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Joint mouse–human phenome-wide association to
test gene function and disease risk
Xusheng Wang1,2,*, Ashutosh K. Pandey1,*, Megan K. Mulligan1, Evan G. Williams3, Khyobeni Mozhui1,

Zhengsheng Li1, Virginija Jovaisaite3, L. Darryl Quarles4, Zhousheng Xiao4, Jinsong Huang1,4, John A. Capra5,

Zugen Chen6, William L. Taylor7, Lisa Bastarache5, Xinnan Niu5, Katherine S. Pollard8,9, Daniel C. Ciobanu1,10,

Alexander O. Reznik11, Artem V. Tishkov11, Igor B. Zhulin11, Junmin Peng2, Stanley F. Nelson6, Joshua C. Denny5,12,

Johan Auwerx3, Lu Lu1 & Robert W. Williams1

Phenome-wide association is a novel reverse genetic strategy to analyze genome-to-

phenome relations in human clinical cohorts. Here we test this approach using a large murine

population segregating for B5 million sequence variants, and we compare our results

to those extracted from a matched analysis of gene variants in a large human cohort.

For the mouse cohort, we amassed a deep and broad open-access phenome consisting of

B4,500 metabolic, physiological, pharmacological and behavioural traits, and more than 90

independent expression quantitative trait locus (QTL), transcriptome, proteome, metagen-

ome and metabolome data sets—by far the largest coherent phenome for any experimental

cohort (www.genenetwork.org). We tested downstream effects of subsets of variants and

discovered several novel associations, including a missense mutation in fumarate hydratase

that controls variation in the mitochondrial unfolded protein response in both mouse and

Caenorhabditis elegans, and missense mutations in Col6a5 that underlies variation in bone

mineral density in both mouse and human.
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I
dentifying sequence variants that control or modify sets of
linked phenotypes is fundamental to understanding the
molecular basis of both Mendelian and complex traits1–4.

A variety of reverse genetic approaches to induce loss- and
gain-of-function have been used to causally tie DNA variants to
discrete phenotypes5. However, reverse genetics presents two
challenges. The first is evaluating a potentially broad spectrum
of phenotypes, biomarkers and endophenotypes that are
downstream of sequence variants at different stages of
development, in different tissues and cells, and under different
conditions. The second is evaluating the impact of these variants
across different genetic backgrounds that influence trait
penetrance. Phenome-wide association studies (PheWAS)
address both challenges6,7.

To establish the first murine resource for phenome-wide
association, we have used a large cohort of recombinant inbred
strains—the BXD family—that were generated by crossing two
fully inbred parental strains—C57BL/6J (B6) and DBA/2J (D2).
This family consists of B150 isogenic lines, and as we show here,
this family segregates for over five million common variants
and B12,000 missense mutations. To accompany these genomic
data, we assembled a high-coverage phenome with over
4,500 quantitative metabolic, physiological, pharmacological,
toxicological, morphometric and behavioural phenotypes, along
with linked references to the primary literature. This BXD
phenome also includes B90 large open-access expression
quantitative trait locus (eQTL) studies generated over the past
decade as well as recent metagenomic, metabolomics and
proteomic components8–10. Roughly half of the eQTL data sets
are experimental, developmental or related to aging. Almost all
phenome data types and genome sequence are accessible online
as a companion to this paper.

The impact of B12,000 potentially damaging sequence
variants was evaluated by systematically scanning them against
the phenome at molecular, cellular and behavioural levels. We
discovered new associations, some of which were subsequently
validated in a large human clinical cohort6,7. For example,
missense mutations in Col6a5 were linked to variation in bone
mineral density in both mouse and human. However,
downstream effects of allelic variants with presumed deleterious
effects on gene expression or protein structure are often small or
undetectable. This may often be due to a lack of technical
sensitivity and power, or due to molecular and developmental
compensation.

Results
Phenomes. Phenome data were generated using a large cohort of
recombinant inbred strains—the BXD family—that was derived
by crossing two fully inbred parents—C57BL/6J (B6) and DBA/2J
(D2). Members of the BXD family collectively segregate for all
sequence variants that distinguish the two parents—and in this
cross these are by definition common variants. There are also
interesting rare but still undefined alleles unique to each family
member. The level of both genetic and phenotypic variation
between parents and among the strains is high (Fig. 1a).
This BXD phenome includes B4,500 quantitative metabolic,
physiological, pharmacological, toxicological, morphometric and
behavioural phenotypes (Fig. 1b). These traits are almost all
quantitative and have been systematically grouped into 15 major
phenotype categories (Supplementary Data 1). We have also
generated and assembled a large molecular phenome that
includes expression phenotypes from B90 large open-access
eQTL studies generated over the past decade (Fig. 1b and
Supplementary Data 2). On average 1.5� 106 mRNA, 1.7� 104

proteomic and 6.8� 103 metabolomic assays are available per

strain (Fig. 1b). Most phenotypes vary markedly across strains
within the family. For example, effects of high-fat and low-fat
diets on adult body weight vary substantially across genotypes
(Fig. 1c). Similarly mRNA and protein expression of, for example,
Bckdhb and many other mRNA, proteins, and metabolites vary
greatly (Fig. 1d)10. The online availability of well-organized
classic and molecular traits from the BXD family (see
www.genenetwork.org) provides the foundation for multiscalar
phenome scans of any putatively functional sequence variant.

The human phenome used in this study is a large electronic
health record (EHR-linked cohort, BioVU https://victr.vander-
bilt.edu/pub/biovu/). BioVU currently contains 4190,000 DNA
samples linked to de-identified medical records to provide a large,
clinically relevant human resource to study genotype–phenotype
associations; 29,722 of these individuals have extant exome
variant data, which was used for matched mouse-to-human
PheWAS in this study.

