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Statistical Methods in Medical Research 2008; 17: 53–73

Joint modelling of mixed outcome types using
latent variables
Charles McCulloch Division of Biostatistics, Department of Epidemiology and Biostatistics,
University of California, San Francisco, CA, USA

After a brief review of the use of latent variables to accommodate the correlation among multiple outcomes
of mixed types, through theoretical and numerical calculation, the consequences of such a construction are
quantified. The effects of including latent variables on marginal inference in these models are contrasted
with the situation for jointly normal outcomes. A simulation study illustrates the efficiency and reduction
in bias gains possible in using joint models, and analysis of an example from the field of osteoarthritis
illustrates potential practical differences.

1 Introduction

Situations in which multiple outcomes are collected are common, but joint multivari-
ate distributions that are sufficiently flexible to accommodate multiple outcomes and
multiple predictors are rare. The multivariate normal distribution is by far the most
commonly studied, even though many outcomes cannot successfully be approximated
by a multivariate normal distribution.

Consider the situation where all the data from all the outcomes are stacked into a single
data vector Y, of order N × 1, and it is reasonable to assume it follows a multivariate
normal distribution. A linear model can conceptually be built for the mean, leaving the
variance–covariance matrix completely unspecified

Y ∼ N (Xβ, V). (1)

However, with Y of size N × 1 there are N(N − 1)/2 unique elements in V. So there
would be insufficient data to estimate all the elements of V empirically and some struc-
ture is needed. A common simplification is to model the variance–covariance structure
using latent random variables. These are often called random effects1 and those terms
will be used interchangeably. That is, the distribution is first specified conditional on
random latent variables, b, which then induce a variance–covariance structure. A com-
monly used special case assumes that the conditional error term is independent and
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homoscedastic

Y|b ∼ N (Xβ + Zb, Iσ 2
e )

b ∼ N (0, D) (2)

where Z is a known model matrix for the random effects (playing the same role as X
does for β), D is the variance–covariance matrix of b, which is usually of a much smaller
dimension than V and the vertical bar denotes a conditional distribution. From this it
is straightforward to derive the marginal distribution of Y

Y ∼ N (Xβ, V), (3)

where V = ZDZ′ + Iσ 2
e .

Several features of the model (2) and the progression from Equations (2) to (3) are
worth noting

• The incorporation of random effects allows a flexible, but lower-dimensional
specification of V, the variance–covariance matrix of Y.

• Inclusion of the random effects modifies only the variance–covariance matrix of Y,
not the marginal mean.

• Both the conditional and marginal distributions are multivariate normal.

Unfortunately, the multivariate normal linear model of the form Equation (1) does
not generalize easily to other response types. This has led to the specification of models
that naturally extend Equation (2) instead. For example, with binary outcome variables,
logistic regression is commonly used and a natural generalization of Equation (2) is

Y|b ∼ Bernoulli(p)

ln(p/[1 − p]) = Xβ + Zb (4)

b ∼ N (0, D),

where the logarithm and division are performed elementwise on p.
While this succeeds in the primary goal of building a correlated, multivariate distri-

bution for the binary variables, it also leads to a more complicated situation since the
incorporation of b also affects the marginal mean.2,3 With binary variates, the only pos-
sible marginal distribution is Bernoulli, so the conditional and marginal distributions
must be the same. However, this is not the case in general.

The idea of introducing random effects to incorporate correlation, as in Equation (4),
is an old one, even for nonnormally distributed outcomes.4 However, much less work
has been done on the situation where the outcomes are of mixed types and measured on
the same ‘subjects’ and there has been little quantification of the degree of association
accommodated and the ramifications on the marginal distribution.

Much of the previous work has focussed on joint modelling of time-varying covariates
and a time-to-event outcome in a survival analysis. The use of time-varying covariates
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in a Cox model requires, ostensibly, the values of the covariates at all failure times.
However, this is often not the case in practice. One solution has been to specify models
with shared or correlated random effects for the covariates and time-to-event outcome so
that they can be analysed together in a joint model. A number of authors have considered
variations on such models.5−10 The focus in such models is often on the time-to-event
process rather than in joint modelling the multivariate outcomes, which is considered
here.

Previous work that has been concerned with modelling joint outcomes has consid-
ered a variety of outcome types and fitting methods. Arminger and Küsters4 specified a
number of outcomes types arising from underlying continuous outcomes via threshold-
ing (e.g., an ordinal categorical outcome arising from dividing a continuous outcome
into ordered categories) and outlined approaches for maximum likelihood, without
giving detailed estimation methods. Catalano and co-workers,11−14 motivated by risk
assessment problems, have considered a number of models, mostly based on shared
and correlated random effects and have fit their models using both likelihood and
generalized estimating equation approaches. Other modelling strategies include
marginal modelling15 fit via maximum likelihood, and Bayesian methods.16,17 Mod-
els have been posited to deal with multivariate outcomes with continuous and binary15

or continuous and ordinal18 or mixed discrete outcomes.17 Additional forms of corre-
lation have also been accommodated, for example, multiple outcomes with clustered
data,12 as in data from animal litters in toxicology experiments, and time series data,19

as in economic data.
Two motivating examples and some of the rationale for considering joint models

are described first. In Section 4, the effects of adding shared random effects to a pro-
bit/normal example and a Poisson/normal example are quantified. Sections 5–7 briefly
consider correlated latent variables, discrete versus continuous latent variables and
missing data. Section 8 presents a simulation study, Section 9 returns to the analysis
of one of the motivating examples and Section 10 concludes with a summary.

