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SUMMARY

This paper formulates a class of models for the joint behaviour of a sequence of longitudinal
measurements and an associated sequence of event times, including single-event survival data. This class
includes and extends a number of specific models which have been proposed recently, and, in the absence
of association, reduces to separate models for the measurements and events based, respectively, on a
normal linear model with correlated errors and a semi-parametric proportional hazards or intensity model
with frailty.

Special cases of the model class are discussed in detail and an estimation procedure which allows the
two components to be linked through a latent stochastic process is described. Methods are illustrated using
results from a clinical trial into the treatment of schizophrenia.

Keywords: Biomarkers; Counting processes; Informative drop-out; Repeated measurements; Serial correlation;
Survival.

1. INTRODUCTION

Many scientific investigations generate both longitudinal measurement data, with repeated measure-
ments of a response variable at a number of time points, and event history data, in which times to recurrent
or terminating events are recorded. A well-known example is in AIDS research in which a biomarker such
as CD4 lymphocyte count is determined intermittently and its relationship with time to seroconversion or
death is of interest (e.g. Pawitan and Self, 1993; Tsiatis et al., 1995; Wulfsohn and Tsiatis, 1997). Another
example, to be considered in detail later, is illustrated in Figure 1. These data arose as part of a clinical trial
into drug therapy for schizophrenia patients, previously described by Diggle (1998). The upper plot shows
the development over time of mean scores for each of three treatment groups on a particular measure of
psychiatric disorder (Positive and Negative Symptom Scale, PANSS). Not all patients completed the trial
however: survival curves in the lower plot show that a substantial proportion of each group of patients
withdrew before completing the measurement schedule. It is not clear whether the apparent decrease in
PANSS profiles relects a genuine change over time, or is an artefact caused by selective drop-out, with
patients with high (worse) PANSS values being less likely to complete the trial.

Hogan and Laird (1997b) give an excellent review of models and methods for joint analysis of data of
this type. As well as the AIDS studies cited earlier, other useful references include Faucett and Thomas
(1996), Lavalley and Degrutolla (1996), Hogan and Laird (1997a), Faucett et al. (1998) and Finkelstein
and Schoenfeld (1999). Most previous work has been based on specific applications, and clearly the
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Fig. 1. Longitudinal and event time summaries for schizophrenia trial: (a) mean PANSS score and (b) survival curves
for time to drop-out due to inadequate response.

statistical and scientific objectives of investigations of this kind will depend upon the the application of
interest. In particular, the primary focus for inference may be on:

(a) adjustment of inferences about longitudinal measurements to allow for possibly outcome-dependent
drop-out;

(b) the distribution of time to a terminating or recurrent event conditional on intermediate longitudinal
measurements; or

(c) the joint evolution of the measurement and event time processes.

In analysing the PANSS data of Figure 1, for instance, Diggle (1998) had emphasis (a), with interest
mainly in the effect of treatment on the longitudinal PANSS score. Objective (b) is more appropriate for
survival analysis with a time-dependent covariate measured with error. In this work we will consider (c) to



Joint modelling of longitudinal measurements and event time data 467

be important, with equal interest in both longitudinal and event time components. However, the methods
and models apply equally to (a) or (b).

Our goal is to develop a flexible methodology for handling combined longitudinal and event history
data, incorporating the most commonly used first-choice assumptions from both subject areas. Thus, for
the longitudinal response we argue that any general model should be able to incorporate fixed effects,
random effects, serial correlation and pure measurement error, whilst the event history or survival analysis
should be based on a semi-parametric proportional hazards (or intensity) model with or without frailty
terms. Another desirable feature for joint modelling is that in the absence of association between the
longitudinal data and event times the joint analysis should recover the same results as would be obtained
from separate analyses for each component.

A central feature of our modelling strategy is to postulate a latent bivariate Gaussian process W (t) =
{W1(t), W2(t)}, and assume that the measurement and event processes are conditionally independent given
W (t) and covariates. Hence, association is described through the cross-correlation between W1(t) and
W2(t). In Section 2 we describe the model and derive the likelihood for the combined data through a
factorization akin to a random effects selection model. In Section 3 we assume that W1(t) and W2(t) can
be specified through a linear random effects model, Wk(t) = dk(t)′U : k = 1, 2, where U is multivariate
Gaussian and the dk(t) are vectors of possibly time-varying explanatory variables. This model includes
as a special case a model which has been considered previously by several authors, under which a Laird–
Ware random effects model for W1(t) is combined with a proportionality assumption W2(t) ∝ W1(t).
The extension allows us to consider situations in which the association between measurement and event
processes is described in terms of particular components of variation, such as the intercept and/or slope
of a subject-specific time trend, rather than the value of W1(t) alone. Additionally, random effects (or
frailties) can be allowed to influence the event process independently of the measurement process. An
exploitation maximization (EM) algorithm proposed by Wulfsohn and Tsiatis (1997) can be used for
estimation and is illustrated in simulations. In Section 4 we consider an alternative model under which
W1(t) and W2(t) include serially correlated stochastic components and describe an estimation procedure
based on the likelihood factorization given in Section 2. In Section 5 we present the results of fitting a
variety of models to the schizophrenia data introduced earlier in this section. Section 6 discusses possible
extensions to the work.

