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Joint Network-wide Opportunistic Scheduling
and Power Control in Multi-cell Networks

Jeong-woo Cho, Jeonghoon Mo, and Song Chong, Members, IEEE

Abstract—We present a unified analytical framework that
maximizes generalized utilities of a wireless network by network-
wide opportunistic scheduling and power control. That is, base
stations in the network jointly decide mobile stations to be
served at the same time as the transmission powers of base
stations are coordinated to mitigate the mutually interfering
effect. Although the maximization at the first glance appears to be
a mixed, twofold and nonlinear optimization requiring excessive
computational complexity, we show that the maximization can be
transformed into a pure binary optimization with much lower
complexity. To be exact, it is proven that binary power control
of base stations is necessary and sufficient for maximizing the
network-wide utilities under a physical layer regime where the
channel capacity is linear in the signal-to-interference-noise ratio.
To further reduce the complexity of the problem, a distributed
heuristic algorithm is proposed that performs much better than
existing opportunistic algorithms. Through extensive simulations,
it becomes clear that network-wide opportunistic scheduling and
power control is most suitable for fairness-oriented networks
and underloaded networks. We believe that our work will serve
as a cornerstone for network-wide scheduling approaches from
theoretical and practical standpoints.

Index Terms—Opportunistic scheduling, wireless network,
power control, max-min fairness, proportional fairness.

I. INTRODUCTION

RESOURCE allocation in wireless data network in a

system perspective has drawn many attentions for the

last ten years. As people from the networking research have

paid more attentions to wireless networks, more progresses are

made in the wireless network scheduling and power control.

They have considered various system objectives such as total

throughput maximization (or max-C/I) [1], max-min fairness

[2], and proportional fairness [3] and proposed schedulers

to achieve the given system objective. The max-min fair

scheduler, though it is one of the most popular ones in wired
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networks, turns out to be less efficient due to the solidarity

property of wireless networks: the throughput of each user is

equalized to the smallest user throughput [4]. They claimed

proportional fair scheduler can be a better candidate in the

wireless networks since it is easy to implement and provides

a good balance between fairness and efficiency. Viswanath et

al. [5] and Borst [6] showed that proportional fairness becomes

equivalent to equal-time fairness under some assumptions.

Opportunistic scheduling concept was introduced in wireless

data networks to increase the average throughput of wireless

channels by exploiting the time-varying characteristics of

wireless channel [1], [5]–[7]. Since channel conditions of users

are good and bad randomly, higher throughput can be achieved

by scheduling a flow whose instantaneous channel condition

is relatively better than others. To exploit this diversity further,

Viswanath et al. [5] proposed a proactive beamforming scheme

in which fast channel fluctuations are artificially induced by

multiple transmit antennas in a pseudorandom manner.

Even with aforementioned advances in wireless data net-

works, little work has been done in multi-cell network-wide

scheduling. Both theoretical difficulty and impracticality pre-

vent people from pursuing the multi-cell network scheduling

problem. Instead, multi-cell problems with different objectives

have been considered: load balancing among cells [8], [9], and

a low data rate problem of cell boundary users [10].

Sang et al. considered multi-cell problem in a slightly

different angle of load balancing in their seminal work [8].

They proposed an intra-cell opportunistic downlink scheduling

algorithm where each BS (base station) exploits user diversity

gain in the corresponding cell independently to achieve (w, α)-
proportional fairness, that was proposed by Mo et al. [11].

When α = 0, an MS (mobile station) having the strongest

channel is picked out by the scheduler (max-C/I). When α = 1
and α → ∞, proportional fairness and max-min fairness

are achieved, respectively. The central server participates in

load balancing by adjusting α value of each cell, named as

cell breathing in which α is a flexible knob to balance the

time-slots allocated to MSs close to the BS and MSs at cell

boundaries. For load balancing, each MS adapts to its channel

variation and the load fluctuations by initiating the load-aware

handoff and cell-site selection where their own condition is

adopted rather than network-wide proportional fairness.

