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Abstract

Background: In case-control studies most algorithms allow the controls to be sampled several times, which is not

always optimal. If many controls are available and adjustment for several covariates is necessary, matching without

replacement might increase statistical efficiency. Comparing similar units when having observational data is of utter

importance, since confounding and selection bias is present. The aim was twofold, firstly to create a method that

accommodates the option that a control is not resampled, and second, to display several scenarios that identify

changes of Odds Ratios (ORs) while increasing the balance of the matched sample.

Methods: The algorithm was derived in an iterative way starting from the pre-processing steps to derive the data

until its application in a study to investigate the risk of antibiotics on colorectal cancer in the INTEGO registry

(Flanders, Belgium). Different scenarios were developed to investigate the fluctuation of ORs using the combination

of exact and varying variables with or without replacement of controls. To achieve balance in the population, we

introduced the Comorbidity Index (CI) variable, which is the sum of chronic diseases as a means to have

comparable units for drawing valid associations.

Results: This algorithm is fast and optimal. We simulated data and demonstrated that the run-time of matching

even with millions of patients is minimal. Optimal, since the closest controls is always captured (using the

appropriate ordering and by creating some auxiliary variables), and in the scenario that a case has only one control,

we assure that this control will be matched to this case, thus maximizing the cases to be used in the analysis. In

total, 72 different scenarios were displayed indicating the fluctuation of ORs, and revealing patterns, especially a

drop when balancing the population.

Conclusions: We created an optimal and computationally efficient algorithm to derive a matched case-control

sample with and without replacement of controls. The code and the functions are publicly available as an open

source in an R package. Finally, we emphasize the importance of displaying several scenarios and assess the

difference of ORs while using an index to balance population in observational data.
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Background
Randomized controlled trials (RCTs) remain the gold

standard for assessing intervention efficacy; nevertheless,

they are often unable to be generalized due to not in-

cluding “real world data” on combinations of heteroge-

neous patients or interventions [1]. In addition, cost,

small sample size and long-time duration make trials in-

feasible for a range of clinical questions.

Observational studies might complement RCTs in hy-

pothesis generation or even establishing questions for

future RCTs [2, 3]. However, due to non-randomization,

they are more prone to bias, which can be addressed

through careful study design and appropriate statistical

analysis [4]. Observational studies include, among

others, the cohort and the case-control studies [3]. This

paper focuses on the latter.

Studies with a case-control design can be conducted

and completed in a shorter time compared to those with

a cohort design [5]. Such studies require smaller sample

sizes and hence are usually less expensive. In general, it

is the only practical approach for identifying risk factors

for rare diseases, especially where follow-up of a large

sample for occurrence of the condition might be imprac-

tical [6]. In a case-control setting, subjects with a disease

or a condition (cases), are matched to subjects without

the disease (controls) in order to create similar groups in

terms of confounding variables [7]. The purpose of case-

control studies is to retrospectively identify risk-factors

and investigate the association between exposure and

outcome [8]. An important aspect of case-control studies

is the method of sampling controls, more specifically

whether a control is sampled with or without replace-

ment, the matching is done greedy or optimally, and

whether different sources of bias are avoided [9].

First, in case-control studies a common issue is con-

founding, where researchers deploy matching in an at-

tempt to ensure comparability between cases and

controls and reduce systematic differences due to back-

ground variables [10, 11]. Mostly, cases and controls are

matched with baseline variables including age and sex

and then a matched statistical analysis is performed like

conditional logistic regression to draw associations [10].

In registries, where the data is even more diverse, the

necessity of balancing the population is of utter import-

ance [12].

Second, a question rises on whether one should sam-

ple controls with or without replacement. Sampling with

replacement allows the control to be sampled several

times, whereas sampling without replacement requires

the control to be sampled only once. While incidence

density sampling is mostly deployed with replacement of

control [13], selection without replacement only pro-

duces slight bias [14], especially when there is a great

availability of controls to pool. In settings where there

are many controls available and there is a need for ad-

justment on several potential confounding factors, it

would be a sensible strategy to limit the opportunity of

resampling the same individual, thus increasing the stat-

istical efficiency when adjusting for these predictors [15].

