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We propose a technique to provide interferometry by combining multiple images of the same area. This technique differs from
the multi-baseline approach in literature as (a) it exploits all the images simultaneously, (b) it performs a spectral shift prepro-
cessing to remove most of the decorrelation, and (c) it exploits distributed targets. The technique is mainly intended for DEM
generation at centimetric accuracy, as well as for differential interferometry. The problem is framed in the contest of single-input
multiple-output (SIMO) channel estimation via the cross-relations (CR) technique and the resulting algorithm provides signif-
icant improvements with respect to conventional approaches based either on independent analysis of single interferograms or
multi-baselines phase analysis of single pixels of current literature, for those targets that are correlated in all the images, like for
long-term coherent areas, or for acquisitions taken with a short revisit time (as those gathered with future satellite constellations).
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1. INTRODUCTION

The present and future availability of cooperative space-
borne, multipurpose SAR (synthetic aperture radar) sen-
sors makes frequent coverage of the same scene possible.
Both large ground coverage at coarse resolution and reduced
ground coverage at fine resolution will require future SAR
processing to deal with a large number of data sets, acquired
from different viewing (looking) angles, of the same scene.

The potentialities intrinsic to cubes of data that will be
available with future constellations have only been partially
addressed in present and past literature. Most of the ef-
forts have been addressed to the exploitation of permanent

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

scatterers (PS) [1], that is, those structures that are stable
over the long term, the main interest being in monitoring
changes and subsidence. Unlike the PS approach, we consider
those distributed scatterers that maintain a good degree of
correlation throughout the set of images. The applications
foreseen for these techniques are mainly DEM generation
at centimetric accuracy or maybe short-term monitoring by
differential interferometry. The object of this paper is to es-
tablish a theoretical framework that can extend the concept
of optimal spectral shift filtering (SSF) [2, 3, 4, 5] to the case
when more than two images are available. The idea is to ex-
ploit all the images jointly, like in the ML approach, proposed
in [6]. However, much better results can be expected due to
the use of SSF prefiltering. In fact, this technique merges into
the final multi-baseline interferogram the correlated infor-
mation, the incoherent information (coming from geomet-
ric decorrelation) having been filtered out. Obviously, other
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Figure 1: Interferometric SAR geometry: a master and a slave sensor, at the same azimuth position, are shown. The travel path distance,
converted into phases, is shown in (b).

decorrelation sources (thermal, temporal, etc.) are not af-
fected by the proposed algorithm.

We emphasize the fact that the proposed technique is
aimed at establishing a framework wherein several acquisi-
tions under different modes (STRIPMAP, SCANSAR, etc.)
[7, 8] can be optimally combined to exploit to the maximum
information on the underlying topography. Also combina-
tions with different carrier frequencies, like ERS-2 and EN-
VISAT, may be considered.

The paper is organized as follows. Section 2 introduces
multichannel interferometry and recasts the topography es-
timation as a SIMO blind estimation problem. Section 3 ad-
dresses the use of CR, typically adopted in the contest of
SIMO problems. In Section 4 we discuss the relevant case
of single-pass (two-channel) interferometry and show that it
can be viewed as a particular case of our more general mul-
tichannel approach. Section 5 addresses implementation is-
sues; for easy implementation and to overcome problems re-
lated to atmospheric phase aberration in real data, the esti-
mation is casted in terrain slopes. Nevertheless easy slope in-
tegrations can be carried out, for instance, via standard least
square (LS) approaches [9]. Section 6 shows some results on
simulated data to validate the theory.

2. PROBLEM FORMULATION

Let us consider the multi baseline geometry in Figure 1: this
geometry is fairly conventional, and the reader is referred
to for example [7, 8, 10] for a general view of SAR inter-
ferometry. The interferogram is the Hermitian product of
the two images: i = y0 · y

∗
i , coregistered in the slant range,

azimuth reference of the master acquisition. Its phase, shown
in Figure 1b is proportional to the travel phase difference be-
tween the two acquisitions

∆ϕ =
4π

λ

(
Ri(P)− R0(P)

)
, (1)

where R0(P) and Ri(P) are respectively the slant range of the
master and slave antennas to the target point P, and λ is
the transmitted wavelength. A constant sloped terrain con-
tributes to the interferogram as a linear phase:

φ = −ω0
Bni

r0 tan(θ − α)
t, (2)

t being slant range fast time, Bni the normal baseline, r0 the
closest approach, ω0/2π the carrier frequency, θ the local in-
cidence angle, and α the terrain slope. Note that the phase
scales linearly with the baseline.

