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Summary

We propose a modelling framework to study the relationship between two paired longitudinally
observed variables. The data for each variable are viewed as smooth curves measured at discrete
time-points plus random errors. While the curves for each variable are summarized using a few
important principal components, the association of the two longitudinal variables is modelled through
the association of the principal component scores. We use penalized splines to model the mean curves
and the principal component curves, and cast the proposed model into a mixed-effects model
framework for model fitting, prediction and inference. The proposed method can be applied in the
difficult case in which the measurement times are irregular and sparse and may differ widely across
individuals. Use of functional principal components enhances model interpretation and improves
statistical and numerical stability of the parameter estimates.
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1. Introduction

The relationship between two paired longitudinal observed variables has been studied with
regression models for longitudinal data (Liang & Zeger, 1986; Fahrmeir & Tutz, 1994; Moyeed
& Diggle, 1994; Zeger & Diggle, 1994; Hoover et al., 1998; Wu et al., 1998; Huang et al.,
2002). Also, Liang et al. (2003) modelled the paired longitudinal variables using a mixed-
effects varying coefficient model with a measurement error in the covariates. Let Xij and Yij

denote longitudinal observations of a covariate and response for subject i at time occasion tij.
The model of Liang et al. (2003) can be written as

where β0(t) and β1(t) are fixed functions, γ0i(t) and γ1i(t) are zero-mean subject-specific random
functions and ei (t) are zero-mean error processes. In contrast to much existing work, the method
effectively models the within-subject correlation in a flexible way by considering subject-
specific regression coefficient functions.

However, the regression-based methods, including that of Liang et al. (2003), have several
limitations. First, one needs to distinguish response and regressor variables, but sometimes
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such a distinction is not natural. Secondly, as in Liang et al. (2003), the regression-based
methods usually focus on the contemporaneous relationship, that is, the relationship at the same
time-point, between two variables. One could include lagged variables as regressors, but there
are technical difficulties in the implementation of their method when the observation times for
different variables differ, as often occurs in practice. Finally, it may be hard to interpret the
results from a contemporaneous regression model if we wish to consider all time-points from
the past collectively. The usual interpretation of a regression slope as the average change in
the response associated with a unit increase in the regressor is hardly satisfactory since the
regressors from different time-points are correlated.

To overcome these shortcomings, we propose an alternative approach. The data for each
variable are viewed as smooth curves sampled at discrete time-points plus random errors. The
curves are decomposed as the sum of a mean curve and subject-specific deviations from the
mean curve. The deviations are subsequently summarized by scores on a few important
principal component curves extracted from the data. The association of the pair of curves is
then modelled through the association of two low-dimensional vectors of principal component
scores corresponding to the two underlying variables. By modelling the mean curves and the
principal component curves as penalized splines, we cast our approach into a mixed-effects
model framework for model fitting, prediction and inference.

Our method views longitudinal data as sparsely observed functional data (Rice, 2004). Ramsay
& Silverman (2005) provide a comprehensive treatment of functional data analysis. The
approach in this paper is most closely related to that of James et al. (2000) and Rice & Wu
(2001). However, those papers considered models only for single curves, instead of paired
curves as in this paper. Similarly to James et al. (2000), our approach is model-based, with the
principal component curves being directly outputted from the fitted model. Yao et al.
(2005a) proposed a different type of principal components analysis for sparse functional data
through the eigen-decomposition of the covariance kernel estimated using two-dimensional
smoothing. Yao et al. (2005b) dealt with the functional linear model for longitudinal data using
regression through principal component scores. Another approach to modelling the association
of paired curves is functional canonical correlation (Leurgans et al., 1993; He et al., 2003), but
its adaptation to sparse functional data remains an open problem.