2 Motivating examples

To motivate the later developments, two examples are briefly described in medical
research.

2.1 Example: Medical services utilization
A small percentage of patients treated by a hospital system use most of the resources –

often in ways that can be prevented. For example, persons without insurance may use
the emergency room for non-emergency care. A randomized trial of 190 patients was
conducted20,21 to test if a managed care intervention was able to improve access to
healthcare when compared with standard care. Measurements were taken at baseline,
6 months, 12 months and 18 months after randomization. Outcomes included cost of
care, number of emergency room visits and death. Predictors included treatment group
(managed care or not), gender, the Beck Depression Inventory22 and whether the person
was homeless. A primary focus was on the treatment effect, while adjusting for the effects
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of the other predictors. A secondary goal was to assess the impact of all the predictors
on the outcomes.

2.2 Example: Osteoarthritis Initiative
The Osteoarthritis Initiative (OAI) is a multicenter cohort study, conducted in part

to understand risk factors for progression of osteoarthritis (OA) of the knee. OA causes
problems ranging from stiffness and mild pain to severe joint pain and even disability.
Approximately 4000 men and women aged ≥45 at high risk for developing knee OA
will be followed yearly for four years. Two of the outcomes collected are the Western
Ontario and McMaster Universities (WOMAC) disability score,23 which is usually mod-
elled as a continuous variable, and number of days of work missed out of the last three
months due to knee pain, which is a count variable. Data from the OAI are available for
download from the website: http://www.oai.ucsf.edu/datarelease/.

3 Advantages of joint modelling

When faced with multiple outcomes in a data analysis, a reasonable first step is to
analyse each outcome separately. However, there are a number of reasons that the joint
modelling of outcomes is advantageous.

3.1 Accommodate multiple outcomes
In studies that collect multiple outcomes, scientific interest may focus naturally on

the simultaneous occurrence of one or more outcomes. For example, Catalano et al.11

develop statistical models for quantitative risk assessment of the influence of possibly
toxic agents in animal experiments. Administration of toxic agents can cause foetal
death, malformation at birth, lack of growth after birth or neurological deficits in
any of a number of domains. It would be artificial to analyse these separately – for
example, an agent that caused 40% foetal death and no neurological deficits would
appear better than an agent causing 5% foetal death and 25% neurological deficits
when analysing the separate outcome of neurological deficit (either among all ani-
mals or among survivors). This type of conclusion is not useful for assessment of risk,
whereas a joint analysis allows the assessment of the overall impact as well as the sep-
arate and joint effects of the agent on all the outcomes. In the example of Section 2.1
interest naturally focuses on the simultaneous impact of the intervention on all the
outcomes.

3.2 Avoid multiple testing
By forming joint models, it is straightforward to calculate an overall test of the effect of

a predictor without having to resort to ad hoc methods such as Bonferroni adjustment.
In the risk assessment arena, interest might focus on the effect of a toxic agent on any or
all of the outcomes. In a likelihood-based analysis, this can easily be achieved by forming
a likelihood ratio test.
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3.3 Model correlation between outcomes
In other settings, the correlation between the outcomes is of interest and thus forces

a joint analysis to model that correlation. For example, in the OAI, the WOMAC pain
score is calculated from an easily collected questionnaire and it is of interest to see how
well it correlates with much more expensive and involved magnetic resonance imaging
evaluation of OA.24

3.4 Efficiency gain
Separate analysis of outcomes can be inefficient. Section 8 shows significant efficiency

gains, which can be achieved in certain situations.

3.5 Handle missing at random data
When the data on one of the outcomes are more complete than another then joint

analysis can accommodate data that are missing at random25 instead of the stronger
assumption of missing completely at random (MCAR). For example, in the OAI, subjects
are not officially enrolled in the study unless their baseline data are relatively complete.
However, data collected at later time points (e.g., total knee replacement at year 3) will
only be available for subjects who have not dropped out of the study. And the likelihood
that they drop out may be related to the values of baseline variables (e.g., WOMAC pain
score). This idea is developed more fully in Section 7.

In a different vein, models can be created where one of the outcomes is itself whether
the data are missing or not (either as binary or as a time between measurements). Wu
and Carroll5 adopt this approach with a continuous longitudinal outcome of inter-
est using a random effect shared between the longitudinal outcome and the dropout
process.

4 Consequences of shared latent variables or random effects

While there are often good reasons to model the outcomes jointly, the specification
of joint models is not innocuous. In this section, the use of shared random effects to
build joint outcome models is illustrated, akin to Equation (4). Two joint models are
developed: a probit/normal model and a Poisson/normal model and they are used to
elaborate on consequences of the specification of models.

The basic idea is to use a random effect to build in a correlation between the two
outcomes. To fix ideas, consider the OAI example with two outcomes: Y1i being the
binary outcome of total knee replacement at three years and Y2i being the outcome
of WOMAC disability score at baseline, both for subject i. If we were modelling the
outcomes separately we might build a probit model (the reason for using probit rather
than logit will become clear later) for Y1 and a linear model for Y2 and we will consider
just a single binary predictor x = use of glucosamine/chondroitin supplement or not.
So, the separate models would be

Y1i ∼ indep. Bernoulli(νB
i )

�−1(νB
i ) = γ B

0 + γ B
1 xi



58 C McCulloch

Y2i ∼ indep. N (νN
i , τ 2) (5)

νN
i = γ N

0 + γ N
1 xi,

and the superscripts indicate that the parameters are specific to the binary (B) or normal
(N) models.