For the sake of simplicity and without loosing general-
ity, let us assume a 1D model, where P varies in the slant
range direction P = P(t), in order to approach the prob-
lem of baseline decorrelation that mostly affects range (see
[11]). Furthermore, the usual fine sampling in azimuth di-
rection is exploited to perform a preliminary complex multi-
look (average), to get a reasonable SNR in each acquisition.
To account for channel differences in the azimuth direction
(Doppler centroid variation, different operative modes, etc.),
the theory can be extended to the 2D case, along the lines
addressed in the following.

The problem is to estimate the constant terrain slope α
in (2) starting from the availability of several interferometer
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pairs. Its formulation is an extension of the optimal MMSE
(minimum mean square error) estimate given in [5] for the
case of multiple (≥ 2) acquisitions.

2.1. Forward model

Let us assume N acquisitions, including one master and
(N−1) slave images, and M samples (range bins) out of each
acquisition. According to (1), and to the formulation in [5],
we can express each single acquisition, coregistered in the ref-
erence frame of the master, as a filtered version of the (large
bandwidth) reflectivity γ:

yi(P) = fi(P)∗

[
exp

(
j
4π

λ

(
Ri(P)− R0(P)

))
γ(P)

]
+ wi(P),

(3)
where ∗ is the convolution product symbol, P is a target
on the ground, yi the focused signal of the ith acquisition,
Ri − R0 the travel path difference between the master (with-
out loss of generality indexed by “0”) and the slave (indexed
by “i,” i = 0, . . . ,N − 1), and fi the post-focusing SAR im-
pulse response function. The term wi is an additive noise
contribution that accounts for all the decorrelation sources
like thermal noise, volume scattering, and temporal decor-
relation [7, 8] (but not the baseline decorrelation, which is
the one we are trying to remove): we assume this noise white
within the system bandwidth.

We will make the assumption of homogenous indefinite
scatterer, so that γ(P) can be modeled as a realization of a
complex circular Normal process, uncorrelated in both time
and spectral domains; note, however, that all the images are
fed by the same realization of this process. We convert the
model in (3) to a discrete one and, to avoid alias, we assume
a sampling rate compatible with the bandwidth of all the ac-
quisitions and the frequency shifts. As an example, for a typi-
cal set of ERS-ENVISAT acquisitions, the baseline dispersion
demands for an oversampling of a factor 4 (see discussions
in [5]). The model (3) leads to the following matrix formu-
lation:

yi = FiΦiγ + wi = Hiγ + wi, i = 0, . . . ,N − 1, (4)

where the matrixes and vectors are shown in bold notation.
In particular, we assume that the impulse response on each
channel extends for L samples; then we require D =M+L−1
samples of the source γ(P). The vectors and matrixes involved
in (4) are

(i) yi is the column vector [M, 1] that corresponds to the
complex SAR image, the data, coregistered in the ref-
erence of the master:

yi =
[
y0 · · · · · · yM−1

]T
, (5)

where the superscript T stands for matrix transposi-
tion, and we assume row and column indices starting
from 0;

(ii) γ is the column vector [D, 1] that represents the source
reflectivity;

(iii) Φi is a diagonal modulation matrix [D,D] that ex-
presses the topographic-dependent contributions:

Φi =




φi(0) 0 · · · 0
0 φi(1) · · · 0
...

...
...

...
0 0 · · · φi(D − 1),




(6)

its element on the diagonal being

φi(k) = exp

(
j
4π

λ

(
Ri

(
Pk

)
− R0

(
Pk

)))
; (7)

(iv) Fi is the filter matrix [M,D] that is Toeplitz and con-
tains the impulse response of the equivalent SAR end-
to-end channel (well approximated by an ideal band-
pass),

Fi =




fi,L−1 fi,L−2 · · · fi,0 0 0
0 fi,L−1 · · · · · · fi,0 0
...

...
...

...
...

