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Abstract:
Methodological development and clinical application of joint models of longitudinal and time-to-event out-
comes have grown substantially over the past two decades. However, much of this research has concentrated
on a single longitudinal outcome and a single event time outcome. In clinical and public health research, pa-
tients who are followed up over timemay often experiencemultiple, recurrent, or a succession of clinical events.
Models that utilise such multivariate event time outcomes are quite valuable in clinical decision-making. We
comprehensively review the literature for implementation of joint models involving more than a single event
timeper subject.We consider the distributional andmodelling assumptions, including the association structure,
estimation approaches, software implementations, and clinical applications. Research into this area is proving
highly promising, but to-date remains in its infancy.
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1 Introduction

In clinical studies, measurements are often recorded about subjects at each follow-up visit; these response data
give rise to longitudinal data. Subsequently, times to one or more clinically significant events are also recorded.
The longitudinal data might be censored by one of these clinical events; for example, if the event was death
or treatment failure. A growing field of research has emerged that seeks to jointly model these two outcomes
—so-called joint modelling. When the outcome processes are correlated, joint modelling has been empirically
demonstrated to lead to improved efficiency and reduced bias [1–3], improved prediction [4], and be applicable
to outcome surrogacy [5]. The literature is extensive, with comprehensive reviews given by Hogan and Laird
[6], Tsiatis and Davidian [7], Diggle et al. [8], Sousa [9], Proust-Lima et al. [10], and Gould et al. [11].

The classical joint model, fromwhichmost research has spawned, involves a single continuous longitudinal
outcome and a single right-censored event time. Notwithstanding this simplicity, the joint modelling method-
ology has been recently extended to generalize both submodels. For the longitudinal submodel, developments
include the incorporation of multiple outcomes [12], binary [13], count [14], and ordinal [15] outcomes, and ex-
tensions of the classical error and randomeffects distribution assumptions [16]. For the time-to-event submodel,
extensions have involved the modelling of interval- [17] and left-censored [18] data, discrete event times [19],
competing risks [20], parametric models [21], spline models [22], and subject- and institutional-level frailty ef-
fects [23]. Commensuratewith thismethodological research, there has been an increase in use of jointmodels in
a wide –range of clinical settings [23–26] and development of several mainstream statistical software packages
[27–34].

Due to current trends towards personalized medicine, models that utilise all available information more
efficiently are of considerable value. In health research, patients may often experience multiple, recurrent, or a
succession of clinical events, thus potentially admittingmore than one event time. In this article, we comprehen-
sively review the methodological literature for joint models involving multivariate event time data. Although
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the primary focus is on the ubiquitous shared random effects models, we also describe the growing framework
of joint latent class models. Our review encapsulates multiple events, recurrent events (either in the presence of
a terminal event, or not) and succession of events data. Although competing risks data can also be considered
as multivariate time-to-event data, we do not review these models here as each subject still only admits a single
event time. Furthermore, competing risks joint models have been extensively reviewed elsewhere in the joint
model literature [35].

2 Longitudinal data submodels

Let 𝑌𝑖𝑘 (𝑡𝑖𝑗𝑘) denote the 𝑗-th observed value of the 𝑘-th longitudinal outcome for subject 𝑖, measured at time 𝑡𝑖𝑗𝑘,
for 𝑖 = 1, … , 𝑁, 𝑘 = 1, … , 𝐾, and 𝑗 = 1, … , 𝑛𝑖𝑘. In some cases, only a single longitudinal outcome (i. e. 𝐾 = 1) is
considered, which greatly simplifies the model. Wewill consider both univariate (𝐾 = 1) andmultivariate (𝐾 >
1) longitudinal data in this review, depending on the methodology presented in each article, but exclusively
reserve the subscript 𝑘 to denote multivariate cases.

In the framework of joint models involving more than one event time, the corresponding longitudinal mea-
surements have predominantly been continuous. However, some models have considered binary and count
data (Table 1). As noted earlier, some models have also considered multiple longitudinal outcomes. For a full
review of joint models involving multivariate longitudinal outcomes, see Hickey et al. [12]. Król et al. [36] also
considered left-censored longitudinal measurements, which is pertinent to biomarker measurements that in-
volved minimum detection thresholds. There are a plethora of modelling approaches for multivariate longitu-
dinal data [37]. In most cases, a generalized linear mixed model (GLMM) [38] is specified. Namely,

ℎ𝑘 {𝔼 [𝑌𝑖𝑘 (𝑡𝑖𝑗𝑘)]} = 𝜇𝑖𝑘 (𝑡𝑖𝑗𝑘) , (1)

Table 1: Summary of longitudinal submodels.

Article Ref. Multivari-
ate

Outcome
types

Model Error distribution Random effects
distribution

Multiple events
Huang et al.
(2001)

[41] Yes Binary – Logistic
regression
model given
the latent
variable

N/A Discrete indepen-
dent probability dis-
tributions

– Marginal
log-odds
model for the
longitudinal
latent process

Chi & Ibrahim
(2006)

[42] Yes Continu-
ous

LMM MVN MVN

Zhang et al.
(2008)

[49] Yes Continu-
ous

LMM MVN – stationary
Gaussian process
with exponential
correlation

MVN – stationary
Gaussian process
with exponential
correlation

Zhu et al. (2012) [43] Yes Continu-
ous and/or
discrete

GLMM MVN for
continuous
outcomes

MVN
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Tang et al.
(2014)

[44] Yes Continu-
ous and/or
discrete

GLMM MVN for
continuous
outcomes

Unspecified
distribution
modelled with a
Dirichlet process
prior (with MVN
base distribution)

Tang & Tang
(2015)

[39] Yes Continu-
ous

LMM +
P-splines

Multivariate
skew-normal

Unspecified
distribution
modelled with a
Dirichlet process
prior (with MVN
base distribution)

Multiple events + recurrent events

Musoro et al.
(2015)

[25] Yes Continu-
ous

LMM +
thin-plate
splines

Normal MVN + normal for
thin-plate spline
effects

Recurrent events

Han et al. (2007) [51] No Continu-
ous

LMM Normal MVN

Liu et al. (2008) [56] No Continu-
ous

LMM Normal Normal

Liu & Huang
(2009)

[57] No Continu-
ous

LMM Normal Normal

Kim et al. (2012) [58] No Continu-
ous

LMM Normal MVN

Efendi et al.
(2013)

[54] No Continu-
ous

LMM Normal MVN

Njagi et al.
(2013)

[14] No Continu-
ous, binary
or count

– LMM for
continuous
outcomes

Normal for contin-
uous outcomes

MVN Separate Beta
or Gamma random
effects for binary
or count outcomes,
respectively

– Probit for
binary
outcomes
– Poisson for
count
outcomes

Król et al. (2014) [36] No Continu-
ous

LMM Normal MVN

Li et al. (2016) [45] No Continu-
ous

Marginal
proportional
means model

N/A Multivariate – left
unspecified

Shen et al.
(2016)

[48] No Continu-
ous

LMM Normal MVN + stationary
Gaussian process

Succession of events
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Dantan et al.
(2012)

[40] No Continu-
ous

Segmented
LMMwith
random
change-point

Normal MVN

Ferrer et al.
(2016)

[66] No Continu-
ous

LMM Normal MVN

Rouanet et al.
(2016)

[50] Yes* Continu-
ous
(normal
and non-
normal)