While Equation (5) would suffice for separate analyses, it does not accommodate a
correlation between Y1i and Y2i. A simple device to do so is to introduce a random effect
that will be shared by both responses for any particular subject. Equation (5) is modified
accordingly by modelling the distributions conditional on the random effect, bi

Y1i|bi ∼ indep. Bernoulli(μB
i )

�−1(μB
i ) = βB

0 + βB
1 xi + bi

Y2i|bi ∼ indep. N (μN
i , σ 2) (6)

μN
i = βN

0 + βN
1 xi + λbi,

bi ∼ i.i.d. G,

where, as of yet, G will remain unspecified and we make the assumption that, conditional
on bi, Y1i and Y2i are conditionally independent. The λ multiplying bi in the equation
for Y2i is to account for the fact that the linear predictors for Y1 and Y2 are measured
on different scales and it is unreasonable to assume they have the same variance. The
consequences of such a specification are now explored.

4.1 Conditional independence
With only two outcomes, the assumptions behind the conditional independence are

rather mild (since there is only a single association to be modeled). When condi-
tional independence holds two identities are particularly useful, the iterated conditional
expectation identity and a similar identity for covariances

E[Yji] = E[E[Yji|bi]] (7)

cov(Yji, Ylk) = E[cov(Yji, Ylk|bi)] + cov(E[Yji|bi], E[Ylk|bi]), (8)

with Equation (8) simplifying when conditional independence holds because, for exam-
ple, cov(Y1i, Y2i|bi) = 0. These identities are used to check the consequences of adding
the random effect in Equation (6).

4.1.1 Marginal means
The marginal mean for Y2 from Equation (6), averaging over the distribution of the

random effects, is simply calculated using Equation (7)

E[Y2i] = E[βN
0 + βN

1 xi + λbi]
= βN

0 + βN
1 xi + λE[bi]. (9)
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Since the mean of bi can be absorbed into βN
0 it is often convenient to assume that

E[bi] = 0, which corresponds to modelling the individual specific random effects as
deviations from the overall intercept, βN

0 . This simplifies the marginal mean to βN
0 +

βN
1 xi, the same as the mean in the separate model, Equation (5), that is, γ N

0 = βN
0 and

γ N
1 = βN

1 . Even if the mean of bi is not assumed to be 0, the regression coefficients of x,
γ N

1 and βN
1 , from Equations (5) and (6) will be equal.

For Y1, the results are a bit more complicated and the simplifying assumption that
bi ∼ N (0, σ 2

b ) is made. For this calculation, note that �(X) = Pr{Z < X|X}, where
Z ∼ N (0, 1), independent of X and Equation (7) is again used

E[Y1i] = E
[
�(βB

0 + βB
1 xi + bi)

]

= E
[
Pr{Z < βB

0 + βB
1 xi + bi|bi}

]

= Pr
{
Z < βB

0 + βB
1 xi + bi

}

= Pr
{
Z − bi < βB

0 + βB
1 xi
}

= Pr

⎧
⎪⎨

⎪⎩

Z − bi√
1 + σ 2

b

<
βB

0 + βB
1 xi√

1 + σ 2
b

⎫
⎪⎬

⎪⎭

= �

⎛

⎜
⎝

βB
0 + βB

1 xi√
1 + σ 2

b

⎞

⎟
⎠

= � (γ B
0 + γ B

1 xi), (10)

where the third identity holds because the expected value of the conditional probability
is the unconditional probability.

There are several things to note associated with Equation (10). First, the marginal
regression model is available in ‘closed form’ and is again a probit model (this
is the reason for using the probit rather than the logit). Secondly, the last identity in
Equation (10) holds because the separate outcomes model is a model for the marginal
mean of Y1. Thirdly, the marginal regression coefficients are not the same as the

conditional coefficients and, in particular, are smaller by a factor of
√

1 + σ 2
b ,

γ B
p = βB

p /

√
1 + σ 2

b . (11)

An important consequence of this is that the regression parameters for the binary
outcome will not directly be comparable between the separate and joint outcomes
models. However, for a binary probit model the adjustment is straightforward and for
logit models a good approximation is available.26
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4.1.2 Marginal variances and covariance
Responses Y2i for different subjects are assumed to be independent. The variance can

be calculated using Equation (8)

cov(Y2i, Y2i) = E[cov(Y2i, Y2i|bi)] + cov(E[Y2i|bi], E[Y2i|bi])
= E[var(Y2i|bi)] + cov(E[Y2i|bi], E[Y2i|bi])
= σ 2 + cov(βN

0 + βN
1 xi + λbi, βN

0 + βN
1 xi + λbi)

= σ 2 + λ2σ 2
b , (12)

so that τ 2 of Equation (5) is given by σ 2 + λ2σ 2
b . The interpretation of this result is that

part of the marginal variance in Y2i is being attributed to variation in the shared random
effect.