...
0 0 fi,L−1 . . . . . . fi,0




; (8)

(v) Hi is a matrix [M,D],

Hi = FiΦi, (9)

that represents the channel dependent on the slope α to
be estimated. Note that the channel is now linear, but
space-variant due to the modulation matrix Φi, hence
Hi is not block Toeplitz as usually assumed in litera-
ture;

(vi) wi is the additive noise contribution; it has the same
size as yi.

The model (4) lies within the SIMO blind estimation,
where a common unknown parameter of the channels Hi is
to be retrieved from the outputs, yi, only some information
on the inputs being available. In this paper, we will assume
γ coming from a homogenous, white target. The problem of
channel estimation will not explicitly require the estimate of
these sources.

The problem is patently unsolvable if only one channel
is given, whereas solutions can be formulated for N ≥ 2
channels, as for the case of SAR interferometry. Indeed there
is widespread literature on the topic, as similar models are
found in many fields: estimate of direction of arrivals (DOA),
wireless cellular networks, tomography, and so forth: the
reader is referred to paper [12] for a summary on blind de-
convolution techniques for SIMO problems.

Let us assume the SIMO model in Figure 2; each SAR ac-
quisition is represented by a different channel as in (4). This
same model is usually represented in the single block-matrix
format:

y = Hγ + w, (10)
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Figure 2: Multi-baseline interferometric SAR system, modeled as a
SIMO system corresponding to (4).

where the input and output vectors are obtained by stacking
all the N inputs and outputs of each channel:

y =
[

yT
0 · · · yT

i · · · yT
N−1

]T
,

w =
[

wT
0 · · · wT

i · · · wT
N−1

]T
,

(11)

y and w being then column vectors of size [NM, 1]. The
channel matrix H in (10) is also a block matrix of size
[NM,D] made by stacking all the channels Hi one upon an-
other:

H =
[

HT
0 · · · HT

i · · · HT
N−1

]T

=




φ0(0) fL−1 · · · · · · 0
0 · · · · · · 0
0 φ0(D − L) fL−1 · · · φ0(D − 1) f0

· · ·

Hi

· · ·

HN−1




,
(12)

where the dependence of the bandpass filter on index “i” is
neglected for the sake of simplicity.

3. SIMO ESTIMATE BY CROSS-RELATION

The CR approach provides the optimal estimate of the pa-
rameters describing the channels (in our case the terrain
slope) for a large SNR, and closely follows the methodology
proposed by the seminal paper of Xu et al. [13] and many
others in almost the same period (see [12]). For a generic
case of SIMO space invariant channel, the CR approach ex-
ploits the commutative property of the convolution to write
the following equation:

yi(n)∗ h j(n) = y j(n)∗ hi(n), (13)

yi(n)∗ h j(n)− y j(n)∗ hi(n) = 0, (14)

where yi is the sequence at the output of the channel “i,” and
h j is the impulse response of the channel “ j,” linear and space

γ
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Figure 3: Cross-relations: the signal blocking transformation
shown here is applied to all the channel pairs to span the null space
of the channel matrix.

invariant, and n is the pixel. Note that (14) acts as a sort
of “signal blocking transformation”: the signal is cancelled,
hence the residual should be zero, or better still should attain
minimal energy in the presence of noise. The signal block-
ing transformation is exemplified in Figure 3 for the case of a
general multichannel system. The way CR achieves the esti-
mate of all the channels is just by extending (13) to all the two
channels combinations and then solving the resulting system
equations, either in exact form, or as LS (least square) solu-
tion.

These transformations cannot be directly extended to
the interferometric SAR model formulated in Section 2.1 as
the model is nonstationary due to the modulation matrixes
Φi(α) (α being the parameter to be estimated). However, in
the noiseless case, the modulation of each channel intro-
duced by the topographic-dependent term can be reversed,
leading to the intermediate vector:

y′i = Φ
∗
i (x)yi = Φ

∗
i (x)FiΦi(α)γ, (15)

where x is the unknown parameter and the suffix ∗ stands
for matrix transposition and conjugation. Now let us define
the vector

Ji j(x) = Φ
∗
j (x)F jΦ j(x)y′i −Φ

∗
i (x)FiΦi(x)y′j

=
[
Φ
∗
j (x)F jΦ ji(x)−Φ

∗
i (x)FiΦi j(x)

][yi
y j

]
,

(16)

where the definition

Φi j(x) ⊜ Φi(x)Φ∗
j (x), (17)

a diagonal matrix with the overall phase between two chan-
nels, is introduced. Note that the vectors yi should be zero-
padded to an extent [1,D] to make (16) meaningful. Based
on the CR theory, it can be easily shown that, when the mod-
ulation matrixes have a linear phase variation (like for con-
stant sloped terrain, i.e, the case we are interested in) the
vector (16) is minimized (in the LS sense) for x = α.
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A comment on the approximations implied in the presence
of changing slopes, like for rolling topography, is included at
the end of Section 4.2.