2. THE GENERAL MODEL AND ITS ASSOCIATED LIKELIHOOD

2.1 Notation

Some of our notation is non-standard as there is occasional conflict between that commonly used in
longitudinal data analysis and that which is familiar in event history analysis.

We consider a set of m subjects followed over an interval [0, τ ). The i th subject provides a set of
quantitative measurements {yi j : j = 1, . . . , ni } at times {ti j : j = 1, . . . , ni }, together with realizations
of a counting process {Ni (u) : 0 � u � τ } for the events and a predictable zero-one process {Hi (u) :
0 � u � τ } indicating whether the subject is at risk of experiencing an event at time u (usually denoted
Yi (u) in survival analysis). The counting process Ni (u) has jumps at times {ui j : j = 1, . . . , Ni (τ )},
with Ni (τ ) not more than one for survival data. We assume that the timing of the measurements {ti j } is
non-informative in the sense that the decision to schedule a measurement is made independently of the
measurement or counting processes. We also assume that the censoring of event times which might have
occurred after the end of the study is non-informative, and that data from different subjects are generated
by independent processes.
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2.2 Model formulation

We propose to model the joint distribution of measurements and events for the i th subject via an
unobserved or latent zero-mean bivariate Gaussian process, Wi (t) = {W1i (t), W2i (t)}, which is realized
independently in different subjects. In particular, we assume that this latent process drives a pair of linked
sub-models, which we call the measurement and intensity sub-models as follows.

(1) The sequence of measurements yi1, yi2, . . . at times ti1, ti2, . . . is determined by

Yi j = µi (ti j ) + W1i (ti j ) + Zi j , (1)

where µi (ti j ) is the mean response and Zi j ∼ N (0, σ 2
z ) is a sequence of mutually independent

measurement errors. We assume that µi (t) can be described by a linear model

µi (t) = x1i (t)
′β1

in which the vectors x1i (t) and β1 represent possibly time-varying explanatory variables and their
corresponding regression coefficients, respectively.

(2) The event intensity process at time t is given by the semi-parametric multiplicative model

λi (t) = Hi (t)α0(t) exp{x2i (t)
′β2 + W2i (t)}, (2)

with the form of α0(t) left unspecified. Vectors x2i (t) and β2 may or may not have elements in
common with x1i (t) and β1.

We adopt the generic notation Y for the combined longitudinal data, N (from counting process
terminology) for the combined event time data, X for covariate information, and W1 and W2 for the
latent processes. Note that Y and N are conditionally independent, given X , W1 and W2. Without the
conditioning, dependence between Y and N can arise in two ways: through the deterministic effects of
common covariates X or through stochastic dependence between W1 and W2. We refer to the direct link
between W1 and W2 as latent association. In the absence of latent association there is nothing to be gained
by a joint analysis, unless the measurement and intensity sub-models have parameters in common.

The combination of equations (1) and (2) embraces a wide range of specific models which have been
proposed for the separate analysis of continuous longitudinal measurements and survival outcomes. In
particular, a flexible choice for W1i (t), combining suggestions in Laird and Ware (1982) and in Diggle
(1988), would be

W1i (t) = d1i (t)
′U1i + V1i (t). (3)

In equation (3), d1i (t) is a vector of explanatory variables, U1i ∼ MV N (0, �1) is a corresponding vector
of random effects and V1i (t) is a stationary Gaussian process with mean zero, variance σ 2

v1 and correlation
function r1(u) = cov{V1i (t), V1i (t − u)}/σ 2

1 . Note that by assuming stationarity we are excluding the
integrated Ornstein–Uhlenbeck process employed by Taylor et al. (1994) and Lavalley and Degrutolla
(1996), although extension to this type of process is in principle straightforward. The process W2i (t) is
specified in a similar way to W1i (t) and, in the absence of latent association, represents possibly time-
dependent (log) Gaussian frailty (e.g. Yau and McGilchrist, 1998).

2.3 The likelihood function

The marginal distribution of the observed measurements Y is easily obtained. It is convenient to
factorize the likelihood for the observed data as the product of this marginal distribution and the
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conditional distribution of the events, N , given the observed values of Y . A complete factorization of the
likelihood would include a third term, the conditional distribution of the number and timings of observed
measurements given Y and N . However, our assumption that the measurement schedule is non-informative
implies that this third term can be ignored.