The Y1i are similarly assumed to be independent and, though long-winded as described
in the next section, the same strategy can be adopted for calculating the variance,
recalling the fact, Equation (10), that E[Y1i] = E[�(μB

i )] = �(νB
i )

cov(Y1i, Y1i) = E[cov(Y1i, Y1i|bi)] + cov(E[Y1i|bi], E[Y1i|bi])
= E[var(Y1i|bi)] + cov(E[Y1i|bi], E[Y1i|bi])
= E

[
�
(
μB

i
) {

1 − �
(
μB

i
)}]+ var

(
�
(
μB

i
))

= E
[
�
(
μB

i
)]− E

[
�2 (μB

i
)]+ E

[
�2 (μB

i
)]− E

[
�
(
μB

i
)]2

= �
(
νB

i
)− �2 (νB

i
)

(13)

= �
(
νB

i
) [

1 − �
(
νB

i
)]

.

Using the same identity, the covariance is calculated as

cov(Y1i, Y2i) = E[cov(Y1i, Y2i|bi)] + cov(E[Y1i|bi], E[Y2i|bi])
= 0 + cov(�(βB

0 + βB
1 xi + bi), βN

0 + βN
1 xi + λbi)

= cov(�(βB
0 + βB

1 xi + bi), λbi). (14)

Letting θB
i = βB

0 + βB
1 xi, this can be rewritten as

cov(Y1i, Y2i) = cov(�(θB
i + bi), λbi)

= λ

∫ ∞

−∞
σbz�(θB

i + σbz)φ(z)dz, (15)

where φ(z) is the standard normal p.d.f. Although this cannot be evaluated in closed
form, it is not too hard to evaluate numerically.
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Using Equation (15) and the variance calculations, the correlation is given by

corr(Y1i, Y2i) =
√

λ2σ 2
b

λ2σ 2
b + σ 2

∫∞
−∞ z�(θB

i + σbz)φ(z)dz
√

�
(
θB

i /

√
1 + σ 2

b

) [
1 − �

(
θB

i /

√
1 + σ 2

b

)] . (16)

The leading term under the square root sign in Equation (16) would be the familiar
intraclass correlation coefficient, ρ = λ2σ 2

b /(λ2σ 2
b + σ 2), if both Y1 and Y2 were bivari-

ate normally distributed (recall that the variance of the random effect in the normal
distribution linear predictor was λ2σ 2

b ).
Table 1 gives the correlation, Equation (16), for various values of θB and ρ, first for

σ 2 = 1 and then for σ 2 = 2. Several features of Table 1 are noteworthy

• The value of the correlation closely tracks the value of the ‘intraclass correlation,’ ρ

for a given value of θB.
• The values are sensitive to both ρ and θB.
• The values are not overly sensitive to the value of σ 2 for a fixed ρ.
• The correlation does not increase toward 1 as ρ increases or, equivalently, as σ 2

b
increases for a fixed value of σ 2.

In fact, for a fixed value of σ 2 it is straightforward to take the limit as σb tends to infinity

lim
σb→∞ corr(Y1i, Y2i) = √

1

∫∞
0 zφ(z)dz√

�(0)[1 − �(0)] =
√

2
π

≈ 0.798. (17)

4.1.3 Marginal distributions
The marginal distributions are simple to work out for Equation (6). Since the only

possible distribution for binary random variables is Bernoulli, the marginal distribution
of Y1i is Bernoulli with success probability given by Equation (10). This provides a

Table 1 Correlations for a probit/normal model

θB ρ

0 0.1 0.3 0.5 0.7 0.9

σ 2 = 1
0 0.00 0.08 0.24 0.40 0.56 0.72
1 0.00 0.07 0.21 0.36 0.53 0.71
2 0.00 0.04 0.14 0.27 0.45 0.68
3 0.00 0.01 0.07 0.16 0.33 0.61

σ 2 = 2
0 0.00 0.11 0.30 0.46 0.61 0.74
1 0.00 0.09 0.27 0.43 0.59 0.73
2 0.00 0.06 0.20 0.36 0.53 0.71
3 0.00 0.02 0.11 0.26 0.45 0.67
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simpler method to calculate the variance, as opposed to Equation (13), as the product
of the marginal mean, Equation (10), and one minus the marginal mean.

The marginal distribution of Y2i is normal with the mean and variance given by
Equations (9) and (12), respectively. Having the distribution closed under addition of
random effects is somewhat unusual as described in Section 4.2.

4.1.4 Variations on the probit/normal model
Various modifications and elaborations of the probit/normal model are possible.

Many of these center on the idea of a threshold model: an underlying, normally dis-
tributed variable Wi ∼ N(βW

0 + βW
1 xi, 1) is defined and recording whether it exceeds a

threshold of 0 gives rise to a probit model.

Pr (W1i > 0) = Pr
(
W1i − [

βW
0 + βW

1 xi
]

> − [βW
0 + βW

1 xi
])

= 1 − �
(− [βW

0 + βW
1 xi

])
(18)

= �
(
βW

0 + βW
1 xi

)
.

That is, a probit model arises as long as the event W1i > 0 is identified with Y1i = 1.
This device extends easily to ordinal outcomes by introducing several threshold values.
This underlying construction has been used by a number of authors to build correlated
data models.4,18

The calculation Equation (16) is reminiscent of the tetrachoric correlation, which
describes the correlation between two binary outcomes under a threshold model for
each. Qu et al.27 describe the relationships between latent variable models and the
tetrachoric correlation.