The idea in the paper [13] was to solve all the relations of
type Ji j(x) = 0 simultaneously for all the channel pairs; this
leads to the equation system

D
[

H′(x)
]

y′= 0, (18)

where the transformation D(·) and the channel H′(x) are
defined as (3 channels have been assumed)

H′
i (x) = Φ

∗
i (x)FiΦi(x),

H′(x) =
[

H′
0(x) H′

1(x) H′
2(x)

]
,

D
[

H′(x)
]
=




H′
1(x) −H′

0(x) 0(x)
H′

2(x) 0(x) −H′
0(x)

0 H′
2(x) −H′

1(x)


 .

(19)

Note that the number of equations is

P =

(
N
2

)
=

N !

2!(N − 2)!
, (20)

hence D[H′(x)] will be a tall matrix [PD,ND].
In [13], it is shown that D[H′(x)] is close to full rank,

having only one singular value that corresponds to an un-
known constant scaling applied to all the channels, provided
that (a) the channels are coprime or, (b) they do not share
common zeros. In the interferometric SAR case, where chan-
nels are strongly upsampled and different spectral shifts [2]
can be experienced, there may be many common zeros, and it
may even happen that the set of (14) is undermined. We then
search for the LS solution for (18), that is, a terrain slope α̂
that minimizes the L2 norm of the vector D[H′(x)]y′. For
this purpose let us introduce the definition

R =D(H′)∗D(H′)

=




H′
1
∗

H′
2
∗

0

−H′
0
∗

0 H′
2
∗

0 −H′
0
∗
−H′

1
∗







H′
1 −H′

0 0
H′

2 0 −H′
0

0 H′
2 −H′

1




=




H′
1
∗

H′
1

+H′
2
∗

H′
2
−H′

1
∗

H′
0 −H′

2
∗

H′
0

−H′
0
∗

H′
1

H′
0
∗

H′
0

+H′
2
∗

H′
2
−H′

2
∗

H′
1

−H′
0
∗

H′
2 −H′

1
∗

H′
2

H′
0
∗

H′
0

+H′
1
∗

H′
1




,

(21)

where the dependence of the channels on the unknown x is
neglected for the sake of simplicity. In a general case we ob-
tain the expression

R =
[

Ri, j

]N−1
i, j=0,

Ri, j =




N−1∑

k=0;k �=i

H′
k
∗

H′
k, i = j,

−H′
j
∗

H′
i , i �= j.

(22)

The LS solution leads to the minimization

α̂ = argmin
x

(y′
∗

Ry′)

= argmin
x




N−1∑

i=0

N−1∑

j=0

y′i
∗

Ri, jy
′
j




= argmax
x




N−1∑

j=0

N−1∑

i=0;i �= j

y′j
∗

H′
i
∗

H′
jy
′
i

−

N−1∑

j=0

N−1∑

i=0;i �= j

y′j
∗

H′
i
∗

H′
iy
′
j



.

(23)

We end up, as for any L2 norm problem, in minimizing
the difference between the energy from all the channels after
filtering (cochannel energy):

N−1∑

j=0

N−1∑

i=0;i �= j

(
H′

iy
′
j

)∗(
H′

iy
′
j

)
(24)

and the energy from the cross-channels:

N−1∑

j=0

N−1∑

i=0;i �= j

(
H′

iy
′
j

)∗(
H′

jy
′
i

)
. (25)

The cochannel terms in (24) are useless for estimating the
channel phase (a common knowledge in SAR interferometry,
where the single channel is never used alone), as the sources
are normal distributed. Therefore the contributions in (24)
are dropped.