LMM* Normal MVN

Abbreviations: LMM = linear mixed model, GLMM = generalized linear mixed model, MVN = multivariate normal, N/A = not
applicable
* The primary model was developed for a univariate continuous outcome, but the extension to multivariate non-Gaussian longitudinal
outcomes through a latent variable process model with parametric monotonic link function was also briefly discussed.

where ℎ𝑘 (⋅) denotes a known one-to-one link function for the 𝑘-th outcome, 𝔼 is the expectation operator,
and 𝜇𝑖𝑘 (⋅) is the linear predictor:

𝜇𝑖𝑘 (𝑡𝑖𝑗𝑘) = 𝑋(1)
𝑖𝑘 (𝑡𝑖𝑗𝑘)

⊤𝛽(1)
𝑘 + 𝑊(𝑘)

1𝑖 (𝑡𝑖𝑗𝑘) , (2)

where

𝔼 {𝑊(𝑘)
1𝑖 (𝑡𝑖𝑗𝑘)} = 𝑍𝑖𝑘(𝑡𝑖𝑗𝑘)

⊤𝑏𝑖𝑘, (3)

and 𝑋(1)
𝑖𝑘 (𝑡𝑖𝑗𝑘) and 𝑍𝑖𝑘 (𝑡𝑖𝑗𝑘) are vectors of (possibly time-varying) covariates for subject 𝑖 associated with fixed

and random effects respectively, which can vary by outcome, 𝛽(1)
𝑘 is a vector of fixed effects parameters for the

𝑘-th outcome, and 𝑏𝑖𝑘 is a vector of subject-specific random effects for the 𝑘-th outcome. We denote the stacked
vector of subject-specific random effects for all 𝐾 outcomes by 𝑏𝑖 = (𝑏⊤

𝑖1, 𝑏⊤
𝑖2, … , 𝑏⊤

𝑖𝐾)⊤. Some authors have con-
sidered including spline terms in 𝑋(1)

𝑖𝑘 (𝑡𝑖𝑗𝑘) to capture complex functional forms between the outcome and
measurement time [25, 39]. On the other hand, Dantan et al. [40] specified a segmented GLMM with a ran-
dom change-point, which was intrinsically linked to the time-to-event submodel through one of the transition
hazard functions. Random change-points were shown to be particularly useful for capturing changes in the
longitudinal trajectory of the outcome following a clinical (pre-)diagnosis.

Generally, for continuous longitudinal outcomes, independent and identically distributed normal errors are
assumed. However, extensions to robust skew-normal distributed errors have also been proposed [39]. Subject-
specific random effects are generally modelled as being multivariate normally distributed, reducing to a nor-
mal distribution in the case of a random-intercepts only model. Different modelling approaches have also been
considered. Notably, Huang et al. [41] adopted discrete independent probability distributions. Njagi et al. [14]
considered over-dispersed data, and proposed conjugate Beta and Gamma random effects for binary and count
outcomes respectively. Several authorswho consideredmultivariate longitudinal outcomes have proposed cap-
turing the cross-sectional association between repeated measures through a correlated errors structure rather
than a correlated randomeffects structure, i. e.𝑌𝑖𝑘 (𝑡𝑖𝑗) = 𝜇𝑖𝑘 (𝑡𝑖𝑗)+𝜀𝑖𝑗𝑘, with 𝜀𝑖𝑗. ∼ 𝑁𝐾 (0,Σ) and 𝑏𝑖𝑘 ∼ 𝑁𝑣𝑘

(0,Ψ𝑘)
[39, 42–44]. This allows for separate estimation of correlation between repeatedmeasures and between different
longitudinal outcomes.

In some cases, a semiparametric paradigm has been adopted. Within the Bayesian framework, Tang et al.
[44] and Tang and Tang [39] assumed a Dirichlet process prior for the random effects, removing the need to
assume a fixed parametric form, which is therefore robust to potential misspecification. Li et al. [45] suggested
a time-dependent vector of random effects, which are independently and identically distributed according to
an unknownmultivariate distribution. The longitudinal submodels are also specified as marginal proportional
rates models; namely, as eq. (1) with ℎ𝑘 (.) given by the exponential link function, and linear link functions are
also suggested [46]; the time-dependent fixed effects are absorbed into an unspecified smooth baseline function.

Following Henderson et al. [47], additional autocorrelation structure can be incorporated into the model
by augmenting eq. (3) to include a zero-mean stationary Gaussian process term. However, such models are
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met with a substantially increased computational burden, so it is not unexpected that very fewmethodological
articles have considered this extension [48, 49]. Zhang et al. [49], as well as considering correlation for 𝑊(𝑘)

1𝑖 (𝑡)
in eq. (3), also allowed for correlation of errors within an outcome over time by letting 𝜀𝑖𝑘 = (𝜀𝑖1𝑘, … , 𝜀𝑖𝑛𝑘)⊤

have zero-mean multivariate normal distribution with a u-lag correlation function given by

𝜌1𝑘 (𝛼1𝑘, 𝑢) = exp {−𝛼1𝑘|𝑢|𝛿} , 0 < 𝛿 ≤ 2.

A summary of the longitudinal data submodels used in joint models involving multivariate time-to-event data
is given in Table 1.

3 Time-to-event data submodels

Let 𝑇∗
𝑖𝑔 denote the 𝑔-th event time for the 𝑖-th subject (𝑖 = 1, … , 𝑛). Also, let 𝐶𝑖 be a censoring time for the subject

such that we actually observe 𝑇𝑖𝑔 = min (𝑇∗
𝑖𝑔, 𝐶𝑖). Typically, continuous event times are observed. Two excep-

tions were Huang et al. [41], who considered discrete event times, and Rouanet et al. [50] who allowed one of
the semi-competing event times to be interval-censored. For each subject 𝑖, let the vector 𝑋(2)

𝑖 (𝑡), which may be
time-varying, denote the observed covariate data, and 𝛽(2)

𝑔 denote the coefficient parameters associated with
these covariates for the 𝑔-th event time. Similarly, for models involving a third submodel (e. g. a joint model of
longitudinal data, recurrent events, and a terminal event), we will use the notation 𝑋(3)

𝑖 (𝑡) and 𝛽(3), as appro-
priate. However, in practice, there will be an overlap between baseline measurements in 𝑋(1)

𝑖 (𝑡) , 𝑋(2)
𝑖 (𝑡), and

𝑋(3)
𝑖 (𝑡). Specification of the time-to-event model depends on the type of multivariate event time data and the

association structure that gives rise to the joint model. These are described below and succinctly summarized
in Table 2 and Table 3. We will denote the association parameters by 𝛾𝑔, and any extra random effects terms by
𝜃𝑖.

Table 2: Summary of time-to-event submodels.