2. The mixed-effects model for single curves

2·1. The mixed-effects model

Shi et al. (1996) and Rice & Wu (2001) suggest using a set of smooth basis functions bl(t) (l
= 1, …, q), such as B-splines, to represent the curves, where the spline coefficients are assumed
to be random to capture the individual- or curve-specific effects. Let Yi(t) be the value of the
ith curve at time t and write

(1)

where μ(t) is the mean curve, hi (t) represents the departure from the mean curve for subject
i and εi (t) is random noise with mean zero and variance σ2. Let b(t) = {b1(t), …, bq (t)}T be
the vector of basis functions evaluated at time t. Denote by β an unknown but fixed vector of
spline coefficients, and let γi be a random vector of spline coefficients for each curve with
covariance matrix Γ. When μ(t) and hi (t) are modelled with a linear combination of B-splines,
equation (1) has the mixed-effects model form
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(2)

In practice, Yi (t) is observed only at a finite set of time-points. Let Yi be the vector consisting
of the ni observed values, let Bi be the corresponding ni × q spline basis matrix evaluated at
these time-points and let εi be the corresponding random noise vector with covariance matrix
σ2I. The mixed-effects model for the observed data is

(3)

The EM algorithm can be used to calculate the maximum likelihood estimates β̂ and Γ ̂ (Laird
& Ware, 1982). Given these estimates, the best linear unbiased predictors of the random effects
γi are

The mean curve μ(t) can then be estimated by μ̂ (t) = b(t)Tβ ̂ and the subject-specific curves
hi (t) can be predicted as ĥi (t) = b(t)Tγ ̂i.

2·2. The reduced-rank model

Since Γ involves q(q + 1)/2 different parameters, its estimator based on a sparse dataset can be
highly variable, and the large number of parameters may also make the EM algorithm fail to
converge to the global maximum. James et al. (2000) pointed out these problems with the
mixed-effects model and instead proposed a reduced-rank model, in which the individual
departure from the mean is modelled by a small number of principal component curves. The
reduced-rank model is

(4)

where μ(t) is the overall mean, fj is the jth principal component function or curve, f = (f1, …,
fk)

T and εi (t) is the random error. The principal components are subject to the orthogonality
constraint ∫fj fl = δjl, with δjl being the δ function. The components of the random vector αi give
the relative weights of the principal component functions for the i th individual and are called
principal component scores. The αis and εis are independent and are assumed to have mean
zero. The αis are taken to have a common covariance matrix and the εis are assumed temporally
uncorrelated with a constant variance of σ2.

Similarly to the mixed-effects model (2), we represent μ and f using B-splines. Let b(t) =
{b1(t), …, bq (t)}T be a spline basis with dimension q. Let θμ and Θf be, respectively, a q-
dimensional vector and a q × k matrix of spline coefficients. Write μ(t) = b(t)Tθμ and f(t)T = b
(t)TΘf. The reduced-rank model then takes the form

(5)
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where Dα is diagonal, subject to

(6)

The equations in (6) imply that

which are the usual orthogonality constraints on the principal component curves.

The requirement that the covariance matrix Dα of αi is diagonal is for identifiability purposes.
Without imposing (6), neither Θf nor Dα can be identified: only the covariance matrix of Θf

αi, namely , can be identified. To identify Θf and Dα, note that Θf αi = Θ̃f α̃i, where
Θ̃f = Θf C and α̃i =C−1 αi for any invertible k × k matrix C. Therefore, by requiring that Dα be
diagonal and that the Θf have orthonormal columns, we prevent reparameterization by linear
transformation. The identifiability condition is more precisely given in the following lemma,
which follows from the uniqueness of the eigen-decomposition of a covariance matrix.

Lemma 1—Assume that  and that the first nonzero element of each column of Θf is
positive. Let αi be ordered according to their variances in decreasing order. Suppose the
elements of αi have different variances, that is, var(αi1) > · · · > var(αik). Then the model
specified by equations (5) and (6) is identifiable.

In Lemma 1, the first nonzero element of each column of Θf is used to determine the sign at
the population level. With finite samples, it is best to use the element of the largest magnitude
in each column of Θf to determine the sign, since this choice is least influenced by finite-sample
random fluctuation.

The observed data usually consist of Yi (t) sampled at a finite number of observation times. For
each individual i, let ti1, …, tini

 be the different time-points at which measures are available.
Write

The reduced-rank model can then be written as

(7)

The orthogonality constraints imposed on b(t) are achieved approximately by choosing b(t)
such that (L/g)BTB = I, where B = {b(t1), …, b(tg)}T is the basis matrix evaluated on a fine
grid of time-points t1, …, tg and L is the length of the interval in which we take these grid
points; see Appendix 1 for details of implementation. Since (7) is also a mixed-effects model,
an EM algorithm can be used to estimate the parameters. By focusing on a small number of
leading principal components, the reduced-rank model (7) employs a much smaller set of
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parameters than the original model (3), and thus more reliable parameter estimates can be
obtained.