4.2 A Poisson/normal example
A slightly different model is used to illustrate both the lack of closure of the distribution

and another feature of shared random effects models. In place of the binary variate, a
joint model with conditional (on the random effects) Poisson and normal distributions
is considered, using the canonical links for those two distributions (log and identity,
respectively)

Y1i|bi ∼ indep. Poisson(μC
i )

log(μC
i ) = βC

0 + βC
1 xi + bi

Y2i|bi ∼ indep. N (μN
i , σ 2) (19)

μN
i = βN

0 + βN
1 xi + λbi

bi ∼ i.i.d. N (0, σ 2
b ).

The marginal distribution of Y2i is the same as for model (6), so attention is focussed
on the distribution of Y1i.
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4.2.1 Marginal means
The marginal mean for Y1 from Equation (19) is again calculated from Equation (7)

E[Y1i] = E[eβC
0 +βC

1 xi+bi]
= eβC

0 +βC
1 xi E[ebi]

= eβC
0 +βC

1 xi Mbi(1), (20)

where MW(t) is the moment generating function of the random variable W evaluated at
t. It is assumed that bi ∼ N (0, σ 2

b ) so that Mbi(1) = eσ 2
b /2 and therefore

E[Y1i] = exp

{

βC
0 + βC

1 xi + σ 2
b

2

}

. (21)

Of note is that the log of the marginal mean is βC
0 + βC

1 xi + σ 2
b /2, which is the same

as the log of the conditional mean, except offset by σ 2
b /2. In particular, the regression

coefficient for xi, βN
1 is the same in both the marginal and conditional models.

4.2.2 Marginal variance and covariance
The Y1i are assumed to be independent with the variance calculated by the usual

formula

cov (Y1i, Y1i) = E
[
var (Y1i|bi)

]+ cov
(
E
[
Y1i|bi

]
, E
[
Y1i|bi

])

= E
[
E
[
Y1i|bi

]]+ var
(

eβC
0 +βC

1 xi ebi
)

= E [Y1i] + e2βC
0 +2βC

1 xi var
(

ebi
)

= E [Y1i] + e2βC
0 +2βC

1 xi
(
Mbi (2) − Mbi (1)2)

= E [Y1i] + e2βC
0 +2βC

1 xi
(

e2σ 2
b − eσ 2

b

)

= E [Y1i] + E [Y1i]2
(

eσ 2
b − 1

)
. (22)

The covariance is calculated as before

cov(Y1i, Y2i) = E
[
cov(Y1i, Y2i|bi)

]+ cov (E[Y1i|bi], E[Y2i|bi])
= 0 + cov(eβC

0 +βC
1 xi ebi , βN

0 + βN
1 xi + λbi)

= λeβC
0 +βC

1 xi cov(ebi , bi). (23)



64 C McCulloch

The last term in this calculation can be evaluated as

cov(ebi , bi) = E[biebi]
= E[σbZeσbZ], with Z ∼ N (0, 1)

= σ 2
b eσ 2

b /2. (24)

Combining Equations (23) and (24) gives

cov(Y1i, Y2i) = λeβC
0 +βC

1 xiσ 2
b eσ 2

b /2

= λE[Y1i]σ 2
b . (25)

Therefore, the correlation between Y1i and Y2i is

corr(Y1i, Y2i) = E[Y1i]σ 2
b√

(σ 2/λ2 + σ 2
b )
(

E[Y1i] + E[Y1i]2(eσ 2
b − 1)

) . (26)

Table 2 gives the correlation for various values of θC
i = βC

0 + βC
1 xi and ρ = σ 2

b /(σ 2
b +

σ 2) with σ 2 = λ2. Table 2 reflects the following

• The value of the correlation does not increase monotonically as σb increases.
• In fact, as σb increases the correlation has a limiting value of zero.
• The correlation tends to a limit as θC increases, for a fixed value of ρ.

For a fixed value of the mean, the limit of Equation (26) is governed by the limit of
σ 4

b /(eσ 2
b − 1), which tends to zero. For a fixed value of σ 2

b , the limit of the correlation,

as θC increases, is easily seen to be σ 2
b /

√
(σ 2/λ2 + σ 2

b )(eσ 2
b − 1).

The intuitive explanation for why the correlation tends to zero as σ 2
b increases is

that the variability of the Poisson distribution increases faster than the covariance, driv-
ing the correlation to zero. This arises because, for large σb, the distribution is highly
overdispersed.

Table 2 Correlations for a Poisson/normal model with σ 2 = λ2

θC ρ

0 0.1 0.3 0.5 0.7 0.9

0 0.00 0.10 0.31 0.46 0.41 0.03
1 0.00 0.15 0.39 0.51 0.42 0.03
2 0.00 0.21 0.45 0.53 0.42 0.03
3 0.00 0.26 0.47 0.53 0.42 0.03
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4.2.3 Marginal distributions
In fact, the overdispersion of the marginal distribution of Y2i is easily calculated from

Equation (23) as

overdispersion = var(Y1i)

E[Y1i]
= 1 + E[Y1i](eσ 2

b − 1). (27)

Since the overdispersion is greater than 1 whenever the random effects have variance
greater than 0, the marginal distribution of Y1i is always overdispersed compared to a
Poisson distribution. So, in this case the introduction of a shared random effect changes
the marginal distribution. Furthermore, the amount of overdispersion (a characteristic
of the marginal distribution of Y1i) is intimately associated with the correlation between
Y1i and Y2i.