Article Ref. Multi-
ple
events

Recur-
rent
events

Succes-
sion of
events

Model Random effects
distribution&

Huang et al.
(2001)

[41] ✓ X X Discrete-time hazard log-linear
models

Discrete probability

Chi &
Ibrahim
(2006)

[42] ✓ X X Novel time-to-event joint model
with conditional and marginal
proportional hazards structure,
and capable of accommodating
zero- and non-zero cure rate
fractions

Positive stable law§

Han et al.
(2007)

[51] X ✓ X General recurrent events model
of Peña and Hollander [52]

Gamma§

Liu et al.
(2008)

[56] X ✓ X Proportional hazards with
piecewise constant baseline
hazard and intensity functions

Normal

Zhang et al.
(2008)

[49] ✓ X X Constant baseline intensities Normal

Liu & Huang
(2009)

[57] X ✓ X Proportional hazards with
piecewise constant baseline
hazard and intensity functions

Normal
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Dantan et al.
(2012)

[40] X X ✓ Proportional transition intensity
model with Weibull and
piecewise constant baseline
functions

N/A

Kim et al.
(2012)

[58] X ✓ X Transformation models Normal

Zhu et al.
(2012)

[43] ✓ X X Proportional hazards with
piecewise constant baseline
hazard functions

N/A

Efendi et al.
(2013)

[54] X ✓ X Weibull-gamma-normal model Gamma§

Njagi et al.
(2013)

[14] X ✓ X Weibull-gamma-normal model Gamma§

Tang et al.
(2014)

[44] ✓ X X Proportional hazards with
piecewise constant baseline
hazard functions

N/A

Musoro et al.
(2015)

[25] ✓ ✓ X Proportional semiparametric
intensity model

Independent normal
(two random effects
present for within
and between event
types)

Tang & Tang
(2015)

[39] ✓ X X Proportional hazards with
piecewise constant baseline
hazard functions

N/A

Ferrer et al.
(2016)

[66] X X ✓ A proportional hazards
Markovian intensity model (with
Weibull, piecewise constant, or
B-spline baseline intensity
function)

N/A

Król et al.
(2016)

[36] X ✓ X Proportional hazards with cubic
M-spline baseline hazard and
intensity functions

Normal

Li et al.
(2016)$

[45] X ✓ X Terminal event: additive hazards
with unspecified baseline hazard
function

Left unspecified

Recurrent events: marginal
proportional rates model

Rouanet et al.
(2016)

[50] X X ✓# Two models proposed: N/A
1.A proportional hazards
Markovian intensity model (with
Weibull or M-spline baseline
intensity function)
2. A semi-Markovian model
where transition intensity to
death from disease state depends
on time with illness
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Shen et al.
(2016)

[48] X ✓ X Proportional semiparametric
intensity model, which was
reframed as a conditional rate
function for the purpose of
estimation

N/A*

Abbreviations: N/A = not applicable
& Random effects in the time-to-event submodels other than those shared with the longitudinal data submodel.
* In principle, separate normal frailty terms can be included, as per Henderson et al. [47].
# This model was a semi-competing events model.
§ Denotes distributions of frailties that act multiplicatively on the hazard. All other distributions correspond to random effects that act
additively on the log-hazard scale.
$ This methodological article is representative of a vast research literature on the use of marginal joint models with informative
observation times, modelled according to some intensity function. In the interests of brevity, we only include a single article here.

Table 3: Summary of association structure, estimation method, and software implementation.

Article Ref. Association structure* Estimation method Software implementation
& availability

Huang et al.
(2001)

[41] Current value of true latent
variable + interaction terms
with external covariates

MLE: Newton-Raphson
algorithm with automatic
differentiation and iterative
proportional fitting

S-Plus: AD09 module
available online to
implement automatic
differentiation and
Newton-Raphson
algorithm1

Chi & Ibrahim
(2006)

[42] Current value
parameterization

Bayesian MCMC: Gibbs
sampling algorithm (with
adaptive rejection
algorithm and Metropolis
algorithm)

N/S

Han et al.
(2007)

[51] Latent class membership MLE: EM algorithm N/S

Liu et al. (2008) [56] Random effects
parameterization

MLE: Gaussian quadrature
tools in standard statistical
packages

SAS: code provided online

Both recurrent and
terminal time-to-event
models additionally
correlated through
common frailty, which is
independent of
longitudinal process

Zhang et al.
(2008)

[49] Random effects
parameterization

MLE: two-stage approach
with one component
estimated using the EM
algorithm

N/S

Liu & Huang
(2009)

[57] Random effects
parameterization

MLE: Gaussian quadrature
tools in standard statistical
packages

SAS: code provided
online2

Dantan et al.
(2012)

[40]
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Kim et al.
(2012)

[58] Correlated random effects
between longitudinal and
recurrent events
submodels, with
time-dependent covariate
vector interactions

MLE: EM algorithm with a
recursive formula
proposed to reduce the
number of parameters to
be maximised

R: code provided online

Zhu et al.
(2012)

[43] Current value
parameterization

Bayesian MCMC: Gibbs
sampling algorithm (with
Metropolis-Hastings
algorithm)

N/S

Efendi et al.
(2013)

[54] Random effects
parametrization

MLE: via partial
marginalization [76]; i. e.
where the conjugate
random effects are
analytically integrated out,
followed by numerical
integration of shared
normal random effects

SAS: code provided in the
Appendix

Njagi et al.
(2013)

[14] Random effects
parameterization

MLE: via partial
marginalization [68]; i. e.
where the conjugate
random effects are
analytically integrated out,
followed by numerical
integration of shared
normal random effects

SAS: code provided in the
Appendix

Tang et al.
(2014)

[44] Current value
parameterization

Bayesian MCMC: Block
Gibbs sampling algorithm
(with Metropolis-Hastings
algorithm)

R and Matlab: code
available on request from
the authors

Musoro et al.
(2015)

[25] Current value
parameterization

Bayesian MCMC: Gibbs
sampling algorithm

OpenBUGS: code not
provided

Tang & Tang
(2015)

[39] Current value
parameterization

Bayesian MCMC: Block
Gibbs sampling algorithm
(with Metropolis-Hastings
algorithm)

N/S

Ferrer et al.
(2016)

[66] Current value
parameterization,
Time-dependent slopes
parameterization, both, or
any other function of the
random effects

MLE: hybrid algorithm
that begins with an EM
algorithm and switches to
a quasi-Newton algorithm
if the convergence is not
achieved

R: code provided online
and in Appendix

Król et al.
(2016)

[36] Current value
parameterization,
Time-dependent slopes
parameterization, both, or
any other function of the
random effects

MLE: penalized maximum
likelihood estimation using
the Marquardt algorithm

R: implemented in the
frailtypack package (v2.8)
and code provided in the
Appendix

Li et al. (2016) [45] Correlated random effects Estimating equations N/S
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Rouanet et al.
(2016)

[50] Latent class membership MLE: Marquardt
algorithm

R: code provided online

Shen et al.
(2016)

[48] Random effects
parameterization, with
separate coefficients for the
time-independent and
-dependent random effects

Two-stage conditional
estimating equation
approach

N/S

Abbreviations: MLE = maximum likelihood estimation, MCMC = Markov chain Monte Carlo, N/S = not specified
* Association structure between the longitudinal data sub-model and the event time sub-model.

3.1 Multiple events

Multiple (unordered) events occur when more than one event is observed, and interest lies with all of them.
A joint model can be specified to capture the association between a longitudinal process and multiple failure
times; for example, the time to cancer relapse in two separate organs.