The terms for multichannel interferometry are then the
cross-channel ones, that is, those involving cross-channel
data correlations in (25). The LS solution therefore leads to
the following maximization:

α̂ = argmax
x



N−1∑

j=0

N−1∑

i=0;i �= j

y′j
∗

H′
i
∗

H′
jy
′
i




= argmax
x



N−1∑

j=0

N−1∑

i= j+1

2 Re
(

y′j
∗

H′
i
∗

H′
jy
′
i

)

,

(26)

that is the summation of terms like

y′j
∗

H′
i
∗

H′
jy
′
i = y∗j Φ ji(x)F∗i Φi j(x)F jΦ ji(x)yi. (27)

4. SINGLE-PASS SAR INTERFEROMETRY

Let us approach the conventional interferometric system as
a special case of multipass interferometry with only N = 2
channels, that is, the minimum number of channels to ensure
a solution in the case of unknown input.

Figure 4 shows, for the two-channel system, the forward
model (shaded in gray) as well as the linear estimate of both



Joint Multi-baseline SAR Interferometry 3199

γ

Φ

I

F1

F0

H1

H0
Slave

Master

y1

y0

G1

G0

Master synthesis

Slave synthesis

s1

s0

s0s∗1 Φ

Figure 4: Forward model and linear estimate for 2-channel conven-
tional SAR interferometry.

master and slave acquisition needed to filter out noise con-
tribution associated with spatial decorrelation phenomena.
This estimate is given by the two vectors:

s0 = G0y0,

s1 = G1y1,
(28)

computed as linear, space variant filtering of the master and
slave images respectively, where

G0 = F1Φ,

G1 = F0Φ
∗.

(29)

Obviously a preliminary DEM estimate should be available.
The two signals correspond to the synthesis of the master re-
flectivity from the slave, and the slave reflectivity of the mas-
ter, derived as an approximation of the optimal MMSE ap-
proach in paper [5]. These estimates default to the optimal
spectral shift filtering for the case of constant slope [2], also
known as common band (CB) filter. Following the filtering
in (28), the useful interferogram is estimated as

Φ̂ = arg
(

s0 ◦ s1
∗
)
= arg I10, (30)

where Φ̂ is the vector collecting the phases to be estimated, ◦
the element-by-element vector (matrix) product, and I10 the
prefiltered, complex interferogram.

We now demonstrate that the above interferometric pro-
cessing can be considered a particular case of the more gen-
eral multichannel processing addressed in the previous sec-
tion. For this purpose, let us assume N = 2 and relax the
hypothesis of constant slope topography (see Section 4.2 on
the validity of such assumption). In this case our unknown is
the whole interferometric phase matrix Φ and, according to
(26) and (27), we have

Φ̂ = argmax
Ψ

[
Re

(
s∗1 Ψ

∗s0

)]

= argmax
ψ0,...,ψD−1


Re




D−1∑

k=0

exp
(
− jψk

)
s∗1,ks0,k




,

(31)

where Ψ = diag(exp(− jψ0), . . . , exp(− jψD−1)) is the un-
known D × D diagonal matrix and si,k is the ith element of

vectors si, i = 0, 1, exactly defined as in (28). As for [5], the
solution of (31) is obtained via (30).

In the case of constant slope, we should substitute (29) by
the filter

G0 = F1Φ(ᾱ),

G1 = F0Φ
∗(ᾱ),

(32)

where ᾱ is a starting constant slope value, possibly derived
from an initial DEM of the area of interest. Obviously in this
case the solution benefits from averaging M samples along
range:

α̂ = argmax
x


Re




D−1∑

k=0

exp(− j2πxk)s∗1,ks0,k




, (33)

where α̂ is obtained by x by inverting the following expres-
sion (see (2)):

x =
f0
fs

Bni

r0 tan(θ − α)
, (34)

fs being the sampling frequency.
In conclusion the proposed algorithm represents an ex-

tension of both classic interferometry and spectral shift fil-
tering in a multipass system.

