranean

fruit flies (medflies), for which number of eggs produced daily until death were recorded

without missing and censoring. The goal there was to explore the relation of the pattern
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Figure 1: Estimated cumulative baseline hazard function. Figure (a)-(c) are plotted under the
settings of simulations (i)-(iii) respectively.

of these fecundity curves, X(t), to longevity, as measured by the associated lifetime of the

medflies. Such information is important because reproduction is considered by evolution-

ary biologists as the single most important life history trait besides lifetime itself. This

data set is unusual and selected for illustration for several reasons.

First, the proportional hazards assumption fails for medflies that are most fertile, those

in the highest quartile of lifetime reproduction (measured by total number of eggs produced

in a lifetime). We use data of the 251 flies that produced more than 1150 eggs in their

lifetime. This choice is motivated by issues in the study of longevity in aging research,

as these flies are most successful in terms of reproduction. The proportional hazards

assumption was rejected by the test based on Schonfeld residuals in S-Plus as described

later. This is not surprising due to the complexity of the reproductive dynamics and its

association to lifetime. A simple proportional hazards assumption fails to capture their

relation. An AFT model, as defined in (5), on the other hand provides a biologically more

sensible model as it reflects covariate risks on an accelerated time scale and involves the

cumulative reproductive effects and not just daily effects.

Secondly, this data set contains the complete event history (reproductive history in this

case) for all experimental subjects, which is rare for data collected in medical longitudinal

studies. The complete data setting allow us to artificially discard most of the original data
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and fit our procedure on both the complete and incomplete data sets by the joint AFT

procedure. With this contrast, we could check the stability of the joint AFT procedure.

5·1. Fitting complete medfly data

A key to the proposed procedure is a suitable parametric longitudinal model. Towards

this goal, we examine the individual fecundity curves and its cross-sectional mean curve

(taken as the daily sample means). The original 251 fecundity curves are very noisy and

hence it is difficult to examine the overall shape of the fecundity curves, if we plot all

the 251 curves in one figure. However, they all express a strong mode between day 10

to 20 and then tamper off to zero towards the end of lifetime. A sample of four flies are

selected and their fecundity profiles are shown in Figure 2. The mode represents peak

reproduction, which is expected, so we tried to fit these fecundity curves with unimodal

smooth functions that have zero as asymptote. Using a least squares method, the Gamma

functions seem to provide good approximations as illustrated in Figure 2.

Those individual fitted curves are gamma functions with different scale and shape pa-

rameters. Therefore, a gamma function with random shape and random scale parameters

seems appropriate as an initial longitudinal model:

W (t) = X∗(t) + e(t), X∗(t) = tb1exp(b2t).

Here W (t) is daily egg-laying, which are subject to random daily fluctuations. The actual

underlying fecundity process, X∗(t), is not observed, and (b1, b2) are the random effects.

However, this choice of parametric model for X∗(t) yields a nonlinear random effects

model and hence it is very complicated to derive joint likelihood function and conditional

expectation in every iteration of the EM algorithm. To overcome this computational

difficulty, we apply logarithmic transformation to both W (t) + 1 and X(t) + 1. The

constant one is added to avoid ill-defined logarithmic function values, since daily egg-

laying of each individual could be zero. Consequentially, the final longitudinal model for
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Figure 2: Individual profiles are fitted by the gamma function. Daily egg-laying of subject 5
is fitted by t2.710e−0.204, subject 6 by t2.652e−0.193, subject7 by t2.725e−0.226, and subject 8 by
t2.803e−0.221.

the ith individual becomes:

log(Wij + 1) = Xij + eij, (20)

Xij = b1ilog(tij) + b2i(tij − 1), (21)

where eij ∼ N(0, σ2
e); bi = (b1i, b2i)

T ∼ N(µ2×1, Σ2×2), i = 1, ..., 251, j = 1, ..., mi and

22 ≤ mi ≤ 99. Note here that mi = Ti for the complete medfly data. After taking

log transformation on daily egg-laying of those medflies, we test, in S-plus, the Cox pro-

portional hazard assumption again using the scaled Schonfeld residuals in Grambsch and

Therneau(1994, 2000). The proportional hazards model was rejected at P-value=0.003.

An AFT survival model is thus proposed as the alternative based on its aforementioned

biological appealing feature. The results of the joint AFT procedure in Section 3 are sum-

marized in Table 4, where the standard error estimate for each parameter is derived by

100 bootstrap samples as described in Section 3·5.
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Table4. The parameter estimates derived from the original complete data and 100 boot-

strap samples under the joint AFT model.

β µ1 µ2 σ11 σ12 σ22 σ2
e

fitted value -0.4340 2.1227 -0.1442 0.3701 -0.0482 0.0068 0.8944
bootstrap mean -0.4313 2.1112 -0.1429 0.3651 -0.0483 0.0066 0.8958
bootstrap SD 0.0115 0.0375 0.0051 0.0353 0.0002 0.0005 0.0223

The mean of the 100 bootstrap estimates, as reported in the third row, is close to the

estimate based on the data (reported in the second row). This provides positive evidence

towards the reliability of the bootstrap procedure under the joint modelling framework.

Based on the bootstrap SD reported in the last row, all the parameters are highly signif-

icant, and the negative estimated regression coefficient (-0.4340) suggests that for highly

fertile flies, reproduction activity is positively associated with longevity. In other words,

the commonly observed ”cost of reproduction” (Partridge and Harvey (1985)) does not

hold for the most fertile flies. In fact, fertility seems to be an indicator for genetic fitness

for those flies.