Whole-genome sequencing and variant detection. To obtain
accurate information on sequence variants across the BXD family
(Fig. 2a), we generated B8.26 billion reads using six paired-end
libraries with different insert sizes from the D2 parent using two
sequencing platforms. A total of 4.5 billion reads (262Gb
nucleotides) were aligned to the genome of the other parent of the
BXD family (B6) that serves as the mouse reference genome. The
mouse genome consists ofB2.6Gb, and we generated B100-fold
coverage (Fig. 2b and Supplementary Data 3) and sequenced
99.96% of the reference genome excluding gaps and regions of
low complexity.

The parents of the BXD cohort differ at 4.8 million single-
nucleotide polymorphisms (SNPs) (Fig. 2c) at a high-confidence
threshold, including 4,160,570 extracted from the SOLiD
platform and 4,090,000 SNPs from Illumina (Supplementary
Fig. 1a). Recently, Keane et al.4 generated B25-fold coverage of
the D2 genome using the Illumina platform. We found a
reasonably high concordance (94.4%) in SNP detection between
Illumina data and that of Keane et al. (Supplementary Fig. 1b).
The distribution of SNPs across functionally distinct genomic
regions is provided in Supplementary Fig. 1c and Supplementary
Note 1. We resequenced a subset of 262 platform-specific SNPs.
False positive rates (FPR) were 2.34% and 3.73% for SOLiD and
Illumina platforms, respectively. Assuming that all 3,375,198
SNPs detected by both systems are valid, the FPR are 0.44% for
SOLiD and 0.65% for Illumina.

We defined 35,068 coding SNPs (cSNPs), of which 23,089 are
silent (synonymous) and 11,979 are missense (non-synonymous)
(Supplementary Data 4). Approximately 16% and 4% of
non-synonymous SNPs have potentially deleterious effects on
protein function as assessed using Polymorphism Phenotyping 2
(PolyPhen 2) (ref. 11) and Sorting Intolerant From Tolerant
(SIFT) (ref. 12), respectively (Supplementary Data 4). Approxi-
mately 2% (210 SNPs) were defined as deleterious by both
algorithms (Fig. 2d and Supplementary Data 4). We identified 58
nonsense SNPs in 53 genes, including 42 stop codon gains and 16
stop codon losses in D2 (Supplementary Data 5). The functional
consequence of 210 deleterious missense variants and 58
nonsense variants were further evaluated by comparative genomic
analysis (Supplementary Data 6 and 7 and Supplementary
Note 1). In addition, 79 missense variants were confirmed by
mass spectrometry-based proteomics (Supplementary Data 8 and
Supplementary Note 1).

Most SNPs (98%) occur within noncoding regions
(noncoding SNPs, ncSNPs). An impact score of each ncSNP
was calculated and used for prioritization (Supplementary Fig. 1d,
Supplementary Data 9 and Supplementary Note 1). Variants at
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splice sites result in production of non-functional or abnormal
proteins and are known to contribute to diseases13. We detected
70 SNPs that changed conserved bases at splice sites, including
29 acceptor sites (GT) and 41 donor sites (AG) (Supplementary
Data 5). In addition, 26 of the ncSNPs are predicted to
alter processed miRNA sequence (Supplementary Data 10 and
Supplementary Note 1).

Insertions and deletions (indels) in coding sequences can be
highly disruptive, especially when they introduce frameshift
mutations. We found that most small indels (98.74%) are in
introns or intergenic regions, but 542 small deletions and 641
small insertions are in coding exons (Supplementary Fig. 2 and
Supplementary Note 1). The small coding indels are enriched in
trinucleotides, which account for 32% of small coding deletions
and 38% of small coding insertions. Of the remaining coding
indels, 45 are predicted to result in frameshift mutations through
deletions (25) or insertions (20) (Supplementary Data 5).

Sequences from SOLiD and Illumina platforms were combined
to accurately detect copy number variants (CNVs). We detected
16,817 CNVs, consisting of 4,296 gains and 12,521 losses (Fig. 2c)
with an average length of 34.9 and 56.7 kb, respectively
(Supplementary Fig. 3). Of copy number gains relative to the

B6 genome, 79 cover 101 genes completely, while 300 cover one
or more coding exons in 279 genes. Of the losses, 197 cover 259
genes completely, while 993 cover one or more coding exons in
276 genes.

All the sequence variants detected are summarized in
Supplementary Data 11. FPR of each type of variants is shown
in Fig. 2e, and detailed information is provided in Supplementary
Note 1. The functionally important variants (that is, nonsense,
missense, splice site, frameshift and CNVs) were selected for
subsequent PheWAS analysis.

Phenome-wide association analysis in mouse. We used 3,805
genotypes that represent distinct haplotype blocks in the BXD
family to perform PheWAS against 4,230 classic traits as well as
602,746 endophenotypic traits from 16 distinct tissues (Fig. 1a
and Supplementary Data 1 and 2). This analysis yielded
B14 million genotype-to-phenome correlations and B2.0 billion
genotype-to-endophenotype correlations. A total of 95 genotypes
are significantly associated with 321 phenotypes, corresponding
to 108 phenotypic groups, at a stringent q value threshold of
o0.01 (Supplementary Data 12). In addition, we performed
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Figure 1 | Overview of phenome data for the BXD cohort. (a) Five pairs of isogenic BXD cohort strains—BXD43 to BXD102. There are now approximately

100 readily available BXD strains and another 50 that are almost fully inbred. Almost all current phenome data is restricted to the parents, F1 hybrids

(B6D2F1 and D2B6F1) and BXD1 through BXD102. (b) Phenome data categorized by type, including classic phenotypes (top and see comprehensive

definitions in Supplementary Data 1), metabolic and proteomic trait data (middle), and independent mRNA expression assays (bottom, n¼86 unique eQTL

data sets, see Supplementary Note 1 Summary Expression Phenome). (c) Body weight data for BXD strains on high-fat (grey) and low-fat (black) diets

taken from Wu et al.10. (d) Expression of Bckdhb mRNA and its protein in six tissues for the five BXD strains. Protein data from Wu et al.10
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differential expression analyses between the B6 and D2 strains
for each association by using transcripts from 16 tissues
(Supplementary Data 2) and proteins from hippocampus
(Supplementary Data 13).