2·3. The penalized spline reduced-rank model

The reduced-rank model of James et al. (2000) uses fixed-knot splines. For many applications,
especially when the sample size is small, only a small number of knots can be used in order to
fit the model to the data. An alternative, more flexible approach is to use a moderate number
of knots and apply a roughness penalty to regularize the fitted curves (Eilers & Marx, 1996;
Ruppert et al., 2003).

For the reduced-rank model (4)–(7), we can use a moderate q, in the range of 10–20, say, and
employ the method of penalized likelihood, with roughness penalties that force the fitted
functions μ(t) and f1(t), …, fk (t) to be smooth. We focus on roughness penalties of the form of
integrated squared second derivatives, though other forms are also applicable. One approach
is to use the penalty

(8)

where λμ, λf 1, …, λfk are tuning parameters. However, for simplicity, we shall take λf 1 = · · ·
= λfk = λf. In terms of model (7), this simplified penalty can be written as

(9)

where θfj is the j th column of Θf.

Assume that the αis and εis are normally distributed. Then,

and minus twice the loglikelihood based on the Yis, with an irrelevant constant omitted, is

The method of penalized likelihood minimizes the sum of the above expression and the penalty
in (9). While direct optimization is complicated, it is easier to treat the αis as missing data and
employ the EM algorithm. A modification of the algorithm by James et al. (2000) that takes
into account the roughness penalty can be applied. The details are not presented here. The
algorithm can also be obtained easily as a simplification of our algorithm for joint modelling
of paired curves to be given in § 3.
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3. The mixed-effects model for paired curves

For data consisting of paired curves, an important problem of interest is modelling the
association of the two curves. We first model each curve using the reduced-rank principal
components model as discussed in § 2·2, and then model the association of curves by jointly
modelling the principal component scores. Roughness penalties are introduced as in § 2·3 to
obtain smooth fits of the mean curve and principal components.

Let Yi (t) and Zi (t) denote the two measurements at time t for the i th individual. The reduced-
rank model has the form

where μ(t) and ν(t) are the mean curves, f = (f1, …, fkα)
T and g = (g1, …, gkβ)

T are vectors of
principal components, εi (t) and ξi(t) are measurement errors. The αi s, βi s, εis and ξis are
assumed to have mean zero. The measurement errors εi (t) and ξi (t) are assumed to be

uncorrelated with constant variances  and , respectively. It is also assumed that the αi s,
εis and ξis are mutually independent, as are the βi s, εis and ξi s. The principal components are
subject to the orthogonality constraints ∫fj fl = δjl and ∫gj gl = δjl, with δkl being the Kronecker
delta.

For identifiability, the principal component scores αij (j = 1, …, kα), are independent with
strictly decreasing variances; see Lemma 1. Similarly, the principal component scores βij (j =
1, …, kβ), are also independent with strictly decreasing variances. Denote the diagonal
covariance matrices of αi and βi by Dα and Dβ, respectively.

The relationship between Yi (t) and Zi (t) is assumed through the correlation between the
principal component scores αi and βi. To be specific, we assume that cov(αi, βi) = C. Then,
αi and βi are modelled jointly as follows:

This is equivalent to the regression model

(10)

where  or C = DαΛT, from which it follows that the covariance matrix of ηi is Ση =
Dβ − ΛDαΛT. We find this regression formulation to be more convenient when calculating the
likelihood function.

The roles of Y (t) and Z(t) and therefore the roles of αi and βi are symmetric in our modelling
framework. In the regression formulation (10), however, αi and βi do not appear to play
symmetric roles, and the interpretation of Λ depends on what is used as the regressor and what
is used as the response. However, this formulation only serves as a computational device. If
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we switch the roles of αi and βi, we still obtain the same estimates of the original parameters
(Dα, Dβ, C).