Let θ denote the combined vector of unknown parameters. We define W2i to be the complete path
of W2i over the interval [0, τ ) and let W2 be the collation of these paths over all subjects. Conditional
on W2, the event history data are independent of the measurements Y and we can write the likelihood
L = L(θ, Y, N ) as

L = LY × L N |Y = LY (θ, Y ) × EW2|Y {L N |W2(θ, N | W2)}, (4)

in which LY (θ, Y ) is of standard form corresponding to the marginal multivariate normal distribution of
Y . The conditional likelihood for the event data, L N |W2(θ, N | W2), captures any likelihood contribution
arising from the achieved numbers of longitudinal measurements before any drop-out or failure. With
A0(t) = ∫ t

0 α0(u)du denoting the cumulative baseline intensity, we can write L N |W2 (Andersen et al.,
1993, p. 482) as

L N |W2(θ, N | W2) =
∏

i

{(∏
t

[exp{x2i (t)
′β2 + W2i (t)}α0(t)]�Ni (t)

)

× exp

[
−

∫ τ

0
Hi (t) exp{x2i (t)

′β2 + W2i (t)}d A0(t)

]}
. (5)

Determination of L apparently requires an expectation with respect to the distribution of the infinite
dimensional process W2, given the longitudinal measurements Y . However, this is avoided under the semi-
parametric approach because the non-parametric estimator of baseline intensity is zero except at observed
event times U = {ui j }. Hence, the expectation need only be taken over a finite number of variables
W2 = {W2(u) : u ∈ U}. Note that the joint distribution of Y and W2 is multivariate normal with easily
derived covariance structure (e.g. Mardia et al., 1979).

3. LINEAR RANDOM EFFECTS MODELS AND EM ESTIMATION

Tsiatis et al. (1995), Faucett and Thomas (1996), and Wulfsohn and Tsiatis (1997) all assume a Laird
and Ware (1982) linear random effects model W1i (t) = U1i + U2i t , in conjunction with a proportionality
assumption W2i (t) = γ W1i (t), where (U1i , U2i ) are subject-specific bivariate Gaussian random effects.
A natural extension allows the random slope and intercept to have different effects on the event process,
and to add a time-constant frailty term. Thus, dropping the subscript i we again assume

W1(t) = U1 + U2t,

where (U1, U2) are zero-mean bivariate Gaussian variables with respective variances σ 2
1 and σ 2

2 , and
correlation coefficient ρ. However, for W2(t) we now propose a specification

W2(t) = γ1U1 + γ2U2 + γ3(U1 + U2t) + U3, (6)

where U3 ∼ N (0, σ 2
3 ) is independent of (U1, U2). In this model the parameters γ1, γ2 and γ3 measure

the association induced through the intercept, slope and current W1 value, respectively, whilst U3 models
frailty orthogonal to the measurement process.

The EM estimation algorithm described by Wulfsohn and Tsiatis (1997) can easily be extended to this
model and is our preferred method of estimation. The procedure involves iterating between the following
two steps until convergence is achieved.
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(1) E-step. Consider the random effects U = (U1, U2, U3)
′ as missing data. We determine the expected

values conditional on the observed data (Y, N ) of all functions h(U ) appearing in the logarithm
of the complete data likelihood L(θ, Y, N , U ), using current parameter estimates. Wulfsohn and
Tsiatis show that the conditional expectations can be written as

E[h(U )|Y, N ] =
{∫

h(U ) f (N |U ) f (U |Y )dU

}
/ f (N |Y ) (7)

with

f (N |Y ) =
∫

f (N |U ) f (U |Y )dU . (8)

Here f (N |U ) is the contribution (of the i th individual) to the event-time component (5) of the
complete-data likelihood and f (U |Y ) is the Gaussian conditional distribution of the random
effects given the longitudinal data. Since U is low dimensional the integrals can be approximated
using Gauss–Hermite quadrature, which can also be used to evaluate the final log-likelihood,
log(L(θ, Y, N )) = log(EU [L(θ, Y, N , U )|Y, N ]).

(2) M-step. We maximize the complete data log-likelihood with each function h(U ) replaced by
its corresponding expectation. A one-step approximation based on equation (5) can be used for
the event time regression parameters β2 and γ given the current A0(t). In turn, A0(t) can be
estimated using the usual Breslow estimator given β2, γ and the appropriate expected functions
of U (Andersen et al., 1993, p. 483). Closed form estimators are available for the measurement
parameters (β1, σ

2
z ) and random effects parameters (σ 2

1 , σ 2
2 , ρ, σ 2

3 ), again given the appropriate
expectations of functions of U . Full details are provided by Wulfsohn and Tsiatis (1997).