4.1. The noisy case

No considerations were given to the noisy case in CR, and
the authors recognize this limit. However, in our case, we can
exploit the MMSE approach in [5] to account for noise as an
added weight in the MMSE estimates (28). This weight, as
comes out from [5], is equal to (1+SNR−1)−1, as it is usual for
Wiener problems. Note that the weight applied to the cross-
correlation s∗1 Ψ

∗s0 in (31) becomes

g =
1

1 + SNR−1
1

1

1 + SNR−1
2

(35)

that corresponds to the absolute value of the coherence. Fur-
thermore, the weights should cut out from the combination
(28) those baselines that are completely decorrelated, for ex-
ample, at least when |x| > 1 in (34), but in practice we need
a greater margin, in order to provide enough independent
samples for the coherence estimate. We can assume, for ex-
ample, g = 0 for |x| > 0.7.

4.2. Continuous-time domain interpretation

Let us approach the continuous time-domain interpretation
of the cross-relations in the two-channel case. The forward
model (4) translates in time/frequency as follows:

yi(t) =
{
γ(t) exp

(
− jφi(t)

)}
∗ fi(t)

Yi( f ) =
{
Γ( f )∗Φi( f )

}
Fi( f )

for i = 0, 1, (36)
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where capital letters denote the fourier transform and “∗”
stands for convolution. The cross-relations (16) are now ex-
pressed as follows:

((
y0(t) exp

(
− jφ̂(t)

))
∗ f1(t)

)
exp

(
− jφ̂(t)

)

≃
(
y1(t) exp

(
jφ̂(t)

))
∗ f0(t),

(37)

where the equality holds in the L2 norm. We further express
(37) in the frequency domain, by exploiting (36):

[(
Γ( f )F0( f )∗ Φ̂( f )

)
F1( f )

]
∗ Φ̂

∗(− f ). (38)

If we assume constant slope, Φ( f ) = δ( f +∆ f ) = Φ̂( f ) (e.g.,
in correspondence of the optimum), the following relation
holds:

[(
Γ · F0 ∗ Φ̂

)
· F1

]
∗ Φ̂

∗(− f ) ≡ Γ · F0 · F1

(
f − ∆ f

)
, (39)

where we dropped the obvious frequency dependence of the
terms. We notice that the nonstationary sequence of opera-
tors: modulation, filtering, and demodulation implied in the
left-hand term of (39), becomes on the right-hand term a
simple and stationary filtering. This filter is just the cascade
of the master SAR channel and the modulated slave SAR
channel. This property not only justifies the CR derivation
(16), but also validates CR for all the cases in which (39)
holds, at least as an approximation. We need the Fourier
transform of the synthetic fringes to be close to impulsive,
Φ( f ) ≃ δ( f + ∆ f ), henceforth we require the bandwidth of
Φ( f ) to be smaller than the inverse of the temporal support
of the scene. In practice we accept “quasistationary slopes”
that change smoothly in the estimation window, a fact al-
ready assessed analytically in the appendix of [4].

5. IMPLEMENTATION: SLOPE ESTIMATE

The MB channel estimate derived from CR has, in accor-
dance with (23) and (26), been applied to a constant ter-
rain slope. In the implementation we simplified the retriev-
ing phase problem, just by estimating the pixel-to-pixel phase
difference (PD) instead of the absolute phase value. This
means that the maximization in (23) is carried out with re-
spect to the phase variations (α) for a chosen reference base-
line.

Following the approach suggested in (26), (31), and [5],
we first performed the filtering (defined as common band
in [5]), and then estimated the local slope, as phase differ-
ence. Moreover, the CB filtering was carried out with respect
to an apriori reference PD pattern (ᾱ) that corresponded to
our starting point for PD retrieval. Note that, to improve the
slope estimation, such a reference phase is also used for the
demodulation of the cross-channel interference (zero base-
line steering). This demodulation, although not strictly nec-
essary, allows us to improve the performance of the PD es-
timation process as for any phase retrieval algorithm. Let us

start from (26) which we rewrite explicitly as

α̂ = argmax
x




N−1∑

j=0

N−1∑

i=0;i �= j

y∗j Φ ji(ᾱ)F∗i Φ ji(x̄)F jΦ ji(ᾱ)yi


.