Let  be the matrix of correlation coefficients, which provides a scale-free
measure of the association between αi and βi. We call diagonal entries of Dα and Dβ, together

with  and , the variance parameters and we refer to the off-diagonal entries of R as the
correlation parameters.

We represent μ, ν, f and g as a member of the same space of spline functions with dimension
q. The basis of the spline space, denoted by b(t), is chosen to be orthonormal, that is, the
components of b(t) = {b1(t), …, bq (t)}T satisfy ∫bj(t)bl(t) dt = δjl. Let θμ and θν be q-dimensional
vectors of spline coefficients such that

(11)

Let Θf and Θg be, respectively, q × kα and q × kβ matrices of spline coefficients such that

(12)

For each individual i, the two variables may have different observation times. However, for
simplicity in presentation, we assume that there is a common set of observation times, ti1, …,
tini

. Write Yi = {Yi (ti1), …, Yi (tini
)}T and similarly for Zi. Let Bi = {b(ti1), …, b(tini

)}T. The
model for the observed data can be written as

(13)

To make this model identifiable, we require that  and , and that the first nonzero
element of each column of Θf and Θg be positive. In addition, the elements of αi and βi are
ordered according to their variances in decreasing order.

Parameter estimation using the penalized normal likelihood is discussed in detail in § 4. Given
the estimated parameters, the mean curves of Y and Z and the principal component curves are
estimated by plugging relevant parameter estimates into (11) and (12). Predictions of the
principal component scores αi and βi are obtained using the best linear unbiased predictors,

where Ξ denotes collectively all the estimated parameters, and the conditional means can be
calculated using the formulae given in Appendix 2. The predictors of the αis and βi s, combined
with the estimates of μ(t), ν(t), f(t) and g(t), give predictors of the individual curves.
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4. Fitting the bivariate reduced-rank model

4·1. Penalized likelihood

If we assume normality, the joint distribution of Yi and Zi is determined by the mean vector
and variance-covariance matrix, which are given by

Let L(Yi, Zi) denote the contribution to the likelihood from subject i. The joint likelihood for

the whole dataset is . The method of penalized likelihood minimizes the criterion

(14)

where dαj and dβj are, respectively, the j th diagonal elements of Dα and Dβ, while θfj and θgj

are, respectively, the jth columns of Θf and Θg. There are four regularization parameters, and
this gives the flexibility of allowing different amounts of smoothing for the mean curves and
principal components.

Direct minimization of (14) is complicated. If the αis and βis were observable, then the joint
likelihood for (Yi, Zi, αi, βi) could be factorized as

With an irrelevant constant ignored, it follows that

(15)

Clearly, the unknown parameters are separated in the loglikelihood and therefore separate
optimization is feasible. We thus treat αi and βi as missing values and use the EM algorithm
(Dempster et al., 1977) to estimate the parameters.

4·2. Conditional distributions

The E-step of the EM algorithm consists of finding the prediction of the random effects αi and
βi and their moments based on (Yi, Zi) and the current parameter values. In this section, all
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calculation is done given the current parameter values, although the dependence is suppressed
in the notation throughout. The conditional distribution of (αi, βi) given (Yi, Zi) is normal,

(16)

The predictions required by the EM algorithm are

(17)

Calculation of the conditional moments of the multivariate normal distribution (16) is given
in Appendix 2.

4·3. Optimization

The M-step of the EM algorithm updates the parameter estimates by minimizing

or by reducing the value of this objective function as an application of the generalized EM
algorithm. Since the parameters are well separated in the expression for the conditional
loglikelihood, see (15), we can update the parameter estimates sequentially given their current

values. We first update  and , then θμ and θν, and finally Dα, Dβ and Λ. Details of the
updating formulae are given in Appendix 3. In the last step, some care is needed to enforce the
orthonormality constraints on the principal components.

5. Model selection and inference

5·1. Specification of splines and penalty parameters

Given the nature of sparse functional data and the usual low signal-to-noise ratio typical in
such datasets, we expect that only the major smooth features in the data can be extracted by
statistical methods. Placement of knot positions is therefore not critical for our method, and
reasonable ways of doing this include spacing the knots equally over the data range or using
sample quantiles of observation times. In our analysis of the AIDS data in § 7, for example,
the knots were placed at the common scheduled visit times. Neither is the choice of the number
of knots critical, as long as it is moderately large, since the smoothness of the fitted curves is
mainly controlled by the roughness penalty. For typical sparse functional datasets, 10–20 knots
is often sufficient.