Computationally, sampling with replacement is

straightforward and has been implemented before in

statistical software including SAS [13], R [16] and via the

sttocc command in STATA. The controls are selected

randomly, so not always the closest (optimal) control is

matched to a case. Sampling without replacement has

not been investigated in depth. Nevertheless, there is an

approach presented in a SAS conference [17], however it

fails to get the closest control since the ordering is oc-

curring on the level of the control.

Therefore, the objective of this paper was twofold, first

to generate an optimal, efficient and fast algorithm,

which can create a matched-case sample (with and with-

out replacement), assuring that the closest available con-

trol is selected (optimal). The algorithm was deployed

using the R software [18]. We applied the proposed algo-

rithm in a clinical case using registry data. We investi-

gated the association between the prescription of oral

antibiotics and colorectal cancer. In addition, to increase

balance in the population, we introduced the Comorbid-

ity Index (CI) variable, which is the sum of chronic dis-

eases as a means to have comparable units for drawing

valid associations.

Methods
Intego database

Intego is a general practice-based morbidity registration

network coordinated at the Department of General Prac-

tice of the University of Leuven, Belgium [19]. General

practitioners record continuously patient information

about baseline characteristics, medications, diagnoses,

vaccinations and laboratory tests. The data is extracted

using the medical software programme Medidoc (Cori-

lus NV, Aalter, Belgium) [20]. Up to date, there are over

6 million diagnoses, 60 million laboratory results and 22

million medication prescriptions.

Intego procedures were approved by the ethical review

board of the Medical School of the University of Leuven

(ML 1723) and by the Belgian Privacy Commission

(SCSZG/13/079). Only the data of the practices with an

optimal registration performance were included in the

database [21]. The coding system is universal; medica-

tions were classified according to the WHO’s Anatom-

ical Therapeutic Chemical classification system, whereas

diagnoses were linked to the International Classification

of Primary Care (ICPC-2) and International Statistical

Classification of Diseases and Related Health Problems

10th Revision (ICD-10).
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Clinical case definition

Study design and study population

We conducted a population-based, case-control study

nested within Intego, using data collected from 2000 to

2015. All patients aged above 18 years old between 2010

and 2015 with at least 1 year of follow-up in Intego were

eligible. The clinical research question is to investigate

the association between colorectal cancer (CRC) and

prescription of oral antibiotics.

Case selection

Cases were defined as the patients with a registration of

a new diagnosis (incidence) of CRC in the period 01/01/

2010 till 31/12/2015.

Control selection

For each case, the pool of controls consisted of all eli-

gible individuals without a diagnosis of CRC when the

case had his or her CRC. Controls were assigned the

same index year as their matched case.

Exposure

The exposure was the prescription of oral antibiotics up

to 10 years prior to the index year.

Matching variables

Table 1 provides an overview of the matching variables

used in the analysis. The exact variables that we matched

were gender, practice and yearly contact group (JCG).

The JCG is defined as the year in which patients consult

their general practitioner (GP). Age was a varying vari-

able, whereas follow-up was either exact or trimmed.

Exact follow-up occurs when cases and controls have

exactly the same years of follow-up, whereas trimmed

follow-up occurs when the controls have more or equal

years of follow-up than the cases. Consider a case that

has CRC in year 2010, and the entry date in the registry

is 2004. Controls with exact follow-up should enter in

year 2004, whereas those with trimmed follow-up could

enter before (and including) 2004.

Comorbidity Index (CI) was considered either exact or

varying. Exact CI is defined as the equal number of

chronic diseases between cases and controls, whereas

continuous is defined with a threshold. Suppose in year

2010, we have a case with 3 chronic diseases, thus CI =

3. When matching occurs using categorical CI, we force

the controls to have also CI = 3, however when continu-

ous CI was used, then we allowed for an absolute differ-

ence of one disease, meaning that the controls could

have 2, 3 or 4 diseases.

Statistical analysis

Conditional logistic regression was used to estimate the

adjusted odds ratios (ORs) and associated 95% confi-

dence intervals (CIs) to investigate the association be-

tween CRC and prescription of oral antibiotics.

Optimal case-control matching

Greedy and optimal matching algorithm

Matching is a standard method to adjust for confound-

ing in observational studies. Rosenbaum [22] has intro-

duced a distance measure Dij between the ith case and

the jth potential control.