(40)

Letting ri{·} be the operator that evaluates the interfer-
ence between adjacent pixels along the range, we introduce
the following two signals:

yli j(ᾱ) = ri
{
Φ
∗
i j(ᾱ)FiΦi j(ᾱ)y j

}
, (41)

yri j(ᾱ) = ri
{

F jΦ ji(ᾱ)yi
}

, (42)

where, according to the position in (40), the suffixes l and r
stand, respectively, for left and right. Equations (41) and (42)
carry out the spectral shift filtering; the additional modula-
tion matrix Φ

∗
i j(ᾱ) in (41) centers the signal interference on

the known PD. The resulting maximization formula is writ-
ten as

α̂ = ᾱ + ê, (43)

ê = argmax
e




N−1∑

j=0

N−1∑

i=0;i �= j

yl∗ij (ff̄)Φji(e)yrij(ff̄)


. (44)

In (43) we have explicitly highlighted the reference PD
(ᾱ) and the wanted (unknown) PD (e) that, to distinguish
from the (α̂), will be referred to as “excess PD.”

Numerical implementation of (43) is now quite simple.
For each range line of the image (M bins) and for each im-
age pair, we build two 3D matrixes (N × N × M − 1) YL
and YR. For each fixed range bin, the resulting 2D matrixes
are Hermitian matrixes that correspond to the signals in (41)
and (42), respectively. Element by element multiplication of
YL and YR again leads, for each range pixel, to a Hermitian
Matrix that describes the PD excess (with respect to the ref-
erence PD) at all the interferometric pairs present in the data.
We build a 3D phase matrix

Φ3 = 1M−1 ⊗
(

ff
∗
)
, (45)

with

fT = exp
[
− jaTe

]
, (46)

where a is the baseline vector normalized to the reference
baseline and e is the current testing PD excess, 1M−1 is a uni-
tary column vector [1,M − 1], and ⊗ is the Kronecker prod-
uct.

Multiplying the three matrixes YL, YR, and Φ3, we have

YY = Φ3 ◦ YL∗ ◦ YR. (47)

Eventually, for each range bin, a summation over the antenna
pairs is carried out: the result is then averaged over a chosen



Joint Multi-baseline SAR Interferometry 3201

Table 1: Baselines table.

Sensor Normal baseline

0 0

1 −470

2 −310

3 100

4 330

5 580

length. Moreover, an azimuth multilook (averaging) could be
introduced on the result of the signal beat: YL∗ ◦ YR.

These operations are repeated for each testing PD excess
and a maximization of the result (which is real by definition)
is carried out. Finally the operation is repeated for the avail-
able range lines.

Note that within this implementation scheme the intro-
duction of weights can be carried out by using

YY = YL∗ ◦Φ3 ◦W ◦ YR, (48)

where W is a weighting 3D matrix (symmetric for each range
line), accounting for interferometric weights, see Section 4.1:
it possibly varies throughout the range.

6. SIMULATION RESULTS

The MB-InSAR algorithm has been tested on simulated data
relative to the Vesuvio area in Naples. Starting from an avail-
able high-precision DEM, we simulated six acquisitions by
an ERS-like system. Table 1 shows the baselines. The inter-
ferograms corresponding to the lowest (1–4 pair, 100 m) and
highest (2–6 pair, 1050 m) baselines are shown in Figure 5
to help the reader appreciate the amount of decorrelation
caused by imaging angular diversity.

The proposed algorithm, applied with respect to the
pixel-to-pixel range phase differences (PD), tackles possible
constant phase offset dependence in the available interfero-
grams, allowing a more realistic scenario. The first baseline
(−470 m) is taken as the reference, therefore the PD on the
first baseline pair are the unknowns. Figure 6 shows the PD
evaluated from the noiseless, nonwrapped fringe pattern, as-
sumed as a reference, and its histogram: note that PD asso-
ciated to the flat Earth amounts to about −1.14 rads/pixel,
whereas a large part of the PD is around −1.74 rads/pixel
because the imaged area is located in a flank of the vol-
cano.