In Table 1 we summarize the results of a simulation study into the performance of the estimation
procedure, illustrating in particular the effects of ignoring association between Y and N . We considered
two sample sizes, m = 250 and m = 500, and for each we simulated data under two scenarios: without
latent association (all γ = 0, upper part) and with latent association (not all γ = 0, lower part). When
latent association was present both the intercept and current W1 value were taken to affect event times
(γ1γ3 �= 0) but not the slope alone (γ2 = 0). The longitudinal model was taken to be

Yt = β11 + β12t + β13 X + U1 + Ut × t + Zt

with X ∼ N (0, 1) and n = 6 measurements scheduled at times 0, 0.5, 1, 1.5, 2 and 3 units. Event times
were generated from the model

α(t) = α0(t) exp{β21 X + γ1U1 + γ2U2 + γ3(U1 + Ut × t) + U3}

with Weibull baseline α0(t) chosen to give about 40% drop-out by time 1, and 70% drop-out by time 3.
No parametric assumptions on baseline hazard were made during estimation. A final truncation time of
τ = 4 was used.

We analysed each simulated data set in two ways: firstly with separate analyses of measurements Y
and event times N , ignoring any latent association, and secondly using the joint approach and an EM
implementation of maximum likelihood estimation as outlined above. In roughly 5% of simulations the
algorithm failed to converge, usually as a result of difficulty in estimating one or more of the variance
parameters for U . Results based in each case on 100 successful completions of the algorithm are given in
Table 1. They can be summarized as follows.
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Table 1. Simulation results

(a) No latent association
Parameter True m = 250 m = 500

Separate Joint Separate Joint
Mean SE Mean SE Mean SE Mean SE

β11 0 −0.002 0.005 0.000 0.005 0.004 0.004 0.004 0.004
β12 1 1.009 0.008 1.016 0.009 0.994 0.006 0.991 0.006
β13 1 0.998 0.006 0.997 0.006 0.996 0.004 0.996 0.004
σ 2

1 0.5 0.509 0.007 0.511 0.007 0.494 0.004 0.494 0.004
σ 2

2 1 1.008 0.013 1.011 0.014 1.004 0.008 1.006 0.008
ρ 0 0.003 0.009 −0.001 0.010 −0.014 0.007 −0.014 0.007
σ 2

z 0.25 0.249 0.002 0.249 0.002 0.252 0.001 0.252 0.001
β21 1 0.966 0.010 0.976 0.010 0.968 0.008 0.986 0.011
σ 2

3 0.25 0.140 0.011 0.138 0.011 0.190 0.014 0.248 0.038
γ1 0 0.000 0.017 0.003 0.011
γ2 0 0.002 0.018 −0.012 0.014
γ3 0 0.001 0.010 0.002 0.007

(b) Latent association
Parameter True m = 250 m = 500

Separate Joint Separate Joint

Mean SE Mean SE Mean SE Mean SE
β11 0 0.043 0.006 0.004 0.006 0.037 0.004 −0.002 0.004
β12 1 0.620 0.008 0.945 0.010 0.640 0.005 0.973 0.007
β13 1 0.979 0.005 1.000 0.005 0.978 0.004 0.999 0.004
σ 2

1 0.5 0.496 0.006 0.502 0.006 0.492 0.004 0.501 0.004
σ 2

2 1 0.736 0.012 0.989 0.015 0.733 0.009 0.990 0.011
ρ 0 −0.023 0.011 −0.015 0.010 −0.011 0.007 −0.008 0.007
σ 2

z 0.25 0.259 0.002 0.250 0.002 0.260 0.001 0.250 0.001
β21 1 0.789 0.013 0.969 0.014 0.843 0.012 0.982 0.011
σ 2

3 0.25 1.414 0.051 0.245 0.018 1.723 0.041 0.283 0.025
γ1 −1.5 −1.505 0.039 −1.520 0.033
γ2 0 −0.088 0.033 −0.103 0.026
γ3 2 1.986 0.035 2.019 0.031

• Results for separate and joint analyses are all good if there is no latent association, except for severe
underestimation of frailty variance σ 2

3 , especially at the lower sample size. This finding is consistent
with the results of Neilsen et al. (1992), who found similar downward bias in estimated frailty
variances in gamma frailty models.

• Severe bias occurs for some parameters when there is ignored latent association, notably underesti-
mation of the time trend (β12) because with positive γ there is greater drop-out of high responders
and the observed time trend is attenuated. Similarly, the estimate for the random slope variance σ 2

2 is
negatively biased.
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• In contrast, the frailty variance σ 2
3 is markedly overestimated. This is as expected, since the frailty

effect is confounded with the ignored random effects.

• Overall, results under the joint modelling approach are good, although we note a small (but significant)
bias in γ̂2, whose true value is zero. This indicates some difficulty in disentangling the separate effects.