To choose penalty parameters, a subjective choice is often satisfactory. A natural approach for
automatic choice of penalty parameters is to maximize the crossvalidated loglikelihood. All
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examples in this paper use ten-fold crossvalidation. The criterion used for model selection is
the sum of the ten calculated testset loglikelihoods.

There are four penalty parameters, so we need to search over a four-dimensional space for a
good choice of these parameters. Although the simplex method of Nelder and Mead (1965)
could be used, a crude grid search worked well for all examples we considered. With five grid-
points on each dimension, there are in total 625 possible combinations for four parameters.
Implemented in Fortran, this strategy is computationally feasible and has been used for the
data example in § 7. One possible simplification is to let λμ = λν and λf = λg and thus reduce
the dimension to two. This simplification, with five grid-points for each of the two dimensions,
has been used for our simulation study in § 6.

5·2. Selection of the number of significant principal components

It is important to identify the number of important principal components in functional principal
component analysis. For the single-curve model, choosing to fit too many principal components
can degrade the fit of them all (James et al., 2000). Fitting too many principal components in
the joint modelling is even more harmful, since instability can result if we try to estimate
correlation coefficients among a set of latent random variables with big differences in
variances.

In our method, we first apply the penalized spline reduced-rank model in § 2·3 to each variable
separately and use these single-curve models to select the number of significant principal
components for each variable. We then fit the joint model using the chosen numbers of
significant principal components from fitting single-curve models; the numbers are refined if
necessary. For the single-curve models, we use a stepwise addition approach, starting with one
principal component and then adding one principal component at a time to the model. The
process stops if the variances of the scores of the principal components already in the model
do not change much after the addition of one more principal component, and the variance of
the scores of the newly added principal component is much smaller than variances for those
already in the model.

A more detailed description of the procedure is as follows. Let ka and kb denote the number of
important principal components used in a single-curve model for Y and Z, respectively. Let

, denote the variances of the principal component scores for an order-k model

for Y. Similarly define  for Z. To choose ka we start with k = 1 and increase k by 1 at a
time until we decide to stop according to the criterion described now. For each k, we fit an

order-k and an order-(k + 1) single-curve model for Y. If  for all l = 1, …, k and

 for some prespecified small constant c, we stop at that k and set ka = k.

We select kb similarly. We have used c in the range 1/25 to 1/9 in the above procedure. The
joint model is then fitted with the selected ka and kb. The variances of the principal component
scores from fitting the joint model need not be the same as those from the single-curve models.
A refinement using the joint model takes the form of a stepwise deletion procedure. If the
variance of the scores of the last principal component is much smaller than the variance of the
scores of the previous principal component, delete that principal component from the model.
This can be done sequentially if necessary.

We tested this procedure on the simulated datasets from § 6 where, in the true model, the
variable Y has one significant principal component and the variable Z has two significant
principal components. The results of applying the procedure without the second-stage
refinement are as follows. When c = 1/25 was used, among 200 simulation runs, for variable
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Y, 97% picked one important principal component and 3% picked two important principal
components; for variable Z, 98% picked two important principal components and 2% picked
three important principal components. When c = 1/9 was used, in all simulations, one principal
component was picked for variable Y; for variable Z, in 99% of simulations, two principal
components were picked, and in 1% of simulations, one principal component was picked. The
first-stage stepwise addition process has thus already provided quite an accurate choice of the
number of important principal components, and the second-stage stepwise deletion refinement
is not necessary for this example. The use of the second-stage refinement will be illustrated
using the data analysis in § 7.

5·3. Confidence intervals

The bootstrap can be applied to produce pointwise confidence intervals of the overall mean
functions for both variables and the principal components curves, and of the variance and
correlation coefficient parameters. The confidence intervals are based on appropriate sample
quantiles of relevant estimates from the bootstrap samples. Here the bootstrap samples are
obtained by resampling the subjects, in order to preserve the correlation of observations within
subject. When applying the penalized likelihood to the bootstrap samples, the same
specification of splines and penalty parameters may be used.