The first experiment carried out was aimed at show-
ing the reconstruction performance achievable by a single
baseline measurement on the reference baseline PD. In par-
ticular we chose the lowest baseline, that is, sensor 0–3 in
Table 1. In this experiment we have also assumed no a pri-
ori information about the topography, that is, we referred
to the PD of a flat Earth. As a consequence we subtracted
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Figure 5: (a) Lowest and (b) highest baseline interferograms, 300
range pixels by 1000 azimuth pixels.
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Figure 6: (a) Wanted PD image scaled in the [−3 : 0] interval to
retain the dynamic and (b) the PD histogram.

from the interferograms the fringe pattern associated with
flat Earth and estimated the residual PD from the flattened
interferograms: the output, as for all the subsequent exper-
iments, is the estimated PD on the reference baseline (0–1
in our case). Nonetheless we did not include any spectral

shift filtering, that is, we let Φ̂i j = ID in the multiplication

in (41) and Φ̂ ji = ID in (42). The PD obtained using this
interferogram pair (−470 m baseline), averaged on a win-
dow length of 5 range pixels, is shown in Figure 7a whereas
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Figure 7: (a) PD estimated with the lowest baseline interferograms,
(b) error plot (mean and standard deviation of the error), and (c)
the scatter plot of the estimated PD versus the true PD.

the error bar plot (mean standard deviation of the error) is
shown in Figure 7b. Here we see the poor quality of the re-
construction due to the relatively large baseline, which is con-
firmed by the appearance of a bias in the error plot for high
slopes (ideally this should be horizontal) and by the presence
of relatively high standard deviations, as well as high disper-
sion of the scatter plot of the estimated PD versus the true
PD in Figure 7c. The quality of the reconstruction improves
when CB filtering was carried out: this is clearly shown in
Figure 8 which presents the images of Figure 7 after CB filter-
ing with respect to flat Earth. Nevertheless, by looking at the
error plot we again recognize that it is even more tilted than
before, in particular, for the steepest slopes, that is, high
PD, the estimates are strongly down-biased. The same con-
siderations can be carried out by comparing the two scat-
ter plots. Bias is eliminated when CB filtering is carried
out with respect to the true PD. This is clearly evident in
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Figure 8: The same as Figure 7, but with the application of the CB
with respect to the flat Earth.

Figure 9: the error bar plot is horizontal, although there is
a marked dispersion. Figure 10 shows the results achieved
by exploiting all the available acquisitions and the CB filter-
ing with respect to the flat Earth. This figure, when com-
pared Figure 8, shows that the introduction of large base-
line interferograms has significantly deteriorated the estima-
tion of high slopes (from−3 rad/pixel to−2 rad/pixel). How-
ever, it also shows the effectiveness of the CB filtering; in
fact, slopes close to that of the flat Earth (in bright areas)
are better reconstructed when compared to Figure 8, see also
Figure 6.

The last experiment in Figure 11 shows the best case
when the CB filtering was tuned according to the true PD and
all the acquisitions were used. Note that, usually a rather pre-
cise external DEM is always used in InSAR processing, espe-
cially when differential interferograms are produced to detect
small ground movements: with this regard, DEM provided
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Figure 9: The same as Figure 8, but with the application of the CB
with respect to the true DEM.

by the shuttle radar topography mission (SRTM) with 90 m
posting and an accuracy of 15 m is a good reference for the es-
timation procedure at hands. Figure 11 shows the estimated
PD, the mean and the standard deviation, and the scatter
plot. Comparing this figure with 9 and 10 and the true one,
that is, Figure 6, we appreciate the improvement in the esti-
mation of both low and high slopes: the error plot bar in the
middle image is thin and horizontal whereas the scatter plot
is mostly concentrated around the diagonal.

7. CONCLUSIONS

A general framework that links the problem of multi-baseline
SAR interferometry with the single-input multiple-output
multichannel estimate has been established. We have shown
that one of the most popular techniques to approach the
problem, namely cross-relations, can be extended to the
MB-InSAR case with slight modifications. The LS solution of
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Figure 10: The same as Figure 8, but with using all the interfero-
metric pairs.

the thus derived equation system leads to the maximization
of the total energy that comes from taking all the possible in-
terferograms. Not surprisingly, the outcome of this technique
is that in forming each interferogram the two image pairs
are prefiltered by a common band filter; such filtering cor-
responds to the suboptimal spectral-shift approach already
known in literature. An efficient implementation has been
shown for the estimate of a constant terrain slope. The simu-
lation of MB ERS-like acquisitions in rough topography has
led to interesting results that reel the potential of the tech-
nique.
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Figure 11: (a) PD estimated with all interferograms pairs and the
application of the CB filtering with respect to the true topography.
(b) The associated error plot (mean and standard deviation of the
error). (c) The scatter plot of the estimated PD versus the true PD.
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