Bu et al. [9] also considered a similar problem and proposed

load balancing schemes that achieve network-wide propor-

tional fairness if the channel capacity tends to be linear in

the SINR (signal-to-interference-noise), while the load bal-

ancing scheme proposed in [8] did not directly tackle the

network-wide proportional fairness due to its complexity. They
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showed that the general problem is NP-hard and provided

efficient offline and online heuristic algorithms to solve an

approximated problem. Kauffmann et al. [12] proposed two

distributed algorithms, based on the annealed Gibbs sampler

[13], for channel selection for interference mitigation, and

user association (load balancing) for fair and optimal resource

allocation in WLANs (Wireless Local Area Network). They

also proved that the distributed algorithms lead to efficient

spectrum usage and improved performance in the context

of minimal potential delay fairness. As the proposed algo-

rithms do not require explicit coordination among stations,

the applicability latent within the Gibbs sampler technique is

noticeable.

So called SSDT (Site Selection Diversity Transmission),

which is an idea of BS coordination paying no regard to

scheduling, was once considered in 3GPP WCDMA system

[14]. In SSDT, an MS selects the BS with the largest SINR

using rapid physical layer signaling. The main weak point of

SSDT is that an MS to be served is decided by a scheduler

(possibly controlling multiple BSs) in advance and SSDT

decides only whether or not to turn off some BSs. In this sense,

SSDT does not pertain to achieving network-wide fairness.

Recently, the insufficient data rate problem of cell boundary

users in the OFDMA system attracted the most attentions ever

due to popularity of new standards such as the IEEE 802.16e

[15] and the evolved UTRA [16]. Many people considered

different frequency reuse schemes. However, [17] observed

high throughput loss with the frequency reuse schemes and

recommended reuse factor of one. Our work can be considered

as an extension of [17] from the fixed frequency reuse scheme

to a dynamic one.

Bonald et al. [10] considered a novel notion of scheduling,

that is to say, coordination of transmissions among BSs. Unlike

[8], [9] where all BSs transmit at full power all the time, they

formulated an optimization problem which opportunistically

coordinates instantaneous transmission powers of BSs in order

to provide favorable channels to MSs at the cell boundaries.

However, they did not consider the objective of network-wide

proportional fairness and opportunistic scheduling. In a similar

context, Kiani et al. [18] addressed the problem of distributed

inter-cell coordination where BS transmission can be switched

off to maximize the total throughput. A unique feature that

makes this work noteworthy is that each cell makes a decision

regarding its transmission power based only on the SINR of

the users within the cell. In addition, the proposed distributed

algorithm lends itself to exploiting multiuser diversity.

From a quite different angle, Karakayali et al. [19] proposed

a network-wide coordination of the BS transmissions so as to

mitigate inter-cell interference. They showed that an improved

form of signal-level coordination is obtained when a zero-

forcing equalizer is combined with dirty paper coding. Since

the performance metric for comparisons was the max-min rate

achievable subject to per BS power constraints, the proposed

signal-level coordination was turned out to improve the system

capacity significantly. In Section IV-C, we explain why inter-

cell interference mitigation is favorable for max-min fairness.

Recently, Li and Liu in their work [20], [21, Chapter 7] con-

sidered a semi-distributed radio resource allocation scheme in

OFDMA networks where radio resource allocation is divided

into two algorithms, i.e., an RNC (radio network controller)

algorithm and a BS algorithm. That is, RNC coordinates inter-

cell interference between BSs at super-frame level and each BS

makes its channel assignment decision on frame level based

on users’ traffic conditions. However, because a BS algorithm

follows RNC’s decision when all users in the BS have traffic

to send in each frame, their scheme can be viewed as an RNC-

centric radio resource allocation where each BS exploits only

the traffic diversity [20]. Besides, they also did not consider the

objective of network-wide proportional fairness but the total

throughput maximization.

In this paper, we consider network-wide opportunistic

scheduling problem under a multi-cell environment based on

the optimization problem proposed in [8]. We would like to

answer the following questions in particular:

How much improvement can we make by considering inter-

cell coordination? For what kind of network is inter-cell

coordination most suitable?

To answer the questions, we formulate an optimization

problem which maximizes generalized utilities of a multi-

cell network by network-wide opportunistic scheduling and

network-wide opportunistic power control rather than by load

balancing. Since load balancing without considering network-

wide opportunistic power control is already too complicated

[9], it is not treated in this paper to better focus on our

problem.