5 Correlated random effects

Previous sections have demonstrated that the use of shared random effects has the
advantage of building a positive correlation between random variables with different
distributions. However, the flexibility of the approach does not match that of the mul-
tivariate normal distribution, which has the nice feature that the inclusion of random
effects modifies only the variance-covariance structure. With distributions of mixed
types, especially the binomial and Poisson distributions, in which the variance is a func-
tion of the mean, the introduction of shared random effects can have multifactorial
consequences, some of which may not be advantageous, for example, the connection
between the overdispersion and the correlation observed in the previous section.

A fairly straightforward generalization of a shared random effect involves the introduc-
tion of correlated random effects. This idea is illustrated by considering a generalization
of the Poisson/normal model, Equation (26), in which separate, but correlated random
effects are allowed in the two models

Y1i|bi ∼ indep. Poisson(μC
i )

log(μC
i ) = βC

0 + βC
1 xi + bC

i

Y2it|bi ∼ indep. N (μN
i , σ 2) (28)

μN
i = βN

0 + βN
1 xi + bN

i

bi =
(

bC
i

bN
i

)

∼ i.i.d. N2(0, �b),

where repeated measurements over time on the continuous outcome, Y2it (t = 1, . . . , ni)

are assumed in order to identify the subject to subject variation, var(bN
i ).
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Using the notation


b =
(

σ 2
bc σbcσbnρcn

σbcσbnρcn σ 2
bn

)
, (29)

the marginal means and variances are little changed

E[Y1i] = exp

{

βC
0 + βC

1 xi + σ 2
bc

2

}

(30)

var(Y1i) = E[Y1i] + E[Y1i]2(eσ 2
bc − 1) (31)

E[Y2it] = βN
0 + βN

1 xi (32)

var(Y2it) = σ 2 + σ 2
bn. (33)

The covariance calculation is somewhat different

cov (Y1i, Y2it) = E
[
cov (Y1i, Y2it|bi)

]+ cov
(
E
[
Y1i|bi

]
, E
[
Y2it|bi

])

= 0 + cov
(

eβC
0 +βC

1 xi ebC
i , βN

0 + βN
1 xi + bN

i

)

= eβC
0 +βC

1 xi cov
(

ebC
i , bN

i

)
. (34)

The calculation of the final term is somewhat easier if the correlated random effects are
rewritten in terms of three i.i.d. standard normal variates, Zi

bC
i = σbc

(
Z1
√

1 − |ρcn| + Z3
√|ρcn|

)

bN
i = σbn

(
Z2
√

1 − |ρcn| + Z3 sgn(ρcn)
√|ρcn|

)
.

Using this representation, the final term of the covariance is calculated as

cov(ebC
i , bN

i ) = E[bN
i ebC

i ]
= E

[
σbn

(
Z2
√

1 − |ρcn| + Z3 sgn(ρcn)
√|ρcn|

)
eσbc(Z1

√
1−|ρcn|+Z3

√|ρcn|)
]

,

= σbn sgn(ρcn)
√|ρcn|E

[
Z3eσbc(Z1

√
1−|ρcn|+Z3

√|ρcn|)
]

,

= σbn sgn(ρcn)
√|ρcn|E

[
Z3eσbcZ3

√|ρcn|] ,

= σbn sgn(ρcn)
√|ρcn|σbc

√|ρcn|eσ 2
bc|ρcn|/2,

= σbnσbcρcneσ 2
bc|ρcn|/2. (35)
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Combining Equations (35) and (34) gives the covariance as

cov(Y1i, Y2it) = eβC
0 +βC

1 xiσbnσbcρcneσ 2
bc|ρcn|/2, (36)

and a correlation of

corr(Y1i, Y2it) = eβC
0 +βC

1 xiσbnσbcρcneσ 2
bc|ρcn|/2

√
(σ 2 + σ 2

bn)
(

E[Y1i] + E[Y1i]2(eσ 2
bc − 1)

) . (37)

The correlation given by Equation (37) gives somewhat more flexibility in modelling. First
and importantly, it allows negative correlations between the two outcomes. Secondly,
it gives more latitude in disentangling the overdispersion, which is governed by σ 2

bc and
the covariance, which is additionally governed by ρcn.

5.1 Random effects versus correlated errors
Model (28) is constructed by adding random effects to the linear predictors to incor-

porate correlation. The linear model, with its assumed normal distribution, has an
additional random ‘error’ term, with variance σ 2. An alternate parameterization is to
add ‘error’ terms to both models and then assume a multivariate normal distribution.
An advantage to this approach is that it opens up the full range of modelling of the
covariance structure associated with the multivariate normal distribution. For example,
this was used to advantage to incorporate time series correlation in a count data model.28

When the distribution is Poisson, this may have unintended consequences, since
it forces overdispersion, similar to Equation (31). However, with models built from
underlying latent normal variables, as discussed in Section 4.1.4, the approach is quite
attractive.

6 Discrete versus continuous random effects

In the previous section it was assumed, in order to obtain closed form expressions,
that the random effects were normally or multivariate normally distributed. However,
many of the results hold irrespective of the specific distributional assumption for the
random effects. For example, Equation (20) is completely general, as is the result that the
conditional regression coefficient for xi is the same as the marginal regression coefficient
since

log E[Y1i] = βC
0 + βC

1 xi + log Mbi(1). (38)

In particular, a sometimes convenient assumption for the random effects distribu-
tion is a discrete one. This converts the integrals in, for example, Equation (24) to be
summations, which can computationally be expedient.