6. Simulation

In this section, we illustrate the performance of penalized likelihood in fitting the bivariate
reduced-rank model. In each simulation run, we have n = 50 subjects and each subject has up
to four visits between times 0 and 100. We generated the visit times by mimicking a typical
clinical setting. The visit times for each subject were generated sequentially with the spacings
between the visits normally distributed. In the actual generating procedure, each subject has a
baseline visit, so that ti1 = 0 for i = 1, …, 50. Then, for subject i (i = 1, …, 50), for k = 1, …,
4, we generate ti,k+1 such that ti,k+1 − ti,k ~ N (30, 102). Let ki be the first k such that k ≤ 4 and
ti,k+1 > 100. Then, the visit times for subject i are ti,1, …, ti,ki

.

At visit time t, subject i has two observations (Yit, Zit) where Yit and Zit are generated according
to

Here, the mean curves have the form μ(t) = 1 + t/100 + exp{−(t − 60)2/500} and ν(t) = 1 −t/
100 − exp{−(t − 30)2/500}. The principal component curves are fy(t) = sin(2πt/100)/√50,
fz1(t) = fy (t) and fz2(t) = cos(2πt/100)/√50. The principal component functions are normalized

such that  and . The variable Z’s two principal

component curves are orthogonal: . The principal component scores αi,
βi1 and βi2 are independent between subjects, and their distributions are normal with mean 0
and variances Dα = 36, Dβ1 = 36 and Dβ2 = 16, respectively. The variable Z’s two principal
component scores, βi1 and βi2, are independent. In addition, the correlation coefficient between
αi and βi1 is ρ1 = −0·8 and that between αi and βi2 is ρ2 = −0·45. The measurement errors εit
and ξit are independent and normally distributed with mean 0 and variance 0·5.

The penalized likelihood method was applied to fit the joint model with ka = 1 and kb = 2.
Penalty parameters were picked using ten-fold crossvalidation on a grid defined by λμ = λν in
{k × 104} and λf = λg in {2k × 105}, for k = 1, …, 5. Figure 1 shows fitted mean curves and the
principal component curves for five simulated datasets, along with the true curves used in
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generating the data. Table 1 presents the sample means and mean squared errors of the variance
and correlation parameters, based on 200 simulation runs. Our joint modelling approach was
compared with a separate modelling approach that fits Y and Z separately using the single-
curve method described in § 2·3. In terms of mean squared error, the single-curve method gives
similar, but slightly worse estimates of the variance parameters. However, unlike the joint
modelling approach, the single-curve method does not provide estimates of the correlation
coefficients of the principal component scores. A naive approach is to use the sample
correlation coefficients of the best linear unbiased predictors of the principal component scores
from the single-curve model. Since the best linear unbiased predictors are shrinkage estimators,
such calculated correlation coefficients can be seriously biased, as shown in Figure 1. Mean
integrated squared errors for estimating the mean functions were also computed for the two
approaches. The joint modelling approach reduced the mean integrated squared error compared
to the separate modelling approach by 23% and 33% for estimating μ(·) and ν(·), respectively.
It is not surprising that the joint modelling approach is more efficient than separate modelling,
as is well known in seemingly unrelated regressions (Zellner, 1962).

7. AIDS study example

In this section we illustrate our model and the proposed estimation method using a dataset from
a study conducted by the AIDS Clinical Trials Group, ACTG 315 (Lederman et al., 1998; Wu
& Ding, 1999). In this study, 46 HIV 1 infected patients were treated with potent antiviral
therapy consisting of ritonavir, 3TC and AZT. After initiation of the treatment on day 0, patients
were followed for up to 10 visits. Scheduled visit times common for all patients are 7, 14, 21,
28, 35, 42, 56, 70, 84 and 168 days. Since the patients did not follow exactly the scheduled
times and/or missed some visits, the actual visit times are irregularly spaced and different for
different patients. The visit time varies from day 0 to day 196. The purpose of our statistical
analysis is to understand the relationship between virological and immunological surrogate
markers such as plasma HIV RNA copies, called the viral load, and CD4+ cell counts during
HIV/AIDS treatments.