Chi and Ibrahim [42] derived a novel yet complex bivariate survivalmodel from first principles of latent pre-
cursor events modelled by a Poisson process. The model accommodates both zero and non-zero cure fractions,
and the survival distribution is given by

𝑆 (𝑡𝑖1, 𝑡𝑖2|𝜃𝑖) = exp
⎧{
⎨{⎩

−𝜃𝑖
⎡⎢
⎣

𝑡𝑖1

∫
0

𝜆𝑖1 (𝑢) 𝐹1 (𝑡𝑖1 − 𝑢) 𝑑𝑢 +
𝑡𝑖2

∫
0

𝜆𝑖2 (𝑢) 𝐹2 (𝑡𝑖2 − 𝑢) 𝑑𝑢⎤⎥
⎦

⎫}
⎬}⎭

,

where 𝜃𝑖 is a subject-specific frailty term that follows a positive stable law distribution indexed by the parame-
ter 𝜌, which accounts for the correlation between the pair of event times, and 𝐹1 (𝑡) and 𝐹2 (𝑡) are distribution
functions for the latent precursors, and later specified as exponential distributions. A current values parame-
terization was assumed to link the longitudinal and time-to-event submodels through

𝜆𝑖𝑔 (𝑡) = exp
⎧{
⎨{⎩

𝐾

∑
𝑘=1

𝛾𝑔𝑘𝜇𝑖𝑘 (𝑡) + 𝑋(2)
𝑖

⊤𝛽(2)
𝑔

⎫}
⎬}⎭

.

It was noted that both the conditional and marginal survival function satisfies the proportional hazards prop-
erty so long as the baseline covariates are modelled as per above, and 𝑋(2)

𝑖 is independent of time.
Zhu et al. [43], Tang et al. [44], and Tang and Tang [39] used the more ubiquitous piecewise constant pro-

portional hazards model for the baseline hazard function, with knots placed at times 𝑣𝑔𝑞 {𝑞 = 1, … 𝑄} for the
𝑔-th time-to-event outcome, such that 0 = 𝑣𝑔0 < 𝑣𝑔1 < … < 𝑣𝑔𝑄, with 𝑣𝑔𝑄 being greater than max (𝑇1𝑔, … , 𝑇𝑛𝑔);
namely

𝜆0𝑔 (𝑡) =
𝑄

∑
𝑞=1

𝜉𝑞𝑔𝐼 (𝑣𝑔,𝑞−1 < 𝑡 ≤ 𝑣𝑔𝑞) ,

where 𝐼 (⋅) denotes the indicator function, and 𝜉𝑞𝑔 denotes the value of the event-specific hazard function in the
interval (𝑣𝑔,𝑞−1, 𝑣𝑔𝑞] for event 𝑔. The separate event time and longitudinal submodels are subsequently linked
through a current values parameterisation:

𝜆𝑖𝑔 (𝑡) = 𝜆0𝑔 (𝑡) exp
⎧{
⎨{⎩

𝐾

∑
𝑘=1

𝛾𝑔𝑘𝜇𝑖𝑘 (𝑡) + 𝑋(2)
𝑖

⊤𝛽(2)
𝑔

⎫}
⎬}⎭

.

Huang et al. [41] adopted a discrete time hazard model of the form

log ⎛⎜
⎝

𝑓𝑖𝑗𝑔
𝑆𝑖𝑗𝑔

⎞⎟
⎠

= 𝑋(2)
𝑖 (𝑡𝑗)

⊤𝛽(2)
𝑔 + 𝛾(1)

𝑔 𝜂𝑖𝑗 + 𝛾(2)
𝑔 𝜃𝑖 + 𝛾(3)

𝑔 𝜂𝑖𝑗𝑥
(3)
𝑖 ,
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Hickey et al. DE GRUYTER

where 𝑓𝑖𝑗𝑔 = 𝑃 [𝑇𝑖𝑔 = 𝑗], 𝑆𝑔𝑖𝑗 = 1 −
𝑗

∑
𝑗′=1

𝑓𝑖𝑗′𝑔 for discrete times 𝑡𝑗 (𝑗 = 1, … , 𝐽), and {𝛾(1)
𝑔 , 𝛾(2)

𝑔 , 𝛾(3)
𝑔 } are a set of

association parameters. The first discrete randomeffect, 𝜂𝑖𝑗, links the longitudinal submodel to the event process
by a random effects parameterisation, which includes an interaction with one of the baseline covariates, 𝑥(3)

𝑖 .
The second discrete random effect, 𝜃𝑖, captures additional association between the multivariate event times,
beyond what is predicted by 𝜂𝑖𝑗. An additional discrete multivariate distributed random effect was included in
the multivariate longitudinal outcome submodel only.

3.2 Recurrent events

Recurrent (ordered) events occur when the same non-terminal event can be observed multiple times over a
follow-up period. Henderson et al. [47] first presented a joint model compatible with recurrent events data, but
this was ultimately simplified to the case of a single event time (i. e. a time to a single terminal event).

3.2.1 Without a terminal event

The simplest situation is when the recurrent events process is observed without a terminating process. For
example, an epileptic patient can undergo multiple seizures in a day, and targeted treatments for epilepsy
may be dependent on biomarker values [51]. A joint model of the recurrent events process and longitudinal
outcomes data can capture this dependence.

Han et al. [51] adopted the general recurrent event model of Peña and Hollander [52] within a latent class
framework, similar to that of Lin et al. [53], with the intensity function defined according to

𝑟𝑖 (𝑡) = 𝜃𝑖𝑟0𝑟 (ℰ𝑖 (𝑡)) 𝜌 (𝑁𝑖 (𝑡−) , 𝑎𝑟) 𝜓 (𝑋(2)
𝑖 (𝑡)⊤𝛽(2)) ,

where 𝜃𝑖 is a mean-one Gamma distributed frailty term, 𝑟0𝑟 (𝑡) denotes the latent class-specific baseline inten-
sity function (with 𝑟 = 1, … , 𝑅), ℰ𝑖 (𝑡) is the “effective age” of subject 𝑖 at time 𝑡, 𝑁𝑖 (𝑡−) is the effective number
of accumulated events just prior to time 𝑡, 𝜌 (⋅, 𝑎𝑟) is an event accumulation function parameterized by 𝑎𝑟, and
𝜓 (𝑋(2)

𝑖 (𝑡)⊤𝛽(2)) is a function of the covariate linear predictor term, for example 𝜓 (𝑥) = exp (𝑥), as in the afore-
mentionedmodels. The “effective age” is a predictable process that reflects the effect of interventions after each
failure. In the simplest case, ℰ𝑖 (𝑡) = 𝑡, corresponding to a “minimal repair”. At the other extreme, the “effective
age” may be reset to zero. The effective number of accumulated events is zero if a successful intervention is
applied just prior to time 𝑡, else it equals the cumulative number of failures. The function 𝜌 (⋅, 𝑎𝑟) captures the
effect of recurrent events on the subject, whichmight be non-linear; for example, 𝜌 (𝑛, 𝑎𝑟) = 𝑎𝑛

𝑟 . The model spec-
ification is complete once a parametric distribution for 𝑟0𝑟 (𝑡) is specified, which can be generalized to multiple
families. The association between the longitudinal and event time processes is captured entirely through the la-
tent class, with the classmembership probabilities modelled according to amultinomial distribution. Although
latent class models are distinct from shared random effects models, they can be considered as semiparametric
analogues.