Let X1 = { x11; x
1
2;…; x1p } and X0 = { x01; x

0
2;…; x0p } be the

vector of matching variables for N cases and M controls

(M ≥N). Then, one definition for Dij is based on the

weighted sum of the absolute differences between the ith

case and the jth potential control, i.e.,

Dij ¼

X

p

k¼1

x1ik−x
0
ik

�

�

�

�

�W k

The total distance T ¼

P

N

i¼1

Dij is a natural way to evalu-

ate how well the entire group of cases is matched to the

controls.

Two algorithms to compute this distance measure

exist, the optimal and the greedy algorithm [22]. The

greedy algorithm sorts randomly the cases and controls

and matches the first case with the closest control using

Table 1 Variables used in the analysis

Variables Type Meaning

Gender Exact Gender of patient (Males, Females)

Practice Exact Practice ID

JCG Exact Year of visiting the GP

Age Varying Age of the patient

Follow-up Exact Cases and controls should enter in database the same year

Follow-up Trimmed Controls could enter in database prior to the case

Comorbidity Index Exact Cases and controls should have the same number of diseases

Comorbidity Index Varying Controls could have less, equal or more diseases based on a threashold
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the smallest distance Dij. This process is repeated until

all cases are matched. This algorithm produces good

matches but does not guarantee to minimize the total

distance T. The optimal algorithm on the other hand,

produces the optimal set of matches based on minimiz-

ing T. Refer to Rosenbaum [22] for detailed discussions

on these algorithms and their properties. In this work,

the ccoptimalmatch package performs both, greedy and

optimal algorithm in a fast, efficient and reproducible

way.

Pre-processing steps

The following steps are necessary to derive the dataset

in a format that can be used by the algorithm.

(i) Match on exact variables:

The first step is matching upon exact variables, which splits

the original dataset into smaller parts. By shifting the analysis

from one big dataset to several small subsets, the computa-

tional burden decreased substantially. A subset was defined as

the factorial combination of the exact variables, namely all the

combination of gender, practice and JCG that had at least one

case. For example, subset one contains females that visited

practice A in year 2010, subset two contains females that vis-

ited practice A in year 2011 up to subset 383, which is the last

factorial combination of the exact variables. The current clin-

ical case showed 1718 cases and 224,909 eligible controls.

After exact matching on gender, JCG and practice, the num-

ber of eligible controls dropped to 175,018.

(ii) Create artificial observations and select the range of

variables:

Artificial observations for controls were created in all

383 subsets, thus all cases could be matched with all

possible controls. More specifically, subset one had two

cases and 2217 controls. After creating artificial observa-

tions for controls, there were two cases and 4434 con-

trols, thus each case had 2217 controls available to pool.

Since our analysis was done on the subset level, it is im-

perative to have all available controls that are eligible for

all cases. The range that was used for specific variables

was based upon clinical advice and upon the specific re-

search question. For some research questions age should

be as close as possible (e.g., 1-year absolute difference),

while for others the age could vary more (e.g., 5 years

absolute difference).

(iii)Create the variables “total controls per case” and

“frequency of controls”:

The variable “total controls per case” depicts the total

pool of controls available for each case, whereas the

variable “frequency of controls” depicts how many times

a control was assigned to a case. Both variables were es-

sential for constructing the algorithm. The variable “total

controls per case” was necessary in order to assign the

control to the case that had the least number of controls

to pool from. The “frequency of controls” variable was

required, since the controls with the lowest frequency

were matched first, leaving the controls with the highest

frequency available for the next cases.

(iv)Order variables:

Ordering the variables in a correct order was of utter

importance. Suppose that there are three variables,

namely “age difference”, “follow-up difference” and “fre-

quency of controls”. The dataset should be ordered by

the variables “case”, “control”, “follow-up difference”,

“age difference” and lastly by “frequency of controls”.

The variable “follow-up difference” is ordered before

“age difference” since the “follow-up difference” has

more weight (importance) than the “age difference”.

However, the researcher can switch the order if age has

more importance. Ordering by the “frequency of con-

trols” ensures that the controls with the lowest fre-

quency are matched first. This last step is very

important since the closest control (optimal) will be

available first for each case.

Algorithm steps

For demonstration purposes, we consider a small dataset

with 4 cases and 9 controls as depicted in Fig. 1. This

dataset was derived based on the pre-processing steps

that we described above. We used exact matching on 3

variables, namely gender, JCG and Practice Id, and the

only varying variable is Age_diff, which depicts the age

difference between cases and controls.