In the notation of our joint model for paired functional data in § 3, denote by Y the CD4+ cell
counts divided by 100 and by Z the base-10 logarithm of plasma HIV RNA copies. As in Liang
et al. (2003), the viral load data below the limit of quantification, i.e. 100 copies per ml of
plasma, are imputed by the mid-value of the quantification limit, i.e. 50 copies per ml of plasma.
To model the curves on the time interval [0, 196], we used cubic B-splines with 10 interior
knots placed on scheduled visit days. The penalty parameters were selected by ten-fold
crossvalidation. The resampling-subject bootstrap with 1000 repetitions was used to obtain
confidence intervals.

Following the method described in § 5·2, we selected the number of important principal
components in two stages. In the first stage, the two variables were modelled separately using
the single-curve method in § 2·3. A sequence of models with different numbers of principal
component functions were considered, and the corresponding variances of principal component
scores for these models are given in Table 2. We decided to use two principal components for
both Y and Z. In the second step, the model was fitted jointly with ka = 2 and kb = 2. The
estimates of the variances are Dα1 = 110·1, Dα2 = 1·147, Dβ1 = 169·8 and Dβ2 = 11·8. Given
that the ratio between Dα2 and Dα1 is about 1%, we decided to drop the second principal
component for CD4+ counts and to use ka = 1 and kb = 2 in our final model. The ratio of Dβ2
to Dβ1 is about 7%, so that, for the viral load, the second principal component, even though
included in the final model, is much less important than the first.

Figure 2 presents CD4+ cell counts and viral load over time, overlaid by their estimated mean
curves and 95% bootstrap pointwise confidence intervals for the means. The plots show that
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on average, CD4+ cell counts increase while viral load decreases dramatically until day 28.
After CD4+ counts plateau out at 28 days, but the viral load still drops until about 50 days.
The feature after 50 days in the viral-load plot is an artifact of few observations and an outlier
affecting crossvalidation; the feature disappears with a larger smoothing parameter.

Figure 3 shows the estimated principal component curves of CD4+ counts and the viral load,
along with the corresponding 95% bootstrap pointwise confidence intervals. The effect on the
mean curves of adding and subtracting a multiple of each of the principal component curves
is also given in Fig. 3, in which the standard deviations of the corresponding principal
component scores are used as the multiplicative factors. The principal component curve for
the CD4+ counts is almost constant over the time range and corresponds to an effect of a level
shift from the overall mean curve. The first principal component curve for the viral load
corresponds to a level shift from the overall mean with the magnitude of the shift increasing
with time. The second principal component curve for the viral load changes sign during the
time period and corresponds to opposite departures from the mean at the beginning and the
end of the time period. Compared with the first principal component, it explains much less
variability in the data and can be viewed as a correction factor to the prediction made by the
first principal component. We did not know the shape of the principal component curves prior
to the analysis, but it turns out that all estimated principal component curves are rather smooth
and close to linear. This may be caused by the high level of noise in the data that prevents the
identification of more subtle features; the data-driven crossvalidation does not support the use
of smaller penalties. Given that the two principal components are obtained from a high-
dimensional function space, dimension reduction is quite effective in this example.

In Fig. 4, we plot observed data for three typical subjects and corresponding mean curves and
best linear unbiased predictions of the underlying subject-specific curves. The predicted values
of the scores corresponding to the first principal component of CD4+ counts are 11·43, −7·15
and −2·49 for the three subjects, respectively. The predicted values of the scores of the first
principal component of viral load are 4·43, 5·11 and 1·05, and those of the second principal
component are 4·26, 2·08 and −1·50. These predicted scores and the graphs in Fig. 4 agree with
the interpretation of the principal components given in the previous paragraph. For example,
the first subject has a positive score while the second and third subjects have negative scores
on the first principal component of CD4+ counts, corresponding to a downward and upward
shift of the predicted curves from the mean curve, respectively. The crossover effect of the
second principal component of viral load is clearly seen in the third subject.