Njagi et al. [14] considered theWeibull-gamma-normalmodel for recurrent events. In short, this is aWeibull
regression model conditional on independent random effects 𝑏𝑖 ∼ 𝑁(0, 𝐷), as per the longitudinal submodel,
and 𝜃𝑖𝑔 ∼ Γ (𝑎, 𝑏), a frailty term such that the intensity function can be written as

𝑟𝑖 (𝑡𝑖𝑔) = 𝜆𝑔𝜌𝑔𝑡
𝜌𝑔−1
𝑖𝑔 𝜃𝑖𝑔 exp {𝐿𝑖𝑔 − 𝜆𝑔𝑡

𝜌𝑔

𝑖𝑔 𝜃𝑖𝑔 exp {𝐿𝑖𝑔}} ,

where 𝐿𝑖𝑔 = 𝑋(2)
𝑖𝑔

⊤𝛽(2) + 𝛾⊤
𝑖𝑔𝑏𝑖, and 𝛾𝑖𝑔 is a vector of scale factors. The association between the event time and

longitudinal submodel is captured through the shared random effects 𝑏𝑖, and the correlation between the re-
current events is captured by the 𝜃𝑖𝑔. It was noted by the authors that this model encompasses shared and
correlated random effects parameterisations. In the example, the authors impose further conditions; namely,
𝜌𝑔 ≡ 𝜌, 𝛾𝑖𝑔 ≡ 𝛾, and 𝜃𝑖𝑔 ≡ 𝜃𝑖 ∼ Γ (𝑎, 𝑎−1) for identifiability purposes. Efendi et al. [54] also adopted a version of
this model.

Shen et al. [48] proposed modelling the recurrent events as per the model formulation in Henderson et al.
[47], namely through the intensity function

𝑟𝑖 (𝑡) = 𝑟0 (𝑡) exp {𝑋(2)
𝑖 (𝑡)⊤𝛽(2) + 𝑊2𝑖 (𝑡)} ,
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where 𝑟0 (𝑡) is a baseline intensity function at time 𝑡, and 𝑊2𝑖 (𝑡) is a zero-mean latent process term. In general,
𝑊2𝑖 (𝑡) = 𝑍(2)

𝑖 (𝑡)⊤𝑏𝑖 + 𝑉2𝑖 (𝑡), where 𝑉2𝑖 (𝑡) is a stationary Gaussian process. The model was simplified by speci-
fying 𝑊2𝑖 (𝑡) = 𝛾1𝑏𝑖 + 𝛾2𝑉1𝑖 (𝑡), assuming 𝜇𝑖 (𝑡) = 𝑋(1)

𝑖 (𝑡)⊤𝛽(1) + 𝑏𝑖 + 𝑉1𝑖 (𝑡) for the longitudinal submodel, with
𝑉1𝑖 (𝑡) a second stationary Gaussian process. However, the model was ultimately reframed as a conditional rates
function, namely 𝔼[𝑟𝑖 (𝑡) |𝑌𝑖], in order to exploit and extend an estimating equations methodology approach.

Zhang et al. [49] proposed a recurrent events model with two non-absorbing states, each with separate
intensity functions. Essentially, this model is a special case of the multi-state model (discussed below), known
as the illness-recovery model. For states 𝑔 = 1, 2, the intensity functions were defined as

𝑟𝑖 (𝑡) = 𝑟0𝑔 exp {𝑋(2)
𝑖 (𝑡)⊤𝛽(2)

𝑔 + 𝑊2𝑖𝑔 (𝑡)} ,

where the baseline intensity is constant, 𝑟0𝑔, and 𝑊2𝑖𝑔 (𝑡) = 𝛾0𝑔𝜃𝑖 +𝛾𝑔𝑊𝑖1 (𝑡) a zero-mean Gaussian process with
u-lag correlation function

𝜌2 (𝛼2, 𝑢) = exp {−𝛼2|𝑢|𝛿} , 0 < 𝛿 ≤ 2,

with 𝜃𝑖 a normally distributed subject-specific random effect, and 𝑊𝑖1 (𝑡) ≡ 𝑊(𝑘)
𝑖1 (𝑡) for all 𝑘.

Li [55] proposed a joint model that assumed the same intensity model as per Liu et al. [56] (with 𝛾1 = 0;
described below). However, the repeated binary measure was modelled using a discrete-time Markov model.
A joint model was formed by factorizing the likelihood into a selection model [9], which lies outside the scope of
this review.

3.2.2 With a terminal event

Anatural extension to the jointmodel of longitudinal outcome data and a recurrent events process is to consider
the situation of a terminating event process; for example, time to death. In this scenario, a third type of submodel
is required to capture this additional event time, which may also be associated with the longitudinal outcomes
and the recurrent events process.

Liu and Huang [57] and Liu et al. [56] considered a recurrent events submodel with a separate terminal
event submodel. A random effects parameterization was used in both the recurrent events intensity function,
𝑟𝑖 (𝑡), and the terminal event hazard function, 𝜆𝑖 (𝑡):

𝑟𝑖 (𝑡) = 𝑟0 (𝑡) exp {𝑋(2)
𝑖 (𝑡)⊤𝛽(2) + 𝛾1𝑏𝑖0 + 𝜃𝑖} ,

𝜆𝑖 (𝑡) = 𝜆0 (𝑡) exp {𝑋(3)
𝑖 (𝑡)⊤𝛽(3) + 𝛾2𝑏𝑖0 + 𝛾3𝜃𝑖} .

The standard model assumption of piecewise constant baseline hazards for 𝑟0 (𝑡) and 𝜆0 (𝑡) was assumed. In
addition, the terminal event submodel has a random effect parameterization linking it to the recurrent events
submodel, where random effect term, 𝜃𝑖, captures the correlation between recurrent events independent of 𝑏𝑖.
Rizopoulos [38] described a similar model, but only briefly described the estimation procedure, and further-
more a clinical application was not provided to illustrate the model. Król et al. [36] also adopted this model,
with some slight modifications. Firstly, the baseline intensity and hazard functions were approximated by cubic
M-splines on 𝑄-knots; namely

𝑟0 (𝑡) =
𝑄+2

∑
𝑞=1

𝜉𝑟𝑞𝑀𝑞 (𝑡) and 𝜆0 (𝑡) =
𝑄+2

∑
𝑞=1

𝜉𝜆𝑞𝑀𝑞 (𝑡) ,

where {𝜉𝑟𝑞; 𝑞 = 1, … , 𝑄 + 2} and {𝜉𝜆𝑞; 𝑞 = 1, … , 𝑄 + 2} are the spline coefficients for the baseline intensity
and hazard functions, respectively, corresponding to M-spline basis functions, 𝑀𝑞 (𝑡). Secondly, the associ-
ation terms with the event time submodels and the longitudinal submodel were specified more flexibly as
𝛾⊤
1 𝑓𝑟 (𝑏𝑖, 𝛽(1), 𝑍𝑖 (𝑡) , 𝑋(1)

𝑖 (𝑡)) and 𝛾⊤
2 𝑓𝜆 (𝑏𝑖, 𝛽(1), 𝑍𝑖 (𝑡) , 𝑋(1)

𝑖 (𝑡)). For example, 𝑓𝑟 (⋅) and 𝑓𝜆 (⋅) might admit the cur-
rent values or random effects parameterization.