We interrogated the associations for 12,420 functionally
important variants, including 11,979 missense, 58 nonsense, 70
splice site and 45 frameshift mutations, and 276 CNVs, by mapping
these variants to the nearest genotype markers within±1Mb. We
found that 650 functionally important variants were associated with
97 classic phenotypes, including 634 missense variants that were
associated with 62 phenotypes (Supplementary Data 14).

Examples of variant-phenome association. Among 321 classic
phenotypic associations meeting a stringent q value threshold
ofo0.01 (Supplementary Data 12), a few variants, such as those
in Gpnmb, Comt and H2-B1, have been associated previously
with disease14–17 using traditional forward genetics approaches

(Supplementary Data 15), but the vast majority of variants have
not been previously linked to any phenotype. Here, we provided
four PheWAS examples, including two missense variants
(Fh1 and Col6a5), a nonsense variant (Ahr) and a CNV
(a region covering both Alad and Hdh3). In addition, we also
provided three other examples in the Supplementary Note 1,
including a missense variant in Entpd2 (Supplementary Fig. 4),
a noncoding variant in Hcfc1r1 (Supplementary Fig. 5), and
frameshift variant in Pcm1 (Supplementary Fig. 6).

The first example is a missense variant (A296T; rs32536342) in
the fumarate hydratase mitochondrial enzyme located on
chromosome 1 at 175.60Mb (Fh1; Fig. 3a). Fh1 catalyses the
hydration of fumarate to malate in the tricarboxylic acid (TCA)
cycle and has been linked to renal cell cancer18. The missense
variant in the lyase 1 domain is associated with a B1.4-fold effect
on expression of Fh1 across many tissues, including midbrain,
hypothalamus, striatum and spleen (Fig. 3b). This variant is
strongly associated with Fh1 mRNA expression, as well as the
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expression of other mitochondrial genes, including Mrpl50, Sirt3
and Dlst (Fig. 3c). Expression PheWAS shows that the Fh1 locus
modulates mRNA expression levels of 113 mitochondrial
proteins, in addition to eight genes linked to renal necrosis, and
seven genes involved in mTOR signalling, consistent with the
known role of FH1 in renal cancer (Supplementary Data 16).

Interestingly, four mitochondrial genes, Hspd1, Hspa9, Clpx and
Lonp1 that all encode components of the mitochondrial unfolded
protein response (UPRmt) (ref. 19)—a still poorly characterized
mitochondrial stress response pathway in mammals—show
strong association with Fh1 (Fig. 3d and Supplementary Data 16).
There is, furthermore, a significant correlation between Fh1
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(P¼ 5� 10� 8; Pearson product-moment correlation coefficient) (right). (f) Validation that fumarate hydratase selectively controls the UPRmt in C. elegans.
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panels demonstrate that the fum-1 knockdown does not induce either the UPRer (hsp-4::gfp), or the cytoplasmic heat shock response (hsp-16.2::gfp). (g)
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transcript levels and principal component scores of a group of
UPRmt genes in mouse (Fig. 3e). In contrast, no genes involved in
the cytoplasmic heat shock response (HSR) or the ER unfolded
protein response (UPRer) are associated with Fh1, indicating a
selective association between Fh1 and UPRmt in mammals
(Fig. 3d). To validate this association, we examined the
phenotypic impact of the highly conserved Caenorhabditis
elegans Fh1 ortholog, fum-1 (86% sequence similarity) on
unfolded protein responses. RNAi against fum-1 causes robust
activation of the mitochondrial chaperone hsp-6 induces green
fluorescent protein (hsp-6::gfp) reporter, indicative of the
activation of the UPRmt (Fig. 3f). The response was
organelle-specific, and fum-1 RNAi does not induce either
hsp-4::gfp or hsp-16.2::gfp, reporters related to the UPRer or
HSR, respectively (Fig. 3f). Thus, in the BXD family, a decrease of
fumarate hydratase leads to a specific mitochondrial phenotype,
characterized by an UPRmt.

Fh1 is also associated with two candidate phenotypes: (1) T-cell
proliferation (GN ID 10237; q¼ 2.6� 10� 5), linked previously to
mitochondrial function20; and (2) dopamine metabolism after
treatment with the mitochondrial toxin 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP, GN ID 15151; q¼ 0.005).
Both traits are linked to Fh1 along with the control of
mitochondrial components of a UPRmt pathway (Fig. 3g). No
extant human genotype data are yet available for FH—the
homolog of Fh1.

The second example consists of a set of tightly linked missense
variants in collagen 6A5 on chromosome 9 at 105.76Mb (Col6a5,
Fig. 4a). Col6a5 is a variant-rich gene and contains 21 missense
variants, including a radical substitution (R1778C). Quantitative RT-
PCR shows higher expression of the D allele than the B allele in bone
marrow (Fig. 4b). As expected, expression differences are strongly
associated with the Col6a5 locus in bone expression PheWAS
(q¼ 3.5� 10� 4, Fig. 4c). Unlike Fh1, the high density of linked
variants in Col6a5 means that we cannot resolve effects of single
SNPs, but the scan does define effects of B and D haplotypes for
Col6a5 across the phenome. We find that this polymorphic gene is
associated with differences in bone mineral density (BMD; GN ID
16532; q¼ 0.037) (Fig. 4d) and quantitative micro-CT analysis
confirms a marked difference in cortical BMD at the femoral
midshaft between B6 (1069.6±51.4mgHAper cm3) and D2 parents
(1170.8±39.8mgHAper cm3) (Fig. 4e,f). In humans, mutations in
collagen VI are associated with a variety of musculoskeletal
abnormalities21. We performed a matched PheWAS in human
using the BioVU resource and linked rs113396273 in exon 3 of
COL6A5 (M56T) with osteopenia and other bone and cartilage
disorders (P¼ 1.4� 10� 3; logistic regression; Fig. 4g). Like
rs113396273, the other SNPs tested in COL6A5 demonstrated
similar patterns of associations including respiratory abnormalities
and giant cell arteritis.