Discrete random variables for the random effects can also be compatible with inter-
pretations in terms of unobserved sub-populations. For example, consider the medical
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resource utilization example from Section 2.1. If such an analysis was performed from
administrative data, it might not have information as to whether the person was home-
less or not. It would be easy to imagine that both death rates and number of emergency
room visits were higher in the homeless group, which would generate correlated death
and emergency room visit outcomes.

Discrete random variables can also be useful for capturing variation over and above
that usually described using continuous latent variables. For example, in a longitudinal
study like the medical services example, continuous (and usually normally distributed)
random effects are often used to model the correlated nature of the longitudinal measure-
ments over time within a person, but then an observed categorical variable like homeless
status could generate more extensive heterogeneity. McCulloch and co-workers10,29

explore such applications.

7 Missing data

As mentioned in Section 3, an advantage of the joint modelling approach is the ability to
accommodate situations in which the data are missing in a way predictable by one of the
outcomes. More specifically, suppose that primary interest focuses on Y1, but that the
dropout process depends on Y2. For example, in the OAI, those with higher WOMAC
pain scores at baseline (Y2) may have a higher likelihood of dropping out and therefore
not furnishing a value for Y1, the occurrence of total knee replacement at year 3.

Because Y1 and Y2 are correlated, if a separate, marginal model (e.g., logistic regres-
sion) is used to analyze Y1, then the data are not missing at random and inconsistent
estimators can result. On the other hand, if the missing process depends on Y2 and the
data are analysed by maximum likelihood, then the argument of Laird30 can easily be
applied to joint models with shared or correlated random effects to show that consistent
estimators will result.

8 A simulation study

A simulation study was performed to demonstrate the feasibility of fitting shared ran-
dom effects models and to explore more quantitatively the benefits of such models. Data
were simulated from the probit/normal model, Equation (6), with a binary predictor
xi, equal to 0 or 1, equal sample sizes for each group and a normal distribution for the
random effects. The focus of the simulation was estimation of the regression coefficients,
βB

1 and βN
1 . The overall sample size was N = 100 for each outcome. Four simulation sce-

narios were generated: no missing data, 15% of the data missing completely at random
and 15% of the data missing and dependent (either mildly or severely) on the continu-
ous outcome Y2. Two thousand replications were performed and evaluated under each
scenario. The simulation was implemented as a do-file in Stata Release 9.1 (Stata Cor-
poration, College Station, TX, USA) and the shared random effect models were fit using
GLLAMM (www.gllamm.org), which uses adaptive quadrature31 to fit the models by
maximum likelihood.
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The values of the parameters were βB
0 = βN

0 = 0, βB
1 = 1, βN

1 = 2, σ 2 = σ 2
b = 1. The

two missing at random processes were simulated by dropping subjects with small values
of Y2i at higher rates than those with large values. In the first, more extreme, scenario
subjects with below median values of Y2i dropped out at a rate of 28.7% whereas those
with above median values of Y2i dropped out at a rate of 1.3%. The exact mechanism
was to add a uniform random variable to a multiple of Y2i and delete those with lower
values of the sum. In the less severe scenario, the dropout rates were 21.8 and 8.2%,
respectively. The multipliers of Y2i used to achieve these rates were, respectively, 0.15
and 0.05.

For each data set, the joint probit/normal model was fit as well as separate probit and
linear regression models. Because the marginal and conditional regression coefficients are
not equal, the conditional coefficient was adjusted to the marginal using Equation (11).

Table 3 reports the results of the simulation, giving the true values of the parameters,
the average estimated value, the standard deviation of the estimates, the average of
the reported standard errors of the estimate, the coverage of large-sample, symmetric
confidence intervals and the rejection probability of a Wald test.

For the situation of no missing data, all estimators show little bias and have close to
nominal coverage for confidence intervals. For binary outcomes, the estimator based on
the joint model is about 30% more efficient (ratio of the variances approximately 1.3)
and has slightly higher power. For the continuous outcomes, the gain is not as great,
with the joint analysis being about 8% more efficient.

With data missing completely at random on the binary outcome, the availability of
the (complete) continuous outcome in a joint analysis made the binary joint model
even more efficient when compared with the separate analysis (over 40%) and the joint

Table 3 Simulation of joint and separate model fits to the probit/normal joint model

Data/estimator True Average SD Average SE CI cov. Pr{Reject}

No missing
Joint – βB

1 1 1.014 0.339 0.335 0.947 0.88
Joint – γ B

1 0.707 0.720 0.238 0.237 0.949 0.88
Separate – γ B

1 0.707 0.723 0.272 0.266 0.944 0.79
Joint – γ C

1 2 1.988 0.282 0.268 0.935 1.00
Separate – γ C

1 2 1.986 0.293 0.283 0.946 1.00

MCAR
Joint – βB

1 1 1.032 0.402 0.381 0.938 0.79
Joint – γ B

1 0.707 0.729 0.279 0.270 0.944 0.79
Separate – γ B

1 0.707 0.733 0.335 0.320 0.950 0.63

MAR (severe)
Joint – βB

1 1 1.018 0.369 0.363 0.943 0.84
Joint – γ B

1 0.707 0.722 0.262 0.257 0.944 0.84
Separate – γ B

1 0.707 0.644 0.334 0.329 0.945 0.50

MAR (mild)
Joint – βB

1 1 1.024 0.391 0.374 0.944 0.81
Joint – γ B

1 0.707 0.726 0.274 0.265 0.944 0.81
Separate – γ B

1 0.707 0.722 0.336 0.322 0.946 0.60
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analysis lost only a small amount of power, whereas the power for the separate analysis
dropped considerably.