(i) Start of round 1: Select one control per iteration:

Since the data was ordered, selection of one control

per iteration was performed. Therefore, we ascertained

that every case had at least one control, and the closest

(optimal) control was obtained.

(ii) Split between duplicated and unique controls:

Duplicated controls are assigned to more than one

case, whereas unique controls are assigned only to one

case. When matching controls with replacement, the al-

gorithm was straightforward since the same control

could be matched to several cases. When matching con-

trols without replacement, duplicated controls needed to

be assigned optimally to each case. The dataset was split

to cases with unique controls and duplicated controls. In
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the dataset with the duplicated controls, ordering the

variable “total controls per case” and assigning the con-

trol to that case which had the least pool of controls

available assured the optimal matching.

(iii)Exclude matched controls and cases:

When matching without replacement, cases and con-

trols that were already matched were removed.

(iv)Repeat steps (i)-(iii) m times:

The variable “total controls per case” was recalculated

and the same iteration-framework as in steps (i)-(iii) was

repeated to find the controls for the remaining cases.

These iterations proceeded until each case had at least

one control (when available).

(v) End of round 1. Continue to round 2 up to round

n:

n stands for the number of controls that the user

wants to match. If four controls are needed, then there

will be four rounds, if ten controls are needed then there

will be ten rounds.

Results
Algorithm implementation in ccoptimalmatch R package

The algorithm described before, is implemented using

the functions of the ccoptimalmatch R package (Add-

itional file 1). A detailed vignette (Additional file 2) is

available in the supplementary materials to demonstrate

the transformation of the raw, pre-processed data (Add-

itional file 3) to the processed data (Additional file 4),

where the optimal algorithm is applied. A real-life data-

set of the Intego registry is used, with cases being the

patients with CRC and controls without CRC.

Table 2 presents the computational efficiency of the

algorithm. Two different scenarios are detailed. We se-

lected a 1:4 case-control ratio, since this is the most used

ratio in clinical practice. First, we increased both the

cases and controls and inspected the runtime. The first

simulation was with 10 cases and 90 controls and the

run-time was only 0,33 s, whereas the last simulation

was with 100,000 cases and 900,000 controls and the

run-time was 1 min. Second, we only increased the con-

trols, whereas the cases remained the same (1000).

Again, even with 10,000,000 patients, the algorithm only

took 2 min. For each simulation, 100 iterations were

used, and the average run-time is displayed.

Fluctuation of ORs

First, analyses were conducted with replacement of con-

trols, and second without replacement of controls. Four

eligible control subjects were optimally matched with

each case. In total, 72 scenarios were considered (36

with and 36 without replacement of controls) using the

factorial combinations of exact variables, age (6 categor-

ies), follow-up (2 categories) and CI (2 categories), as

displayed in Fig. 2.

Fig. 1 Panorama of optimal case-control matching algorithm
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Figure 3 displays the ORs with and without replace-

ment of controls. For both sampling techniques the OR’s

were very close. However, when the CI was taken into

account, and the population was more balanced, the

OR’s decreased substantially. Furthermore, as the age

range increased, the OR’s were higher when the CI was

not used, yet they fluctuated when the CI was used.

When exact follow-up was used, the ORs were slightly

lower compared to when the trimmed follow-up was

used.

Additional file 5 captures the same information as Fig. 3,

yet more detailed. It demonstrates how many controls were

sampled for each scenario, and how many cases had one,

two, three and four controls respectively. In addition, the

ORs are displayed with their 95% confidence intervals.

When we relaxed the age range, we observed that the cases

matched with only one control substantially reduced since

we had more available controls to pool. With the replace-

ment of controls approach, we had more controls available,

although not considerably higher, since the number of

available controls to pool was very high.