• In the presence of latent association, the additional information available from the longitudinal data
operates, in effect, as extra covariate information which helps overcome problems in frailty variance
estimation. This may be because frailty is unidentifiable in semi-parametric models without covariates,
with identification becoming easier as the number of important covariates increases.

4. STOCHASTIC PROCESS MODELS AND AN ALTERNATIVE ESTIMATION PROCEDURE

A natural extension to the Laird–Ware model for W1(t) adds the possibility of a serially correlated
component, as in equation (3). Thus we now consider

W1(t) = U1 + U2t + V (t)

where U1 and U2 are as previously described and V (t) is a stationary Gaussian process, independent of
(U1, U2), with V (t) ∼ N (0, σ 2

v ) and Corr(V (t), V (t − u)) = r(u; φ). Typically we might take

r(u; φ) = exp(−|u|ν/φ)

for fixed ν, say 0.5, 1 or 2, and φ to be estimated. The process V (t) thus describes local deviations whereas
the term U2t represents a sustained trend. The second process W2(t) may be assumed to be proportional
to W1(t) or may again be broken into components and augmented by frailty U3 ∼ N (0, σ 2

3 ), as in the
previous section.

For each subject, let U = (U1, U2, U3, V1, V2, . . . )
′ be the unobserved random effects, where

V1, V2, . . . are the values of V (t) at the distinct event and measurement times required to form the
contribution from this subject to the complete data likelihood L(θ, Y, N , U ). Depending on the models
for W1 and W2, only a subset of elements of U may be required. In particular, models with a term V (t)
replacing the random linear trend U2t are useful for data with long sequences of measurements on each
subject.

Since U and Y are jointly Gaussian, the conditional distribution of U given Y can be derived easily, and
thus in principle the Wulfsohn and Tsiatis EM algorithm of the previous section can be applied. However,
the extension to incorporate the serially correlated process leads to practical difficulties in implementation
and we suggest an alternative estimation procedure, which involves two modifications of the Wulfsohn
and Tsiatis technique.

The first modification is in the numerical approximation to the integrals required at the E-step. Once
V (t) is incorporated, the dimensionality of U can be quite large, making Gauss–Hermite quadrature
prohibitively time consuming. For instance, under a simple model with W1(t) = V (t) and W2(t) =
γ W1(t), one of the calculations required for each subject is the expectation of

exp

[
−

∫ τ

0
H(t) exp{γ V (t)}d A0(t)

]
.

If the subject is at risk through d distinct failure times this expectation is with respect to a d-
dimensional vector (of V (t) at each failure time, conditional on Y ). Evaluation of pd terms in p-point
quadrature is then necessary, which is prohibitive for realistic d. Instead, we suggest a Monte Carlo
integration method with antithetic simulation for variance reduction. The steps involved for any required
function E[h(U )|Y, N ] are as follows.
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(1) Writing U |Y ∼ N (µy, �y), find the Choleski decomposition Cy of �, so CyC ′
y = �y .

(2) Generate a number M of antithetic pairs

U+ = µy + Cy Z U− = µy − Cy Z

where Z ∼ N (0, I ) is of the same dimension as U .
(3) Estimate the integrals in equations (7) and (8) by the simulation sample means of h(U ) f (N |U ) and

f (N |U ) over the 2M realizations of U .

The value of M can be tuned to balance numerical accuracy with computational speed. Negative
correlation between U+ and U− leads to a smaller variance in the sample mean values of h(U ) f (N |U )

and f (N |U ) than would be obtained from 2M independent simulations of U .
The second modification to the procedure exploits the likelihood factorization (4), and essentially

treats only W2 as missing data rather than both W1 and W2. This reduces sensitivity to error in numerical
integration and overcomes some of the convergence difficulties arising from attempting to estimate
variance properties of W1 from missing data. The procedure combines estimation of variance parameters
by a search technique based on evaluating equation (4), and estimation of the remaining regression
and hazard parameters by a conditional EM procedure. The variance parameters are a subset, ξ say, of
(σ 2

1 , σ 2
2 , σ 2

3 , σ 2
v , φ, σ 2

z )′, depending on the model in use. The procedure is then as follows.

(1) Initialize ξ by separate analyses of Y and N using standard methods.
(2) For given ξ use an EM algorithm as in Section 3 to estimate (β1, β2, {A0(t)}, γ ), using either

antithetic Monte Carlo simulation or quadrature for numerical integration, as required.
(3) Evaluate the logarithm of L = LY × L N |Y (4), using the marginal distribution of Y and noting

that each subject’s contribution to L N |Y is given by equation (8) and is evaluated as part of the EM
procedure at Step 2.

(4) Update ξ and return to Step 2, using a simplex algorithm (Nelder and Mead, 1965) to search for the
value of ξ which maximizes equation (4).