The third example is a high-impact nonsense variant—a loss of
stop codon in the D allele of Ahr. Ahr is an important
transcription factor that modulates P450 gene expression in
response to xenobiotics such as dioxin14. Although the effects of
this SNP on protein length are already known22 (Fig. 5a), the
pleiotropic consequences of this mutation have not been
evaluated. This variant is significantly associated with mRNA
(q¼ 1.7� 10� 3; Fig. 5b) and protein abundance of Ahr in
liver (q¼ 0.0085; Fig. 5c). Classic PheWAS linked this variant
to the frequency with which cleft palates is induced by
2,3,7,8-tetrachlorodibenzofuran injection (GN ID 10714;
q¼ 3.2� 10� 3) (Fig. 5c). Ahr variants have also been
definitively linked to differences in locomotor activity17.
Consistent with the results of the BXD PheWAS, a matched
PheWAS in humans using BioVU links rs2066853 in AHR with
cleft palate (P¼ 0.012; logistic regression; Fig. 5d).

In the final example, we tested the effect of CNVs on gene
expression and phenotypes. A CNV region on chromosome 4:
62.49–62.52Mb that spans both Alad and Hdhd3—is interesting
and involves a 4� expansion in strains with the D haplotype.
The 30 kb CNV is otherwise identical by descent (Fig. 6a).
This CNV is linked with high variation in mRNA expression of
Alad and Hdhd3 in multiple brain regions (Fig. 6b,c), lung
(q¼ 2.1� 10� 7), eye (q¼ 1.3� 10� 10) and liver (q¼ 9.2� 10� 4).
Quantitative proteomics of hippocampus confirms significant
upregulation (ALAD 2.3-fold, Po0.01, HDHD3 1.5-fold,
Po0.01, see Supplementary Data 13). The CNV expansion of
Alad and Hdhd3 is strongly linked to two classic phenotypes: pain
response (GN ID 11307; q¼ 7.8� 10� 3) and deoxycorticosterone
levels in cerebral cortex (GN ID 12568; q¼ 2.6� 10� 4) (Fig. 6d).
A matched phenome scan in human demonstrates that rs1800435
in ALAD is associated with chronic pain (P¼ 2.2� 10� 2; logistic
regression) (Fig. 6e).

Phenotypic resilience. One surprising finding is that a large
proportion of genes with variants that we initially believed would
have high phenotypic impact failed to associate with any classic
phenotypes, or even with molecular endophenotypes. Among 41
confirmed nonsense variants with high predicted impacts, 18
nonsense variants failed to associate with any endophenotypes
(across scans of 16 transcriptome data sets in different tissues) or
with classic phenotypes at qo0.01. However, complete inactiva-
tion of four of these genes—Scn5a, Aimp1, Peli3 and Dlgap5—is
known to cause severe phenotypes (MGI database, www.
informatics.jax.org). Inactivation of Scn5a reduces embryo
size and is associated with abnormal cardiovascular system
function23. Complete inactivation of Aimp1 produces delayed
wound healing and decreased inflammatory response24. The
other two genes with nonsense mutations, Peli3 and Dlgap5, are
linked to decreased viral infection25 and female infertility26,
respectively. Failure to detect associated phenotypes could be
interpreted as false negative results or inadequate phenome
coverage, but we suspect that most commonly this reflects
molecular resilience that buffers the phenotype from apparently
strong homozygous mutations. For example, a tandem
duplication in the cardiac actin gene (Actc1) reduces expression
of mRNA by B50% in hearts of strains that inherit the D allele
(Fig. 7a–c). This duplication upregulates expression of both
skeletal muscle actin (Acta1) and smooth muscle actin (Acta2) by
30 and 50%, respectively (Fig. 7c). Since variation in both of these
actin transcripts maps precisely to Actc1, it is clear that this
compensation is ultimately caused by the duplication (Fig. 7d,e).
The depletion of cardiac actin has already been shown to be
associated with compensatory increase in skeletal and smooth
muscle actins in the mouse heart27. Another study has shown that
Actc1 can effectively replace Acta1 to produce adequate function
in the mouse postnatal skeletal muscle28.

Discussion
Recent work has demonstrated that phenome scans are a
powerful way to link sequence variants to sets of phenotypes in
clinical cohorts6,7. Here we have extended this approach to a
murine cohort for which we have been generating cellular and
molecular traits from many tissues and cell types and for which
we can generate data on gene-by-environment interactions8,10,29.
The variety and depth of phenotype data that we have assembled
over the past decade for the BXD cohort make this the largest
coherent multiscalar data set for any segregating population. Of
course, there are an almost unlimited numbers of ways to extend
this BXD phenome—from much more extensive gene-
environment interaction (GXE) studies to single-cell omics, but
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at the current size, the phenome is certainly large enough to
explore the utility of PheWAS in an experimental population. We
demonstrate that phenome scans can be effective at linking
sequence variants to a range of phenotypes and can be used to
identify novel and unexpected genome-to-phenome relations, or
to validate hypothesized associations from independent studies.
Coupling mouse and human PheWAS cohorts also shows great
promise, and provides an efficient method to validate and
translate key genome-to-phenome relations.