Kim et al. [58] also proposed a joint model for a longitudinal outcome and a recurrent events process with a
terminal event process. The recurrent events process, modelled using a broad class of transformation models,
was linked by extra random effect terms 𝜃𝑖, that are correlated with 𝑏𝑖,
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𝑟𝑖 (𝑡) = 𝑑
𝑑𝑡

𝐹𝑅 (
𝑡
∫
0

𝑟0 (𝑠) exp {𝑋(2)
𝑖 (𝑠)⊤𝛽(2) + 𝑍(2)

𝑖 (𝑠)⊤𝜃𝑖} 𝑑𝑠) ,

with 𝜂𝑖 = (𝑏⊤
𝑖 , 𝜃⊤

𝑖 )⊤ jointly distributed, and 𝐹𝑅 (⋅) a specified transformation function. The terminal event sub-
model—again modelled using a transformation model—was associated with the longitudinal and recurrent
events submodels through a random effects parameterization with interaction with (possibly time-varying)
subject-specific covariates:

𝜆𝑖 (𝑡) = 𝑑
𝑑𝑡

𝐹𝑇 (
𝑡
∫
0

𝜆0 (𝑠) exp {𝑋(3)
𝑖 (𝑠)⊤𝛽(3) + 𝑍(3)

𝑖 (𝑠)⊤(𝛾 ∘ 𝜂𝑖)} 𝑑𝑠) ,

with 𝐹𝑇 (⋅) a separate specified transformation function. The authors explicitly used the logarithmic and Box-
Cox transformation models for analysis in their data application. The baseline functions 𝑟0 (𝑡) and 𝜆0 (𝑡) were
modelled semiparametrically, with mass at each unique observed event time.

3.2.3 As a device for informative observation times

Joint models are usually based on the assumption of non-informative observation times for the repeated mea-
surement process. This is generally reasonable for randomized control trials, but perhaps not so for observa-
tional data studies, where sicker patients (possibly indicated through their longitudinal measurement data)
present more frequently to their physician, and whom are more likely to experience an event. Several models
have been proposed to account for this potentially informative observational times protocol, which fall under
the umbrella of joint models of longitudinal data and recurrent events, either with or without a separate termi-
nal event process. In fact, the model by Liu et al. [56] was motivated by this situation, but the subject-specific
shared random effects model is widely applicable to other data. This emerging field of joint modelling has
its own substantive and rapidly growing literature, but clearly warrants a discussion here. In the interests of
brevity, we do not review the entire literature on this particular joint model, and instead illustrate the ideas
through the model proposed by Li et al. [45], which is representative of the model specification and estimation
methodology in the literature. Readers should consult Li et al. [59], Han et al. [60], and references therein for
more details on this model framework.

Working within a semiparametric framework, a flexible proportional rates marginal model for the observa-
tion (recurrent events) process was specified by Li et al. [45]; namely

𝐸 [𝑑𝑁𝑖 (𝑡) |𝑋(3)
𝑖 , 𝑏𝑖 (𝑡)] = exp {𝑋(3)

𝑖
⊤𝛽(3) + 𝑏𝑖3 (𝑡)} 𝑑𝑟0 (𝑡) ,

where 𝑑𝑟0 (𝑡) is an unknown baseline rate function, and 𝑏𝑖 (𝑡) = (𝑏𝑖1 (𝑡) , 𝑏𝑖2 (𝑡) , 𝑏𝑖3 (𝑡))⊤ is a vector of possibly
correlated subject-specific time-dependent random effects with 3 components corresponding to the longitu-
dinal measurements, terminal event and recurrent events, respectively. The terminal event was modelled as a
semiparametric additive hazards model [45], namely,

𝜆𝑖 (𝑡) = 𝜆0 (𝑡) + 𝑋(2)
𝑖

⊤𝛽(2) + 𝑏𝑖2 (𝑡) ,

with the baseline hazard 𝜆0 (𝑡) left unspecified; however, parametric and semiparametric proportional hazards
regression models could also be integrated into this framework [46, 61]. Association between the submodels is
induced through the joint distribution of 𝑏𝑖 (𝑡) .

3.2.4 Multiple recurrent events

Musoro et al. [25] were motivated to unify both multiple and recurrent event types (Sections 3.1 and 3.2) into a
single joint model. For 𝐺 multiple event outcomes, which can be recurrent, they specified an intensity model

𝜆𝑖𝑔 (𝑡) = 𝜆0𝑔 (𝑡) exp
⎧{
⎨{⎩

𝐾

∑
𝑘=1

𝛾𝑔𝑘𝜇𝑖𝑘 (𝑡) + 𝑋(2)
𝑖 𝛽(2)

𝑔 + 𝜃𝑖𝑔 + 𝜓𝑖

⎫}
⎬}⎭

,

where 𝜃𝑖𝑔 and𝜓𝑖 are zero-mean independent Gaussian random effect terms that account forwithin and between
event types, respectively. As above, 𝜆0𝑔 (𝑡) was modelled semiparametrically.
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3.3 Succession of events

A succession of events occurs when non-fatal events can precede an absorbing state event, e. g. death. The in-
termediate events provide information on the disease progression, and can be viewed as transitions from one
state to another. Multistate models provide a framework for analysing this data [62]. Longitudinal measure-
ments that are collected over time may have different associations with progression between separate health
states. We also note that multistate models can also be viewed as an extension of the competing risks model
framework, where interest continues after the first event. Joint models of longitudinal data and standard com-
peting risks data are described elsewhere [35].

Multistate models have also been applied in what is essentially the univariate event time joint modelling
framework. For example, Deslandes and Chevret [63] discretized the longitudinal outcome space to form states
that were combined with the event. However, clinical events of interest—disease progression or death—were
combined into a single composite event. Hu et al. [64] also considered amultistatemodelwhere the longitudinal
outcome was discretized according to quartiles to form transition states, augmented with additional states
defined by competing risks data. Neither of these two articles considered an actual succession of event times, and
therefore are not discussed further. Le Cessie et al. [65] adopted a simple model where hazard functions for
disease state transitions were estimated using separate Cox proportional hazards regression models. However,
the joint model was effectively constructed through a type of pattern mixture model, in which the conditional
responses per disease statewere estimated using a generalized estimating equations framework, and the disease
state probabilities were combined to estimate the marginal mean response over time. Pattern mixture models
(and similarly, selection models) have their own dedicated literature in the model-based literature [9].

Ferrer et al. [66] proposed a Markovian multi-state transition submodel with proportional hazards, such
that the transition intensity at time 𝑡 from state 𝑔 to ℎ is

𝜆𝑖𝑔ℎ (𝑡) = 𝜆0𝑔ℎ (𝑡) exp {𝑋(2)
𝑔ℎ𝑖

⊤𝛽(2)
𝑔ℎ + 𝛾⊤

𝑔ℎ𝑓𝑔ℎ (𝑏𝑖, 𝛽(1), 𝑍𝑖 (𝑡) , 𝑋(1)
𝑖 (𝑡))} , (4)

where the baseline intensity function 𝜆0𝑔ℎ (𝑡) can be specified as a Weibull, piecewise constant, or B-splines
function, and 𝛾𝑔ℎ are transition-specific parameters corresponding to 𝑓𝑔ℎ (⋅)—a flexible association function
that links the multistate submodel to the longitudinal data submodel by any function of the random effects.
Special cases include the current values parameterization, the random slopes parameterization, and a linear
combination of both aforementioned parameterizations.

Dantan et al. [40] proposed amulti-statemodel with transition between states specified as per eq. (4), subject
to the association structures 𝑓01 (⋅) = 0, 𝑓12 (⋅) a random effects parameterization, and 𝑓𝑔3 (⋅) a current values
parameterization, for 𝑔 = 0, 1, 2, and other transitions were discounted. In addition, the baseline hazards were
defined by Weibull distributions for the non-absorbing transitions, and a piecewise constant function for all
transitions to the absorbing (death) state. Dantan and colleagues also extended the model to incorporate left-
truncation to account for subjects already in the disease state entering the study late.