In our experience, the inner EM algorithm is quick and accurate with only a relatively low value
of M required at the Monte Carlo E-step. A higher value is needed for accurate evaluation of the
likelihood contribution once the inner algorithm has converged. This leads to the outer simplex search
being relatively slow, though some gain in speed can be achieved by using a fairly low value of M initially,
while the estimates are some distance from the maximum, with a higher value for a more refined search
at the later stages. Time required for the Cholesky decomposition and simulations at the E-step can be
reduced if required by discretizing the timescale, to reduce the number of distinct event times and hence
the dimension of U .

5. EXAMPLE: A CLINICAL TRIAL WITH INFORMATIVE DROP-OUT

We now return to the illustrative example introduced briefly in Section 1. Data are available from
523 patients, randomly allocated amongst the following six treatments: placebo, haloperidol 20 mg and
risperidone at dose levels 2 mg, 6 mg, 10 mg and 16 mg. Haloperidol is regarded as a standard therapy.
Risperidone is described as ‘a novel chemical compound with useful pharmacological characteristics, as
has been demonstrated in in vitro and in vivo experiments’. The primary response variable was the total
score obtained on the PANSS, a measure of psychiatric disorder. In an earlier analysis of these data,
Diggle (1998) combined the four risperidone groups into one, and for comparability we do the same. The
resulting numbers of patients randomized to placebo, haloperidol and risperidone treatments were 88, 87
and 348.



474 R. HENDERSON ET AL.

The study design specified that the PANSS score should be taken at weeks −1, 0, 1, 2, 4, 6 and 8,
where −1 refers to selection into the trial and 0 to baseline. The week between selection and baseline
was used to establish a stable regime of medication for each patient, and in the analysis of the data we
shall exclude the week −1 measurements. Of the 523 patients, 270 were identified as drop-outs and 183
of these gave as the reason for drop-out ‘inadequate response’. In our analysis we shall treat drop-out due
to inadequate response as a potentially informative event, and drop-out for other reasons as a censored
follow-up time. Exact drop-out time was not recorded during the trial, the only information being on the
first missed observation time. For this analysis we imputed each drop-out time from a uniform distribution
over the appropriate interval between last observed and first missed measurement times. Results were not
sensitive to imputation.

Figure 1(a) shows the observed mean response as a function of time within each treatment group, i.e.
each average is over those patients who have not yet dropped out. All three groups had a decreasing mean
response, perhaps at a slower rate towards the end of the study. The overall reduction in mean response
within each active treatment group is very roughly from between 90 and 95 to around 75. This appears
close to the criterion for clinical improvement, which was stated, in advance of the trial, to be ‘a reduction
of 20% in the mean PANSS scores’. The decrease in the placebo group was smaller overall. However,
at each time-point these observed means are, necessarily, calculated only from those subjects who have
not yet dropped out of the study. Figure 1(b) shows estimated survival curves for time to drop-out due to
inadequate response: large differences between groups are evident, with the highest drop-out rate in the
placebo group and the lowest in the risperidone group.

In the analyses reported here we assume a saturated model for the mean PANSS response, with a
distinct element of β1 for each treatment and measurement time combination. We have also analysed
the data assuming a quadratic time trend for each treatment, which gave very similar results and is
not reported here. For the drop-out model we assume time constant treatment effects, with the standard
treatment haloperidol group as baseline and thus one entry in β2 for each of the placebo and risperidone
groups. We used the method of Section 4 for estimation for all models, with an initial analysis using
M = 500 simulations for all expectations, then once the approximate estimates were obtained a more
refined analysis with M = 1000 simulations at the E-step within the inner EM algorithm but M = 2000
simulations for likelihood evaluation. This led to a standard deviation of around 0.02 for Monte Carlo
error in the log expected likelihoods.

Table 2 summarizes the results of fitting a variety of models for the latent processes W1 and W2.
We begin (Model I) with a simple random intercept model for W1, no random effects allowed in the
drop-out model and hence no association. There is no improvement in fit (measured by the likelihood
value) when frailty orthogonal to W1 is allowed (not shown) with the estimated frailty variance lying on
the boundary of zero. However, once latent association is allowed there is a substantial improvement in
combined likelihood (Model II). The frailty result here is worth a comment: the initial analysis without
latent association indicated no frailty in the drop-out component, which might be taken to suggest that
there are no unmeasured covariates which could influence drop-out. Yet from Model II there is a clear
association with the PANSS score. We suspect this result is caused by the known difficulty of estimating
frailty effects with a semi-parametric baseline when there are few covariates.

Diggle (1998) combined a random intercept with a stationary Gaussian process V (t) in his model for
PANSS scores, assuming correlation function

Corr(V (t), V (t − u)) = exp(−|u|2/φ).