Discussion
This algorithm is innovative since the controls were not

assigned to the cases randomly, but optimally. First, we

matched on exact variables, thus creating subsets, which

reduced the computational burden. In addition, artificial

observations for controls were used; allowing all cases to

be combined with all possible controls for optimal

matching. Furthermore, we defined the acceptable range

of specific variables and ordered them according to an

appropriate ordering. Like this, we assured that the

Table 2 Algorithm’s run-time using different simulations

Case-Controls Total patients Cases Controls Iterations Run-time

1:4 100 10 90 100 0,33 s

1:4 1000 100 900 100 0,35 s

1:4 10,000 1000 9000 100 0,87 s

1:4 100,000 10,000 90,000 100 6,25 s

1:4 1,000,000 100,000 900,000 100 1 min, 3 s

1:4 10,000 1000 9000 100 0,89 s

1:4 50,000 1000 49,000 100 1,1 s

1:4 100,000 1000 99,000 100 1,6 s

1:4 500,000 1000 499,000 100 6,3 s

1:4 1,000,000 1000 999,000 100 12,7 s

1:4 10,000,000 1000 9,999,000 100 2 min, 7 s

Fig. 2 72 combinations of different scenarios using with and without replacement of controls
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closest control would be matched to the case. As a re-

sult, if a case had only one control available, we matched

this control to that case, thus maximizing the number of

cases that could be included in the analysis. Finally, the

algorithm generated a matched case-control sample with

and without replacement, thus allowing the researcher

to choose the method that better fits his interests.

We also investigated the computational efficiency. In

our clinical application with 1637 cases and 75,473 con-

trols, the run-time was 0.5 s regardless of how many var-

iables we wished to match and regardless of the scenario

we used. We also demonstrated using different simula-

tions, that the run-time is minimal even if there are mil-

lions of patients in the database, where the run-time was

approximately 2 min.

The ccoptimalmatch R package was created accom-

panied with a detailed vignette using a real-life dataset

(which is also made publicly available for interested re-

searchers), which explains the different steps from the

pre-processing phase until the actual application. There-

fore, the researcher has a tool to quickly replicate and

adjust the code to his needs.

Fig. 3 72 odds ratios for the different scenarios
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To demonstrate the algorithm, a case study was ana-

lysed using a large morbidity registry database in

Belgium. From a clinical perspective, including gender,

practice, JCG and age as matching variables seems a nat-

ural choice, but in retrospective studies the follow-up

variable is also crucial. When controls have been longer

registered in the database for example, they might have

been longer exposed than cases. Therefore, the investiga-

tion of the results based on the follow-up time seems an

interesting choice.

We also included the comorbidity index (CI) as a

matching variable to achieve balance in the disease sta-

tus of cases and controls (balance population). Since our

data is observational, and we wanted to make valid com-

parisons, our population had to be as close as possible in

“risk terms”. Especially in registry data, where the popu-

lation is very diverse, the necessity of balancing the cases

and the controls is highly recommended. Like this, we

assured that a severely ill patient was not matched to a

healthy control, and vice versa. We observed that when

the CI was used, the ORs were considerably lower and

very similar (almost identical) to previous research [23,

24]. Our proposed optimal matching algorithm would

allow including as many covariates as required to create

an acceptable level of balancedness. Advantages of using

electronic health record (EHR) data include the longitu-

dinal data, a big sample size and the richness of the data

source.

There are some limitations of our work. First, the step

of creating artificial observations could require a large

memory capacity when the numbers of cases and con-

trols is very high. A feasible solution is that the loop of

creating artificial observations is not applied in the

whole data set, but rather in subsets. Second, we ana-

lysed a clinical case using registry data. Our method,

similar to any other method applied on such data, in-

herits the drawbacks of registry data including the miss-

ing data from hospitals, specialists and from basic

parameters (e.g., smoking variable). In addition, there

could be a delay between the actual outcome and the

time of registration. Finally, the entry date and exit date

of the patient cannot be identified exactly, thus we had

to match on the year, and consequently have less accur-

acy in the follow-up.

Conclusion
In this work, we developed an algorithm that takes into

account sampling of controls with or without replace-

ment, in a fast, efficient, reproducible and optimal way.

Fast, as the simulations demonstrated, since the run-

time of matching was minimal even with millions of pa-

tients. Reproducible, since an R package has been devel-

oped accompanied with a detailed vignette and real-life

data from a Belgian registry. Efficient, since it

accommodates replacement with or without controls,

using as many covariates as the researcher deems neces-

sary and easily applicable. Optimal, since the closest

control is always captured and in the scenario that a case

has only one control, we assure that this control will be

matched to this case, thus maximizing the cases to be

used in the analysis.

Building on this algorithm, and since our data is obser-

vational, we have illustrated the importance of creating

several scenarios and assessing the difference of ORs

when using an index to balance population in observa-

tional data. The display of these scenarios could provide

more robust results, reveal patterns of associations and

facilitate communication between researchers.
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