Fig. 3 provides the empirical Bayes’s estimate (or BLUP) of the four individual X(t),

with bi estimated from the mean of the bivariate normal distribution in (19). The four

fitted curves (dashed lines) capture the egg-laying trajectories quite well. Fig. 4 shows

the cross-sectional sample mean of the log daily egg-laying and the mean of the 251 fitted

curves. The fitted mean curve (dashed lines) is very close to the sample means up to day

60, where only 10% of the medflies are still alive. The variation becomes larger afterwards,

as expected. We have thus demonstrated the feasibility of the joint models (20) and (21)

for female medfly fecundity and survival data.

5·2. Fitting incomplete medfly data

So far, we have applied our procedure to the complete data set, which involves no

censoring and contains the complete covariate history. Since most longitudinal studies in
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Figure 3: Fitted fecundity curves for four medflies based on complete (dots) and incomplete
(circled dots) data. The dashed lines are the fitted curves based on complete data, and the solid
lines for incomplete data.

clinical trials or medical follow up studies result in incomplete data either through cen-

soring or irregular sampling plan, we want to check the performance of our procedure

under these common sampling schemes. We thus randomly select 1 to 7 days as the cor-

responding schedule times for each individual and then add the day of death as the last

schedule time. Therefore, a minimum of 2 and a maximum of 8 repeated measurements

on the number of egg production are recorded for each mefly, and all other reproduction

information is discarded. This resulted in artificially induced irregular sampling plans

on the longitudinal data. The sub data set is further censored by an exponential distri-

bution with mean 500, which resulted in censoring of lifetimes for 20 % of the medflies

and much fewer longitudinal measurements for the censored subjects. The joint AFT pro-

cedure is then applied to this incomplete data set, and the results are presented in Table 5.

Table 5. The parameter estimates derived from incomplete data and 100 bootstrap samples

under the joint AFT model.
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Figure 4: Fitted Cross-sectional mean curves for complete and incomplete data. The dots repre-
sents the daily mean eggs of those that are still alive.

β µ1 µ2 σ11 σ12 σ22 σ2
e

fitted value -0.3890 2.2011 -0.1665 0.2833 -0.0382 0.0051 0.9775
bootstrap mean -0.3526 2.1986 -0.1575 0.2862 -0.0398 0.0057 0.9712
bootstrap SD 0.0323 0.0461 0.0074 0.0351 0.0046 0.0006 0.0570

Here again, the bootstrap procedures seems to be effective, all parameters are highly

significant, and the estimates based on the incomplete data are close to those based on

the complete data. The standard deviations in Table 5 are all much larger than those in

Table 4 because a large proportion of information is lost due to the unavailability of the

measurements.

The fitted individual curves for the four subjects based on the incomplete data are

also shown in Figure 3 (solid lines), and they are essentially the same as the fitted curve

based on the complete data (dashed lines). The mean of the 251 fitted curves, also based

on incomplete data, is shown in Figure 4. While the two fitted mean curves are close to

each other until day 50, the impact of the sparsity of the longitudinal data is prominently

expressed through the high variability of the mean fitted curve based on incomplete data.

Overall, we can comfortably claim that the joint AFT and longitudinal procedure proposed

in this paper handle incomplete data very well even when the majority of the longitudinal

covariates are not available.
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6. Discussion and Conclusion

We have demonstrated the applicability of the proposed joint likelihood approach, and

that it is insensitive to the normality assumption, if rich information is available on the

longitudinal data, meaning that reasonably many repeated measurements are available on

the subjects. However, this must not be mistaken for a global robustness of the procedure.

Like all parametric approaches, joint likelihood is sensitive to model assumptions for the

longitudinal covariates, that is, the choice of the base functions, ρk. Misspecified functional

form of the longitudinal covariates could induce large bias. For example, if instead of (20)

and (21), we fit the longitudinal covariates for the medfly data by a simple linear mixed

model which is (6) with ρ(t) = (1, t)T and bi = (b1i, b2i)
T , the estimate of β becomes

-0.021 with standard deviation 0.14, which results in insignificance of the fecundity curve

for the medfly data.

Practically, a data set may contain multivariate time dependent covariates and/or baseline

covariates, such as treatment status , sex, etc. In these situations, the extension of the

proposed joint AFT procedure is straightforward and we may consider the transformation

(4) as:

U = ψ{X(T ), Z; β, η} =
∫ T

0
exp{βT X(s) + ηT Z}ds

where X is a q-multivariate longitudinal process and β is a q-dimensional vector, η is the

regression coefficient vector corresponding to baseline covariates Z. A slight adjustment

of the EM algorithm is required in step 4 of the summary of EM algorithm by finding the

maximizer of β and η simultaneously. This can be achieved by using a simplex algorithm

in Nelder and Mead (1965) or method of simulated annealing in Kirkpatrick et al(1983).

We have proposed a viable joint modelling approach for accelerated failure time data

and longitudinal and time-independent covariates. To our knowledge, this is the first at-

tempt of such a joint modelling approach. There are obviously many remaining issues to

be resolved. For instance, the asymptotic theory of the estimates is not yet available. In

fact, this is also not available even for the simpler case of a proportional hazards model.
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Both are challenging technical problems currently under investigation. Until reliable esti-

mates for the standard deviations of the estimators are derived, we recommend to use the

bootstrap SD estimates as they seem to work well in the data illustration.
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