In incorporating this component we discretized drop-out times to integer values for the initial estimation,
but used the original imputed times for final estimation and likelihood evaluation. Inclusion of V (t) leads
to substantial increases in marginal likelihood for the longitudinal component (Model III) and combined
likelihood when the standard association model W2(t) ∝ W1(t) is assumed (Model IV). A further large
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Table 2. Log maximized likelihoods for schizophrenia data

W1(t) W2(t) logLY logL N |Y logL
Intercept
only
I U1 0 −10251.85 −1228.55 −11480.40
II U1 γ W1(t) −10252.58 −1181.13 −11433.72

Intercept
+SGP
III U1 + V (t) 0 −10126.66 −1228.55 −11355.21
IV U1 + V (t) γ W1(t) −10132.55 −1146.14 −11278.69
V U1 + V (t) γ1U1 + γ2V (t) −10139.79 −1107.61 −11247.40

Intercept
+slope
VI U1 + Ut t 0 −10127.31 −1228.55 −11355.86
VII U1 + Ut t γ W1(t) −10133.76 −1137.41 −11271.17
VIII U1 + Ut t γ W1(t) + U3 −10135.99 −1132.90 −11268.88
IX U1 + Ut t γ1U1 + γ2U2 + γ3W1(t) −10147.75 −1096.05 −11243.80
X U1 + Ut t γ2U2 + γ3W1(t) −10148.42 −1095.60 −11244.03

increase in overall likelihood occurs when the two components of W1(t) = U1 + V (t) are allowed to
have separate effects on the drop-out process (Model V). Note that there is considerable sacrifice in the
marginal likelihood LY for the measurements in order to improve the drop-out and overall components
L N |Y and L .

A standard Laird–Ware random slope and intercept model apparently fits the marginal PANSS
distribution almost as well as the Diggle intercept and Gaussian process model (Model VI), with once
more strong evidence of association between the longitudinal and drop-out components (Model VII).
Inclusion of a frailty term U3 leads to improved likelihood (Model VIII). Of the models considered this is
the only instance where we found frailty to have a non-negligible effect. When the model is extended to a
full linear random effects model for W2(t) (Model IX) there is another substantial increase in likelihood,
with a large drop in LY more than compensated by an increase in the second likelihood component L N |Y .
There is almost no loss in likelihood in removing from this model the separate effect on drop-out of the
random intercept term U1 (Model X). On the basis of this likelihood analysis, this is our final model for
these data.

Thus, under Model X drop-out appears to be affected separately by two latent factors: the current
value of W1(t) and the steepness of the trajectory. Since high PANSS indicates poor condition, both of
these conclusions are clinically reasonable: patients with either poor or rapidly declining mental health
have increased risk of drop-out due to inadequate response. Parameter values for this model are given in
Table 3 together with the corresponding estimates when no association between PANSS and drop-out is
assumed, the two components being analysed separately. Note the reduction in the random slope variance
σ 2

2 under separate analyses, and the attenuation of estimated treatment effects on the drop-out process,
both consistent with the simulation results in Table 1. Standard errors in Table 3 were obtained by a
Monte Carlo method, refitting Model X to 100 simulated data sets generated using parameter values taken
from the original analysis. In order to complete the re-estimations within a reasonable time we used the
smaller value of M = 500 in the Monte Carlo likelihood evaluation and stopped each inner EM algorithm
as soon as an iteration caused a decrease in estimated likelihood. We accepted the value of ξ = (σ 2

1 , σ 2
2 , ρ)
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Table 3. Parameter estimates and standard errors for final joint model with and without latent
association

Var(U1) Var(U2) Corr(U1, U2) Var(Z ) Placebo Resp. U2 W1(t)

σ 2
1 σ 2

2 ρ σ 2
z β21 β21 γ2 γ3

Joint 283.37 12.59 0.06 100.24 0.779 −0.884 0.349 0.042
(X) (18.17) (1.31) (0.02) (3.95) (0.344) (0.322) (0.051) (0.007)

Separate 275.92 7.12 0.01 106.10 0.480 −0.508 0 0
(VI) (21.42) (0.81) (0.08) (4.18) (0.218) (0.196) – –

which gave the maximum estimated likelihood after 30 iterations of the outer simplex. Our experience is
that the estimated ξ is quickly very stable but Monte Carlo noise in the likelihood function evaluation
prevents the simplex procedure from indicating convergence when M is small.