As noted earlier, competing risks data can be viewed as a special case of multistate models. In the context
of multiple event times data, semi-competing risks model is of most interest. In this situation, a terminal event
censors a non-terminal event, but not vice versa; hence, it is possible to observe more than one event time.
Rouanet et al. [50] proposed two joint models for this data within a latent class framework. The first was a
Markovian multi-state (or illness-death) model, as per above, with

𝜆𝑔ℎ𝑟𝑖 (𝑡) = 𝜆𝑔ℎ𝑟0 (𝑡) exp {𝑋(2)
𝑔ℎ𝑖

⊤𝛽(2)
𝑔ℎ𝑟} ,

where 𝜆𝑔ℎ𝑟0 (𝑡) is a baseline intensity function for the transition from states 𝑔 to ℎ in latent class 𝑟 (modelled as
either aWeibull function or usingM-splines), and 𝛽(2)

𝑔ℎ𝑟 are class and transition-specific parameters correspond-
ing to baseline covariates 𝑋(2)

𝑔ℎ𝑖. The second was a semi-Markovian model, where one specific transition (from
illness to death) depends on the time spent in the illness state, i. e. 𝜆12𝑟𝑖 (𝑡 − 𝑇𝑖1), as opposed to just the time
elapsed. As per other latent class models, the association between the submodels is captured entirely through
the latent classes, with class membership modelled separately.

4 Model estimation

Several different estimation approaches have been utilized to fit the models described above (Table 3). Loosely,
these methods can be separated as either likelihood maximisation or Bayesian model fitting.
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Extending the original joint model developments of Wulfsohn and Tsiatis [67], the expectation-
maximization (EM) algorithm has been used in some cases. In the case of Han et al. [51], the latent class mem-
bership, longitudinal data submodel random effects, and the time-to-event submodel frailty termswere treated
as missing data. In the case of Kim et al. [58], only the random effects were treated as missing data, and recur-
sive formulae used to reduce the number of model parameters required for estimation. Król et al. [36] used
penalized maximum likelihood estimation using the Marquardt algorithm, with the penalization performed
to obtain smooth estimates of the baseline hazard and intensity functions. Rouanet et al. [50] also utilized the
Marquardt algorithm, with the number of latent classes selected according to the Bayesian Information Cri-
terion. Dantan et al. [40] reported using a Newton-Raphson-like algorithm. Huang et al. [41] used automatic
differentiation—a numerical technique for simultaneously evaluating a function and its derivatives—with a
Newton-Raphson algorithm, which was purportedly faster than the EM algorithm. Njagi et al. [14] and Efendi
et al. [54] used a partial marginalisation approach [68] whereby the conjugate random effects are analytically
integrated out, and the normal random effects are numerically integrated using standard software. Efendi et al.
[54] then exploited the ideas of Heagerty and Zeger [69] to establish marginal effects. Liu et al. [56] and Liu
and Huang [57] reported using numerical likelihood maximisation via standard software. Standard errors of
all these aforementioned model fits can be estimated from the inverse of the observed information matrix;
however, Han et al. [51] reported using the bootstrap method.

Zhang et al. [49] proposed a two-stage estimation strategy. In the first stage, the covariance parameters were
estimated from the repeated measures marginal likelihood function, with the mean function estimated by a
weightedmoving average. In the second stage, the expected likelihood function for the time-to-event data were
maximized by an EM algorithm, with Gibbs sampling implemented for the high-dimension numerical inte-
gration, and a Newton-Raphson step used for the M-step. Shen et al. [48] developed a two-stage conditional
estimating equations approach for model fitting, followed by a bootstrap approach for standard error estimat-
ing. As a precursory step, the authors reframed the time-to-event submodel from an intensity function to a
conditional rate function. For models that accounted for informative observation times, generalized estimating
equations in a semiparametric framework was the standard approach, which yielded consistent estimators [45,
46, 61]. In these cases, theoretical results have been derived on the asymptotic normality, which is subsequently
used to make inference on the estimated parameters.

Bayesian estimation of standard univariate joint models has seen increased attention over recent years [28,
30], especially as it is a natural tool for dynamic prediction and model averaging [4]. Moreover, there are mul-
tiple disadvantages to the ubiquitous frequentist estimation approach, including but not limited to, computa-
tional challenges—something one would expect to be particularly burdensome in a multivariate framework,
the dependence on asymptotic approximations, and the complexity of model assessment and comparison. In
joint models involving multivariate longitudinal data, Liu and Li [70] compared the performance of Bayesian
approaches to maximum likelihood approaches under different strengths of association, and demonstrated
superiority of the Bayesian methods with respect to bias, root-mean square error, and coverage. Of the joint
models involving multivariate event time data that were estimated using Bayesian statistics [25, 39, 42–44],
Markov chain Monte Carlo (MCMC) methods were employed in all cases with default non-informative prior
distributions chosen for the parameters. As noted earlier, Tang et al. [44] and Tang and Tang [39] also assumed
a Dirichlet process prior for the random effects, removing the need to assume a fixed parametric form, which
is therefore robust to potential misspecification. Tang and Tang [39] explored the sensitivity of results to prior
distribution inputs, showing that good prior knowledge led to marginally improved estimation. The Gibbs
sampling algorithm was used in all cases, with non-standard conditionals sampled using adaptive rejection or
Metropolis-Hasting algorithms. Chi and Ibrahim [42] specifically noted that hierarchical centring [71], as well
as some parameter transformations were used to facilitate convergence of theMCMC algorithms. The posterior
conditional distributions for each parameter were derived analytically by all authors, except Musoro et al. [25],
who exploited the automation provided by the OpenBUGS software. In all cases, assessment of convergence
wasmade using general diagnostic methods; for example, examination of trace plots, autocorrelation plots, and
the Gelman-Rubin statistics [72].

5 Software

The ability to fit the models discussed is severely limited by the availability of software packages or modifiable
code. Several authors have made code available either in an appendix, an online supplement, or via an online
code repository system (Table 3). However, many authors do not report what software was used, or make said
code available. Only one article released their code in the form of a software package, namely Król et al. [36],
which fits a joint model for a single longitudinal outcome, a recurrent events process, and a single terminal
event, and which is available through the trivPenal() function in the R package frailtypack [73].
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6 Clinical applications

Development of novel methodology of joint models of longitudinal data andmultivariate event times data have
predominantly been motivated by real-world clinical datasets. Here, we summarize the applications that have
led to the models discussed in this review.

6.1 Multiple events

Chi and Ibrahim [42] were interested in assessing whether four different quality of life measures (appetite,
mood, coping, and physical wellbeing) were prognostic and predictive of breast cancer progression in a drug
randomized controlled trial (RCT). The study monitored patients concerning two different failure times: death
and cancer recurrence. A joint model was constructed to model these 4 longitudinal outcomes and 2 event time
outcomes. Tang et al. [44], Tang and Tang [39], and Zhu et al. [43] each proposed multiple event joint models as
per above, motivated by the same objectives and breast cancer dataset described above, but with novel model
innovations including semiparametric Bayesian random effects modelling, robust errors, different association
structures, and event-time submodels. Musoro et al. [25] considered a case of multiple recurrent events, where
each patient could become repeatedly infected with one of 9 different infections (including upper respiratory,
fungal, and parasitic infections) following kidney transplantation surgery. The objective of the study was to
evaluate the effect of 4 repeatedly measured immune system biomarkers (CD4 + T cells, CD8 + T cells, natural
killer cells, and B cells) on the risk of each infection type in a single joint model of multiple recurrent events
andmultivariate longitudinal data. This particular clinical application also falls under the umbrella of multiple
events and recurrent events (6.2). Huang et al. [41] analyzed data from a complex prevention trial, with an
interest on whether different interventions were associated with times to initiation of alcohol use and tobacco
use. It was hypothesized that a psychiatric distress latent variable, which is reflected in multiple repeatedly
measured mental health items, affects substance initiation; hence, a joint model was constructed.