Estimates of variance and correlation parameters are given in Table 3 together with the
corresponding 95% bootstrap confidence intervals. Of particular interest is the parameter ρ1,
the correlation coefficient between αi1 and βi1, which are the scores corresponding to the first
principal component of CD4+ counts and viral load, respectively. The estimated ρ1 is
statistically significantly negative, which suggests that a positive score on the first principal
component of CD4+ counts tends to be associated with a negative score on the first principal
component of viral load. In other words, for a subject with CD4+ count lower, respectively
higher, than the mean, the viral load tends to be higher, respectively lower, than the mean.
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Appendix 1

Creation of a basis b(t) that satisfies the orthonormal constraints

Let b̃(t) = (b̃1(t), …, b̃q(t))T be an initially chosen, not necessarily orthonormal, basis such as
the B-spline basis. A transformation matrix T such that b(t) = Tb ̃(t) can be constructed as
follows. Write B̃ = {b̃(t1), …, b̃(tg)}T. Let B̃ = QR be the QR decomposition of B̃, where Q has
orthonormal columns and R is an upper triangular matrix. Then, T = (g/L)1/2R−T will be a
desirable transformation matrix since

Appendix 2

Conditional moments of the multivariate normal distribution (16)

Write  as

Then, the conditional distribution satisfies

On the other hand, f(αi, βi | Yi, Zi) ∝ f(αi, βi, Yi, Zi)· Comparing the coefficients of the quadratic

forms  and  in the two expressions of the conditional distribution,
we obtain

These can be used to calculate Σi,αα, Σi,αβ and Σi,ββ through the formulae
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or direct matrix inversion of .

Similarly, comparing the coefficients of the first-order terms, we obtain

which implies that

Appendix 3

Updating formulae for the M-step of the EM algorithm

In the updating formulae given below, the parameters that appear on the right-hand side of
equations are all fixed at their current estimates. The involved conditional moments are as
defined in (17) of § 4·2.

Step 1

Update the estimates of  and . We update  using  and 
similarly. The updating formulae are

Step 2

Update the estimates of θμ and θν. The updating formulae are
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Step 3

Update the estimates of Θf and Θg. We update the columns of Θf and Θg sequentially. Write
Θf = (θα1, θα2, …, θαkα) and Θg = (θβ1, …, θβkβ). For j = 1, …, kα, we minimize

with respect to θαj. The solution gives the update for θαj,

Similarly, for j = 1, …, kβ,

Step 4

Update the estimate of Λ. The updating formula is

Step 5

Orthogonalization. The matrices Θf and Θg obtained in Step 3 need not have orthonormal
columns. We orthogonalize them in this step and also provide an updated estimate of Dα, Dβ
and Λ. Compute

Let  be the eigenvalue decomposition in which Qf has orthogonal columns
and Sα is diagonal with diagonal elements arranged in decreasing order. The updated Θ̂f is Qf

and the updated D ̂α is Sα. Similarly, let  be the eigenvalue decomposition
in which Qg has orthogonal columns and Sβ is diagonal with diagonal elements arranged in
decreasing order. The updated Θ ̂

g is Qg and the updated D ̂β is Sβ. The orthogonalization process
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corresponds to transformations  and . Thus, the corresponding

transformation for Λ̂ obtained from Step 4 is .
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Fig. 1.

Fitted mean curves and principal component curves for five simulated datasets: (a) mean curve
of Y, (b) first principal component curve, for Y, (c) mean curve for Z, (d) and (e) first and second
principal components for Z.
Solid lines represent true curves and dashed lines represent the fitted curves for the five
simulated datasets.
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Fig. 2.

AIDS study. (a) CD4+ cell counts and (b) viral load over time as a function of days, overlaid
by estimated mean curves and corresponding 95% bootstrap pointwise confidence intervals.
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Fig. 3.

AIDS study. Estimated principal component curves for (a) CD4+ cell counts and (c) and (e)
viral load with corresponding 95% pointwise confidence intervals. (b), (d) and (f) Effect on
the mean curves of adding (plus signs) and subtracting (minus signs) a multiple of each of the
principal components, shown on the panels (a), (c) and (e).
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Fig. 4.

Data and predictions for three selected subjects. Asterisks denote observed values of (CD4 +
count)/100 and log10(RNA), solid lines denote estimated mean curves and dashed lines denote
best linear unbiased predictions of the subject-specific curves.
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