The novel associations demonstrated in this study provide
insight into the genetic basis of complex traits and variation in
disease susceptibility. The missense variant in Fh1 is a case in
point. A variant in Fh1 is linked to the UPRmt, a protective stress
pathway specific to mitochondria, and we confirmed that
downregulation of fum-1, the C. elegans homolog of Fh1,
activates the UPRmt. Various disturbances have been shown to
induce the UPRmt, including treatment with paraquat, a pesticide
that strongly induces reactive oxygen species30, activation of
mitochondrial biogenesis31, overexpression of aggregation-prone
mitochondrial proteins32 and interference with electron transport
chain protein expression and assembly19,33. Here, we show that a

purely metabolic perturbation, such as induced by loss of function
of the TCA cycle component, fumarate hydratase, can activate the
UPRmt. While we have detected a single missense variant in Fh1,
the molecular cascade that links Fh1 to other TCA cycle genes
(that is, Dlst, Sdha and Sdhb) and a UPRmt proteostasis regulatory
loop requires additional analysis.

Despite strong functional effects of variants in humans, the
minor allele frequencies are often too low to attain sufficient
sample size. Murine populations such as the BXDs, the
Collaborative Cross and heterogeneous stock typically have
linkage disequilibrium that is at least an order of magnitude
larger than in humans. Consequently, the assignment of specific
causality may be erroneous. For example, in the BXD family
B20,000 protein coding genes and 12,000 coding variants are
distributed across B4,000 haplotype blocks. Increasing the size
and genetic diversity of a reference population and the number of
recombination events can improve genetic resolution, but a more
effective and meaningful solution, exemplified in this study, is to
exploit other mouse cohorts and human cohorts for validation
and cross-species translation. For example, by having multiple
phenomes for a single species, along with matched databases of
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Figure 4 | Association analysis for missense variants in Col6a5. (a) Twenty missense variants in Col6a5 distributed across 10 von Willebrand factor

A-type (vWFA) domains. (b) Differential mRNA expression of Col6a5 in tibias (n¼4) measured by rtPCR. The D haplotype (blue, right) has far higher

expression than the B haplotype (green) relative to Gapdh. (c) Phenome scan of Col6a5 (rs13480398) across mRNA assays for femur. (d) Phenome scan of
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segregating sequence variants, it would become practical to
rapidly test the replicability of genome–phenome relations. It may
soon be practical to compare the BXD phenome with that of the
Collaborative Cross and other large families of RI strains. Any
cohort will only segregate for a subset of possible sequence
variants, and variants will often not be shared across populations
or species. For this reason, conservation of gene function will be a
more useful currency of exchange34,35.

While PheWAS has great potential, this approach faces several
hurdles to more widespread application. The first is simply the
technical and logistical challenge of generating a phenome.
Intense collaborative efforts are a sine qua non even for the most
tractable model organisms such as Drosophila36. The second is yet
another example of the multiple testing problem: what is the
appropriate correction given the size of the phenome and its
structure? We have computed false discovery rate (FDR) q values
at a conservative threshold and have aligned our results, when
possible, with the BioVU clinical cohort. However, in both
species, the selection of appropriate q values will depend on the
purpose of studies and the relative costs of types 1 and 2 errors.
Effective solutions may require adjusting thresholds based on the
scope and intent of studies, as well as prior information
about gene-to-phenotype relations. Alignment of phenotype
associations across both humans and mice, however, adds
validity to both. Very large, densely genotyped or sequenced
populations will be needed to more deeply interrogate the human
phenome. The third problem is linkage disequilibrium. The
intervals in which sequence variants are located is a critical factor
in mapping its phenotype spectrum. Pleiotropy will be inflated as
a function of gene density, SNP density, and haplotype block
structure. Deconvolving contributions of linked polymorphisms
will, in most cases, still require independent experimental
validation and, when possible, PheWAS of human cohorts.

We searched for molecular and functional consequences of
~12,000 coding variants, and were surprised that only a small
fraction had strong effects on mRNA and protein expression, let
alone on classic phenotypes. Is this resilience real or not? One
obvious factor contributing to apparent phenotypic resilience
may be inadequate depth of the phenome. Phenotypes may be
detected only under specific conditions. For example, effects of
the mutation in Nnt are much more pronounced under metabolic
stress10. Artifactual resilience may also be caused by the presence
of neighboring in-frame stop codons or splice acceptor or donor
sites. For example, the loss of a stop codon in Dlgap5 only adds
two amino acids due to the presence of a tandem stop codon six
nucleotides downstream. Additionally, some negative results are
likely to be caused by incorrect or incomplete gene models that
generate spurious high impact variants.

In contrast, genuine phenotypic resilience is likely to result
from functional overlap and compensation among paralogs and
other members of complex molecular networks. Even after
stringently filtering both sequence data and gene models, it is
clear that many strong sequence variants are successfully buffered
at intermediate levels37–39. For example, a splice site mutation in
Cyp2c39 (Supplementary Table 5) inactivates this P450 enzyme
but has no detectable impact on higher order phenotypes—a
compelling negative result. An obvious explanation is overlap
with other members of the Cyp2c cluster. The strongest exemplar
of paralog buffering in our study is the mutation in Actc1, which
causes compensatory upregulation of the expression of both
Acta1 and Acta2 (Fig. 7). In retrospect, this buffering of genetic
variation is not surprising. A large fraction of knockout mutations
in mice and other well-typed species are viable and many of these
do not have any known functional consequences40,41.

The combination of deep phenotyping and full genome
sequencing makes it possible to reverse the polarity of
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genome-wide analysis and to measure the impact of defined
sequence variants at many levels to biological organization—from
mRNAs to metagenomic profiles and behavioural variation.
The combination of experimentally tractable murine resources,
such as the BXD family, with human clinical cohorts such as
BioVU, is an efficient and scalable way to validate and
translate genes to the linked sets of phenotypes. Even negative
results can be genuinely informative, essentially an inverse of
missing heritability.