Estimated values of β1 under Model X are shown in Figure 2(a), with ± two standard errors. These
estimate the hypothetical drop-out-free population PANSS profiles, and are higher than the observed
profiles (also shown) as a result of the tendency for patients with high scores to drop out due to
inadequate response. Mean values for haloperidol-treated patients are lower (and thus better) than for
the placebo group, as expected, but higher than the mean values for the resperidone group. A similar
though less pronounced pattern is seen if the same model is assumed for the measurements but there is
no latent association with drop-out (Model VI, Figure 2(b)). The general estimated drop-out-free pattern
in Figures 2(a) and 2(b), of a late increase in PANSS after an inital fall, occurs to some extent for all
the Laird–Ware intercept plus slope models we considered (Models VI–X) but for none of the other
models. To illustrate, Figures 2(c) and 2(d) show estimated values of β1 under the apparently best fitting
intercept-only and intercept plus SGP models (Models II and V).

We investigated model adequacy by comparing data simulated under the final Model X with that
observed in the trial. Figure 3 illustrates some of our findings, based on 100 simulations of samples of 88,
87 and 348 subjects in the three treatment groups, as in the trial itself. The upper plot in Figure 3 compares
the observed mean PANSS scores amongst patients still involved in the study with the corresponding
simulation means, and the lower plot compares observed and simulated survival curves. The simulated
values are close to those observed in all cases. A similar plot (not shown) based on the intercept-
only model with latent association (Model II) also shows very good agreement, and there is reasonable
agreement also (but larger standard errors) for the best intercept plus SGP model (V), except for some
overestimation of drop-out rate for the haloperidol group (again not shown). Other plots based only on
PANSS profiles for subjects who complete the trial also show good agreement between observed and
simulated data for all models.

6. DISCUSSION

We have presented a general approach to the joint analysis of longitudinal and event history data,
building on previously described procedures, and assuming ‘standard’ models for the two components
separately. The modelling strategy is based on a specification of two linked Gaussian random processes,
W1(t) and W2(t), with correlation between W1(t) and W2(t) inducing stochastic dependence between
the measurement and event processes. Depending on the precise specification of the W j , there can be
difficulties relating to identifiability and sensitivity.

As given in Section 2, there are no particular restrictions on the latent Gaussian processes W1(t) and
W2(t) or their cross-correlation. Clearly, without further assumptions identifiability problems may occur
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Fig. 2. Observed PANSS scores (fine lines) and hypothetical drop-out-free estimates (thick lines) under various
models, with ± two standard errors. Refer to Table 2 and text for model descriptions.

under the semi-parametric intensity model for event times. In Sections 3–5 these were avoided by directly
linking W2(t) to components of W1(t), apart from the possibility of a time-constant frailty term. More
generally, any bivariate, zero-mean Gaussian process W (t) = {W1(t), W2(t)} has a unique representation
of the form

W2(t) = γ (t)W1(t) + W2|1(t)

in which W1(t) and W2|1(t) are orthogonal, zero-mean Gaussian processes. This formulation conveniently
separates two different kinds of extension to the special case of proportional latent processes: replacement
of the parameter γ by a function of time, γ (t); and introduction of a time-dependent frailty component
which is independent of the measurement process. There are unresolved identifiability questions relating
to both types of extension.
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Fig. 3. Assessment of model adequacy: (a) observed PANSS scores (fine lines) and estimated values conditional on
no drop-out (thick lines), under Model X, with ± two standard errors, and (b) observed and estimated survival curves
for time to drop-out.

Firstly, with continuous failure time data some form of parametric assumption or smoothness criterion
will almost certainly be required for γ (t), which relates to possible non-constancy in time of the
association between the measurement and event processes. Secondly, time-dependent frailty W2|1(t)
orthogonal to the measurement process is not identifiable from single-event survival data with time
constant covariates, and it is not clear what assumptions are required on covariate or event processes to
ensure identifiability even under the restriction γ (t) ≡ 0. Thus, in analysing data with survival outcomes
we recommend the assumption that W2|1(t) = U3, a time-constant univariate (log) Gaussian frailty term
as in the models of Sections 3–5, until identifiability issues are resolved.

Turning to sensitivity, as our capability to fit ever more complex models increases, the questions of
what, exactly, the data can tell us, and which terms are necessary in practice also become important. For
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the schizophrenia example of Section 5 we found that several models, sometimes with quite different
likelihood values, gave apparently good fits to the observable data, conditional on patients not dropping
out, but quite different results for the unobserved (and hypothetical) drop-out-free population profiles.
This is an area for further work, as is the subject of diagnostic assessment of fitted models. We have used
standard sub-models for measurements and event times, which are of proven generic value. However, we
acknowledge that, in particular applications, close attention to model adequacy is advisable.

Finally, we note that this general class of models may be useful in different areas of application.
The focus for the analysis of the schizophrenia trial data was to make inferences about the effects of
the different treatments on the mean PANSS profiles over time, whilst adjusting for treatment-dependent
and outcome-dependent drop-out. In other work in progress, we are using the same class of models in a
problem concerning surrogate markers, where the focus is on using longitudinal measurements to improve
prediction of survival prognosis.
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