In the severe missing at random scenario, the separate analysis was distinctly biased,
had a much larger standard deviation and lost a significant amount of power. The joint
analysis continued to perform well.

Finally, in the mild missing at random scenario, there was not evidence of bias for the
separate analysis, and the efficiency loss was about the same as under MCAR.

Other authors have reported mixed results on efficiency gains, with a number of
papers showing little or no gain.32−34 These results here are more consistent with those
of Gueorguieva and Sanacora35 who show little improvement for a continuous outcome,
but about a 20% decrease in standard errors for analysing an ordinal outcome in a joint
model as opposed to alone.

Under all the scenarios, the average standard errors were a bit too small for all the
estimators – slightly more so for the continuous outcomes. Confidence interval coverage
was excellent.

9 Example: OAI

The OAI example is now reconsidered with joint modelling of the log transformation
of the WOMAC score plus 1 (which is closer to approximate normality than the score
itself) and the number of days of missed work in the past three months. Using subjects
that were diagnosed with OA at enrollment as well as those who might develop OA gave
a total of 2678 subjects for analysis. Three predictors are considered: age, sex and body
mass index (BMI). Data are essentially complete for all variables except number of days
of missed work, for which only 1605 subjects (about 60%) responded; the missing data
are presumably due to those who did not work. It is easy to imagine that such data would
not be missing completely at random, potentially biasing the fit of separate models.

A model of the form (19) is now fit, that is a linear regression of log of the WOMAC
score plus 1 (LNWOM) on AGE, SEX and BMI and a Poisson regression of missed days
of work (MISSW) on the same three predictors

LNWOMi|bi ∼ indep. N (μN
i , σ 2) (39)

μN
i = βN

0 + βN
1 AGEi + βN

2 SEXi + βN
3 BMIi + λbi,

MISSWi|bi ∼ indep. Poisson(μC
i ) (40)

log(μC
i ) = βC

0 + βC
1 AGEi + βC

2 SEXi + βC
3 BMIi + bi,

with bi ∼ i.i.d. N (0, σ 2
b ), using SAS Proc NLMIXED (SAS Institute, Cary, NC, USA).

For comparison the models were also fit separately and without the random effect bi.
Table 4 gives the coefficients and standard errors for the model fit. The shared random

effect variance, σ 2
b , is very large and highly statistically significant, indicating strong

evidence for a correlation between the two outcome types. Focussing on the regression
coefficients, the estimates for the linear model are very similar for the separate and joint
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Table 4 Parameter and standard error estimates (in parentheses) from joint and separate fits to the
OAI data

Model Parameter

βBMI βAGE βSEX log σ 2 log σ 2
b log λ

Linear LNWOM – separate 0.062 0.0082 0.28 0.39
(0.005) (0.003) (0.049) (0.027)

Linear LNWOM – joint 0.062 0.0082 0.28 2.79
(0.005) (0.003) (0.048) (0.22)

Poisson MISSW – separate 0.15 0.0011 −0.075
(0.012) (0.079) (0.13)

Poisson MISSW – Joint 0.27 −0.51 −0.26 0.13 2.79 −1.95
(0.051) (0.31) (0.48) (0.073) (0.22) (0.15)

fits. This is not surprising given the simulation results since a) there is almost no missing
data on the continuous outcome and b) the count data will contribute little information
for the linear model fit.

However, for the count data model there are some differences. The effect of BMI
nearly doubles, which is related to the fact that those with with no data on days missed
from work tend to have larger values of BMI (average of 28.7 versus 28.2). The effect
of sex also goes from small and not statistically significant to borderline statistically
significant and potentially important: the estimated ratio of days missed from work is
exp(−.26) = 0.77, or 23% fewer missed days of work for females. As with BMI, sex is
related to not having data on days missed from work (with 43% of females missing data
compared with 34% of males). These both indicate that the use of joint models can lead
to conclusions that are qualitatively different from fitting separate models.

10 Summary

Theoretical and numerical calculations have been used to illustrate the degree to which
joint models for mixed outcome types can accommodate correlations and associations
using shared and correlated random effects. These allow the modelling of correlated
data – the usual scenario for multiple outcomes measured on the same subject. Joint
models are scientifically necessary when the question of interest focuses on the joint
behavior of multiple outcomes or when the association is of primary interest. Further-
more, it is argued that they are statistically advantageous in two aspects. First, they
can increase efficiency, especially when data are missing on one of the outcomes, and
especially when the outcome of primary interest is a ‘low-information’ outcome, such as
a binary outcome. Secondly, they can protect against data that are missing at random,
but not missing completely at random.

The use of shared and correlated random effects is natural for jointly normally dis-
tributed outcomes. In such a case, the inclusion of shared or correlated random effects
modifies only the variance–covariance structure, leaving the mean structure and inter-
pretation of regression coefficients unchanged. However, for nonnormal distributions,
especially those like the Bernoulli and Poisson that have a natural tie between the mean
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and variance, utilizing shared random effects can have additional consequences, which
may or may not be advantageous.

These models can readily be fit using current software. Stata Ver 9.1 with the add-in
module GLLAMM and SAS (SAS Institute), using its routine Proc NLMIXED is used.
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