Methods
DNA sample for sequencing. DBA/2J foundation breeding stock at generation
F223 was obtained from The Jackson Laboratory (www.jax.org). Genomic DNA
was isolated from livers of filial generation F224 female littermates using a
QIACube and DNeasy kits (Qiagen Inc., Valencia, CA).

All work with mice as conducted under a protocol approved by the UTHSC
institutional animal care and use committee.

Libraries preparation. Six libraries were constructed. Three mate-paired libraries
with insert sizes of 1, 2 and 3 kb were prepared for ligation-based sequencing
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Figure 6 | Association analysis for CNV covering Alad and Hdhd3. (a) The CNV region for Alad and Hdhd3 derived using read-depth information from

genome sequencing. Red dots represent at least a two-fold increase in coverage compared with the reference genome. The x-axis shows the reference

genomic position of the CNV. Two gene models (that is, Hdhd3 and Alad) are shown in the CNV plot. (b,c) Rank ordered mean expression levels of Hdhd3

and Alad across 67 BXD strains, their parental strains, and F1 crosses. Expression values are normalized on a log2 scale (mean±s.e.m.). Strains with

D alleles (red) have higher levels of Alad and Hdhd3 compared with B alleles (green). F1 hybrids (blue) are intermediate. The comparison between B and

D alleles for Alad and Hdhd3 are shown in an inset boxplot. (d) The phenome scan of the BXD cohort highlights several interesting potential phenotypes

including pain response (thermal nociception), brain deoxycorticosterone levels, and antigenic activity in the spleen. Two triangles represent pigmentation

traits that we know are associated with a variant in the linkage disequilibrium block. (e) Manhattan plot obtained after phenome scan of the BioVU EHR

data showing the association in humans between a SNP (rs1800435) in ALAD and chronic pain syndrome and several other classic phenotypes.
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(ABI SOLiD 2 and 3). Three paired-end libraries with insert sizes between 175
and 215 bp were prepared for sequencing by synthesis (Illumina GAII and HiSeq
2000). Standard protocols recommended by the manufacturers were used in
all cases.

Sequencing. Three mate-paired libraries were sequenced using ABI systems
according to the vendor’s protocol. Three libraries were sequenced using reagent
kit V4 and Illumina systems according to the manufacture’s standard protocol.
Read lengths for the SOLiD2 and SOLiD3 systems were 2� 25 bp and 2� 50 bp,
respectively.

One library was sequenced using the sequencing reagent V4 on the Illumina
HiSeq 2000 following the manufacture’s standard cluster generation and
sequencing protocol. Sequence reads with 101 bp on both ends were extracted from
images files using the GA software (version 1.4).

Sequence alignment. SOLiD reads were aligned to the B6 reference genome using
two alignment tools: Corona Lite v4.0.2 (http://www.thermofisher.com/us/en/
home/technical-resources/software-downloads/solid-software.html) and the MAQ
code v0.7.1 (ref. 42). Corona Lite parameters were set to allow up to two and six
mismatches for 25 and 50 bp sequence fragments, respectively. The longer reads
from Illumina were mapped to the reference genome using MAQ, allowing up to
two mismatches in the first 24 bp of each read. All alignment files were converted
into BAM format. Reads that aligned to only one location with no more than two
mismatches in the first 24 bp were considered uniquely aligned.

SNP detection. ABI Bioscope software was used to align colour-space reads and to
detect SNPs against the B6 reference genome. Similarly, MAQ software was used to
align reads and to identify SNPs. A threshold of three or more supporting reads
and a consensus quality score 430 (Illumina) and a confidence value 40.5
(SOLiD) was used to declare SNPs. Rare heterozygous calls, presumably generated
by alignment errors, were discarded.

Indel detection by mapped and unmapped reads. Four tools were used
to identify indels—Corona Lite small indels pipeline, MAQ, Pindel43 and
BreakDancer44. Corona Lite was used to identify insertions of up to 3 bp and
deletions of up to 11 bp using SOLiD sequence. Indels were further filtered by

requiring at least three supporting reads, and indels within regions having
extremely high coverage (1000� ) were excluded. MAQ was also used to identify
insertions up to 19 bp and deletions of up to 86 bp for 101 bp Illumina reads.
A threshold of a minimum of three supporting reads and a minimum consensus
quality of 30 was used. Rare heterozygous indels were discarded. Pindel was used to
identify indels from 1 to 100 kb. Access to all of these variants is available on a
custom version of the UCSC Genome Brower at http://
ucscbrowser.genenetwork.org/cgi-bin/hgGateway.

Large deletions detected by mapping distance. AB large InDel Tool (v1.0),
which identifies deviation in clone insert size, was used to detect large indels from
SOLiD reads. Indels were supported by at least two clones (cluster of reads) and a
distance deviation greater than 6 s.d. from the normal distribution of insert size.
Breakdancer45 was used to detect large structural indels (100–100,000 bp) from
Illumina reads. The distribution of insert size from high quality (435) paired-end
reads was computed, and those greater than 6 s.d. from the mean were used to
define large indels. A minimum confidence score of 90 was used by BreakDancer.
All clones that deviated by more than 100 kb were discarded for both methods.

CNV detection. Before performing CNV detection, we converted mapping data
into the BAM format and removed gaps in the reference genome. CNVs were
detected using an event-wise testing method based on read depth46. This method
estimates the coverage of read depth in 100 bp non-overlapping windows and then
performs significance testing. In this study, CNVs were defined as having at least 10
consecutive windows (100 bp each) with a minimum size of 1 kb. Merged events
were filtered stringently at a significance level of 10� 6.