6.2 Recurrent events

Njagi et al. [14] and Efendi et al. [54] were interested in jointlymodelling the recurrent time to re-hospitalization
and a repeatedmeasure of heart rate from the same dataset of patients with chronic heart failure whowere dis-
charged from hospital. Efendi et al. [54] modelled heart rate as a continuous outcome, whereas Njagi et al. [14]
modelled it as a count response based on the number of times the heart rate was classified as “abnormal”.
Han et al. [51] considered repeated times to seizure in an epilepsy cohort study. Serial blood measures were
also recorded for 3 blood plasma lipids; however, based on clinical knowledge, a single longitudinal outcome
was constructed from 2 of the biomarkers by taking a ratio at each measurement time; —the lecithin–choles-
terol ratio, with the third biomarker discounted, as this ratio was believed to be elevated during periods of the
day when seizures occurred. Shen et al. [48] jointly modelled time to cocaine-use relapse, a recurrent events
outcome, and a repeated measure of psychiatric symptoms used to assess stress and cocaine craving levels in
patients enrolled in a clinical intervention study. The primary objective was to understand whether the ran-
domly assigned intervention (contingency management or not) treatment affects either stress or drug relapse
after adjustment for demographic variables. Zhang et al. [49] were interested in investigating the health effects
of air quality on respiratory symptoms. Four measures of air quality were recorded daily, as were three symp-
toms recorded per subject (runny nose, cough, sore throat/general sickness). Each day, subjects could be in
either a symptomatic or asymptomatic state, which they transition between (i. e. an illness-recovery model).
For each symptom in turn, a recurrent events joint model with the 4 longitudinal measures was fitted.

Liu and Huang [57] hypothesized that repeatedly high CD4 cell counts in HIV positive patients are associ-
ated with low risk of opportunistic disease, which is a potentially recurring event. They further hypothesized
that a higher CD4 cell count and lower rate of opportunistic disease are associated with better survival, which
is a terminal event. The interplay between these three processes might, however, be motivated by different
application-specific reasons. Similarly, Kim et al. [58] modelled the recurrent time to a coronary heart disease
event and time to death with repeated measurements on systolic blood pressure in patients previously diag-
nosed with hypertension. Within the context of a clinical trial for metastatic colorectal cancer, Król et  [36] were
interested in the predictive ability of tumour size (a possibly left-censored repeated measurement), and the
recurrent appearance of new lesions and the terminal outcome death.

Recurrent events are a particularly attractivemodelling component for observational studies. Namely, when
the follow-up protocol is not pre-specified or random, one might expect that the sickest subjects are those both
more likely to experience the event of interest, as well as visit their physician more regularly where they will
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have biomarker measurements recorded. A recurrent events process can therefore be used to account for the
correlation between observation times and repeated measures process. This was the case in Liu et al. [56], who
considered recurrent times to hospital visits for diagnosis or treatment of heart failure alongside time to death,
with repeated measurements on medical costs. Data from a skin cancer clinical trial was analyzed in a simi-
lar fashion by Li et al. [45], with the number of observed tumours at each observation time modelled as the
longitudinal outcome.

6.3 Succession of events

Ferrer et al. [66] analyzed data from a multi-centre clinical trial treated with external beam radiotherapy for lo-
calized prostate cancer. Prostate-specific antigen (PSA)was repeatedlymeasured during follow-up. In addition,
times of transitions between different disease stateswere recorded: radiotherapy cessation, local recurrence, dis-
tant recurrence, initiation of hormonal therapy, and death. The association between PSA and clinical relapse
is well-known from univariate joint models; however, it is also of value to clinicians and patients to be able to
distinguish between the different phases of disease progression as PSA may be differently correlated at each
stage.

Rouanet et al. [50] analyzed a cohort study of patients tomodel pre-dementia cognitive decline, asmeasured
by a psychometric test score to assess verbal fluency, in the presence of semi-competing risks of dementia onset
and death. That is, the risk of dementia is null after death has occurred, but death can occur after dementia. As
the diagnosis of dementia cannot be precisely recorded due to intermittent assessment, it is interval-censored,
thus known to have occurred between two follow-up appointments. It is important to account for that this
interval, as it is known as the risk of dementia may be underestimated otherwise. Using data from the same
cohort study, Dantan et al. [40] also analyzed the dependency of cognitive ageing—repeatedly measured using
a psychometric test used to assess cognitive ability—on the progression from healthy, pre-diagnosis, illness,
and death states. A fundamental difference of the latter model compared to the former is that an interim “pre-
diagnosis” state was included, which was modelled by a segmented linear mixedmodel with a random change
point.

7 Discussion

The case for use of joint models has been made already [1, 74, 75]. Namely, when the longitudinal and event
time processes are correlated they reduce the bias obtained from simpler methods, including separate models
(e. g. separate LMMs, survival models, recurrent event models, and multistate models), or even the two-stage
approach. There has been a myriad of extensions in the joint modelling framework over the past few years,
including extensions to multivariate longitudinal data [12] and competing risks data [35]. Relatively fewer de-
velopments have been made pertaining joint models involving more than a single event time, which includes
multiple events, recurrent events, and a succession of events. Yet, as shown, there are wide-ranging clinical
applications for these models. In particular, motivation has stemmed from disease areas representing cancer,
infection, cardiovascular disease, neurological disease, mental health, and respiratory disease. Moreover, data
were derived from both randomized controlled trials and cohort studies.

The reviewpresented here contributes to this narrowly focused but important topic in jointmodels by bring-
ing together in a single place and juxtaposing the models and distributional assumptions, outcome types, esti-
mation and software implementations alongside clinical applications. This is a research area of growing interest
and clinical importance, and the extensions developed are necessary to appropriately analyze this complex data.
However, we found that availability of mainstream statistical software to fit these models is severely limited,
and this will ultimately pose problems, since the complexity of the models means that ad hoc programming is
required. This is not unexpected as joint models are computationally difficult to fit; a problem that is exacer-
bated by the extension to joint models involving more than a single event time. In fact, Musoro and colleagues
[25] noted that their ambitious attempt to fit a model to 4 longitudinal outcomes and 9 recurrent event out-
come types was precluded by computational time; development of approaches that reduce this computational
burden are therefore of paramount importance.

The extension of joint models to more than a single event time offers not only improved inference, but also
opportunity for dynamic prediction. This has received growing interest in the classical joint model framework
[4], but less so in the extension of multivariate event time data. Król et al. [36] developed dynamic prediction
and predictive assessment tools for their recurrent events joint model. Others have also discussed prediction
in the context of joint models involving multivariate event time data [14, 50, 66]. Dynamic prediction is easily
encompassed in a Bayesian joint model framework. Despite this, the use of Bayesian methods for model fitting
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has been rather limited in the methodological developments of joint models involving multivariate event time
data. Moreover, there is also limited research on the role of prior distribution selection. Research to-date has
been predominantly technical, and more attention is required on the interpretability of these models in clinical
applications. Moreover, the complexity of these models requires further development on diagnostics that will
facilitate model selection, including the choice of association structure.
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