Genes affected by sequence and structural variants. We examined the impact
of SNPs, indels, inversions, and CNVs located within annotated gene models
(ENSEMBL version 60). Each variant was evaluated for overlap with gene models
and annotated as 50 UTR, coding/exon, intron, 30 UTR and intergenic regions using
in-house Python scripts (available upon request). Sequence variants were further
examined and classified by types of variants, including nonsense, missense, splicing
variant and frameshift. When possible, variants were also annotated by gene
symbol and other accessions.
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Generating impact scores for coding and noncoding SNPs. We used two
different methods—SIFT and PolyPhen—to predict whether amino acid
substitutions in coding SNPs are likely to affect protein function. SIFT uses
sequence homology and the physical properties of amino acids to predict impact,
while PolyPhen uses sequence-based and structure-based predictive features.

The impact scores for ncSNPs consist of two parts: a functional element score
and a mutation effect score. The functional element score reflects how likely it is
that the SNP is located in a functional region of the genome, and the mutation
effect score estimates how likely a mutation at this position is to affect the function
of an overlapping region. Any ncSNP that overlaps a known functional element in
the UCSC Mouse Genome Browser (mm10, GRCm38 assembly38) receives a
functional element score of 1. Functional elements are defined using the following
gene regulation tracks: open regulatory annotation (ORegAnno) elements, the
NHGRI’s bi-directional promoters, and Repressor Element 1-Silencing
Transcription Factor (REST) binding sites, as well as conserved elements as
predicted by the phastCons program (conservation track) (ref. 47). Furthermore,
ncSNPs overlapping a predicted conserved element were assigned the element’s
phastCons score. The mutation score is based on the evolutionary conservation of
the position in alignments with other placental mammals. The phyloP package
(ref. 48) was used to estimate conservation. The ncSNP impact score is the product
of the functional element and mutation effect scores. If the data required to
compute the two scores were missing for one, but not the other, then the missing
score was assigned a non-zero value less than the scores observed for all positions
with data present. This prevents evidence for the functional relevance of a SNP
from one source from being completely ignored if the other is not present. Thus, all
ncSNPs with non-zero impact scores have some evidence of functional relevance.

Comparative genomic analysis. Orthologs of murine proteins from complete
genomes of 77 higher eukaryotes were obtained using BLAST searches. Genomes
containing paralogs of a given gene were excluded from consideration. Multiple
sequence alignments of orthologs were constructed using the LINS-I algorithm in
MAFFT49. Amino acid substitutions in a position corresponding to a given
SNP were analysed. SNPs that occur in invariable positions in mammals were
considered likely to be deleterious. Non-mammalian conservation was considered
as enhancing prediction strength. SNPs that occur in variable positions in
mammals were considered unlikely to be deleterious. Variable positions in rodents
and primates were also considered unlikely to be deleterious.

Experimental validation for SNPs. SNPs and indels were selected for validation
by traditional Sanger sequencing. Primers were designed using Primer3 (http://
frodo.wi.mit.ed/primer3/). PCR assays were performed using 5 ng DBA/2J genomic
DNA, 10 pmol each of forward and reverse primer in 50 ml. The following cycle
parameters were used: 95 �C for 4min; 35 cycles of 95 �C for 30 s; 55 �C for 30 s and
72 �C for 1min; and 72 �C for 5min. PCR products were purified with 2 ml
ExoSAP-IT (Invitrogen Corporation). Sanger sequencing was performed using
an ABI 3730.

Experimental validation of indels. A total of 40 indels were selected from each
chromosome for validation. These included 20 small- to medium-sized insertions
(o86 bp), 20 medium-sized deletions (size 450 bp), and 20 large deletions
(4100 bp) detected by Illumina GA2. Primers were designed by centring the target
indel to produce amplicons that were 300–400 bp in length using Primer 3. PCR
assays were performed as described above. We ran PCR-amplified genomic DNA
on SDS–polyacrylamide gel electrophoresis gels. Each PCR assay was performed on
DNA from B6 and D2. The sizes of the resulting PCR products were compared
with the predicted size of indels.

Detection of SNPs in Affymetrix probe-binding regions. To find probe
sequences affected by variants (SNPs and small indels) within probe binding
regions of the Affymetrix Mouse Genome 430 2.0 array, we mapped all probes to
the mouse reference genome using Blat. Probe regions were then examined for the
presence of SNPs or small indels.

Proteome-wide quantification between the B6 and D2 strains. Adult B6 and
D2 strains were used for protein quantification with three biological replicates of
hippocampus. The hippocampal tissues were dissected as previously described50

and lysed in lysis buffer (8M urea, 0.5% sodium deoxycholate, 50mM HEPES and
pH 8.5). In short, fixed brains were bisected along the midline. Left and right
hippocampal regions were dissected under a dissecting microscope by inserting fine
blunt forceps into the ventricular cavity just dorsal to the hippocampus and
removing overlying cortex and callosum. The surface of the hippocampus and
dentate gyrus was used to guide removal of cortex along the septotemporal axis.
The exposed hippocampus and dentate gyrus was pulled free of the hemisphere in
a ventral-to-dorsal direction. The dorsoanterior aspect of each hippocampus was
trimmed free of septum and dorsal fornix, rolled quickly in tissue paper, and
immediately weighed to the nearest 0.1mg. The dissection includes a small part of
the subiculum adjacent to CA1 and occasionally a small strand of the fimbria. For
each sample, 100 mg of extracted proteins were digested with LysC (1:100, w/w) for

3 h. Samples were diluted four times with 50mM HEPES followed by trypsin
digestion (1:50, w/w) overnight at room temperature. After digestion, the samples
were acidified with trifluoric acid to a pHo2 and desalted and dried in a speed
vacuum. Peptides were labelled with six-plex TMT reagents (Thermo Scientific) as
recommended by the manufacturer. Following labelling, the TMT-labelled samples
(TMT126-TMT131) were mixed equally to generate a digest mixture which was
further fractionated by high pH reverse phase liquid chromatography. Ten
fractions are collected and further analysed by low pH reverse phase liquid
chromatography-tandem mass spectrometry (MS/MS).

All digest mixtures were analysed on Q Exactive MS (Thermo Fisher Scientific)
with one MS survey scan and up to 10 data-dependent MS/MS scans. The
instrument was operated at a mass resolution of 35,000, 1e6 automatic gain control
target, and 60ms maximal ion time for MS, and a mass resolution of 17500,
105 automatic gain control, 250ms maximal ion time, 2 m/z isolation window
and 30 s dynamic exclusion time for MS/MS. The normalized collision energy was
set to 28%.

Raw data from each fraction were searched using SEQUEST (v28) against a
mouse SwissProt/trEMBL database (release of 09/09/2011), concatenated with a
decoy database with all the protein sequences in reverse order. Searches were
performed using a 15 p.p.m. mass tolerance for precursor ions and 0.02Da window
for fragment ions, allowing up to two missed trypsin cleavage sites. Six-plex TMT
tags on lysine residues and peptide N termini (þ 229.162932Da) and oxidation of
methionine residues (þ 15.99492Da) were used for dynamic modification, and
carbamidomethylation of cysteine residues (þ 57.021Da) was used for static
modifications.

Organization and categorization of mouse phenome. The BXD Phenotype
database has been amassed by literature review, direct data entry by our team, and
by collaboration with many investigators. Data are reviewed before entry in
GeneNetwork by the senior author. Phenotypes are currently split into 15 broad
phenotypic categories (Supplementary Data 1). Phenome curation and description
was initiated by R.W.W. and Dr Elissa Chesler in 2002 by literature review and data
extraction. The early work is described briefly in Chesler et al.51,52. Most work over
the past 5 years has been performed by two of the coauthors (R.W.W. and
M.K.M.). We have used a controlled vocabulary and set of rules described here
(http://www.genenetwork.org/faq.html#Q-22). Descriptions include a ‘prefix’ of
major biological and domain categories such as ‘central nervous system’, ‘cancer
biology’ and ‘immune system’. These domains have been used to define major
categories used in figures and graphs.

PheWAS analysis in mice. PheWAS were performed for a total of B12,000
variants, including 11,979 missense, 58 nonsense, 68 splice site, 39 frameshift
mutations and 276 CNVs The closest marker for each variant from a set of
3,804 genetic markers—each representing a unique haplotype block—was used
to represent that variant in the PheWAS. We used 16 expression data sets
representing different tissues of the BXD strains to explore the genetic basis of
variation at mRNA levels. Similarly, we used 4,236 classic phenotypes from
GeneNetwork.org (www.genenetwork.org) to study the association between
variants and phenotypes. We calculated the P value of the Pearson correlation
between each marker (variant) and 4,236 phenotypes and B40,000 transcripts for
the expression data. All P values of correlation were calculated as a two-tailed test,
and the q values (FDR) were calculated using QVALUE (ref. 53). We used an FDR
threshold of 0.01 for associations. The analyses were performed using in-house
Python scripts, and the R statistical package.

PheWAS in humans. PheWAS for human data was performed using 29,722
individuals with Illumina HumanExome array data identified as European ancestry
in the EHR and by using structure54. To define diseases, we mapped International
Classifications of Diseases, 9th edition, (ICD9) codes from the EMR into 1,645
possible PheWAS phenotypes using methods described previously6. PheWAS
phenotypes aggregate like ICD9 codes together (for example, type 2 diabetes codes
as a specific phenotype), are hierarchical (for example, ‘inflammatory bowel
disease’ is a parent of ‘Crohn’s disease’ and ‘Ulcerative colitis’), and include logic to
select controls for each case definition. We considered only phenotypes with at
least 20 individuals for analysis, and required each case to have at least two ICD9
codes for a PheWAS phenotype to be considered a case (those with only one code
are neither a case nor a control). Each SNP-phenotype association test was run with
PLINK (ref. 55) using logistic regression adjusted for age, sex and the first three
principal components as calculated by EIGENSTRAT using ancestry informative
markers. Analysis was performed assuming an additive genetic model. These data
were aggregated and analysed using Perl scripts and the R statistical package.
A total of 1501 phenotypes were considered, for a per-SNP Bonferroni correction
of 0.05/1501¼ 3.3� 10� 5.

We then performed PheWAS for missense SNPs for each of the target genes
from the mouse PheWAS that had minor allele frequencies 41% and passed
quality control filters of SNP call rate 495% and sample call rate 499% in
unrelated samples. SNPs were found for ENPTD2 (rs34618694), COL6A5
(rs1353613, rs79867908, rs12488457, rs113396273, rs35886424, rs1453241,
rs1497312, rs11917356, rs76864445, rs16827497, rs16827168, rs819085, rs9883988
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and rs61744488), AHR (rs2066853), ALAD (rs1800435) and HDH3 (rs1043836). No
SNPs were available for FH1.

All studies were approved by local Institutional Review Boards. Patients gave
consent as part of the DNA biobanks at Group Health Cooperative, Marshfield
Clinic, Mayo Clinic, Northwestern University; Vanderbilt uses an opt-out model as
previously described and evaluated56,57.

C. elegans experiments. C. elegans were cultured at 20 �C on nematode
growth media agar plates seeded with bacteria. Strains were provided by the
Caenorhabditis Genetics Center (University of Minnesota). The strains used
were SJ4100 (zcIs13[hsp-6::GFP]), SJ4005 (zcIs4[hsp-4::GFP] and dvIs70
[hsp-16.2p::GFPþ rol-6(su1006)]. RNAi constructs were isolated from the RNAi
feeding library (GeneService) and experiments were carried out using standard
feeding methods. The identity of each RNAi clone was verified by sequencing.
RNAi treatment was started at embryonic stage. GFP was monitored in day
1 adults. Worms were immobilized with 6mM solution of tetramisole hydro-
chloride (Sigma) in M9 and imaged using Nikon DS-L2 fluorescent microscope.
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