Although the maximization in the first formulation appears

to be a mixed, twofold and nonlinear optimization requiring

excessive computational complexity, we prove that the maxi-

mization can be transformed into a pure binary optimization.

Correctly speaking, we prove that binary power control of

base stations is necessary and sufficient for maximizing the

network-wide utilities under situations in which the chan-

nel capacity tends to be linear in the SINR. Consequently,

network-wide opportunistic scheduling absorbs network-wide

opportunistic power control. For distributed operation of

network-wide optimization in real networks, a heuristic al-

gorithm using local information of neighbor BSs is proposed.

Through extensive simulations, we show that network-wide

opportunistic scheduling and power control improve various

performance indices considerably.

The rest of the paper of organized as follows: The first

formulation including network-wide opportunistic scheduling,

power control and load balancing is presented and simplified

in Section II. Since the simplified problem is still intractable,

we propose a distributed heuristic algorithm with much lower

complexity in Section III. The performance of our proposed

algorithm is verified in Section IV. Then we conclude this

work with answering the questions brought up in this section.

II. NETWORK-WIDE UTILITY OPTIMIZATION

The first formulation of network-wide utility optimization

incorporates not only network-wide opportunistic scheduling

and power control but also load balancing, i.e., an MS can be

associated with any BS in the network.
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A. Problem Formulation

Suppose that there are N BSs and K MSs in a multi-

cell network and the sets of BSs and MSs are denoted by

N
.
= {1, . . . , N} and K

.
= {1, . . . , K}, respectively. Each

BS chooses only one MS for each time-slot t for downlink

transmission of data, i.e., there is a one-to-one mapping of N
into K. Network-wide optimization of generalized network-

wide utility U(t) at time-slot t can be formulated as follows:

max
{Ikn(t)}

max
{pn(t)}

U(t), (1)

s.t. U(t) =
∑

k∈K

Uk(r̄k(t)), (2)

r̄k(t) =
1

t

t∑

τ=1

∑

n∈N

rkn(τ)Ikn(τ), (3)

∑

k∈K

Ikn(t) = 1, (4)

∑

n∈N

Ikn(t) ≤ 1, (5)

rkn(t) = B · C

(
pn(t)gkn(t)

σ2
k +

∑
i∈N ,i6=n pi(t)gki(t)

)
, (6)

0 ≤ pn(t) ≤ p, (7)

where Uk(r̄k(t)) is the utility function of r̄k(t), the average

throughput of MS k up to time-slot t. It is reasonable to let

Uk(·) be a function of only r̄k(t) as in [8], [9], [22]. Besides,

r̄k(t) is a function of the instantaneous channel rates from BSs

to MSs, {rkn(τ) | 1 ≤ τ ≤ t}, and the scheduling indicator

matrices, I(t)
.
= {Ikn(τ) | 1 ≤ τ ≤ t} where

Ikn(t) =

{
1, MS k is assigned to BS n at time-slot t,
0, otherwise.

(8)

The two constraints regarding Ikn(t), (4) and (5), imply that

each BS serves exactly one MS and each MS can be served by

at most one BS, respectively, at each time-slot. The average

throughput of MS k up to t, r̄k(t), is the ensemble average of

the instantaneous channel rates, rkn(t), which are determined

by the channel capacity model (6) where B is the bandwidth in

hertz, C(·) is the normalized channel capacity in bits/s/hertz

that is a function of the instantaneous SINR. In the SINR

expression, gkn(t) > 0 is the signal gain from BS n to MS

k that characterizes the propagation loss of the transmission

power pn(t), the fast Rayleigh fading, and the large time-scale

log-normal fading. Assuming that Gaussian signalling is used

by all nodes, the interference terms are also Gaussian and

the channel capacity within a given time-slot follows AWGN

Shannon capacity. The transmission powers of BSs, pn(t), are

upper-bounded by p at all time slots as shown in (7), but it can

be easily verified that all results in this paper hold even if the

upper-bounds vary time. Before taking up the main subject, it

is noteworthy that network-wide optimization is reduced to N
independent intra-cell scheduling problems if there is neither

load balancing nor power control. (For readability, all proofs

in this paper are in Appendix.)

Observation 1. If we assume that all BSs are transmitting with
its full power and each MS is associated with a predetermined

BS, then network-wide optimization given by (1)∼(8) is re-
duced to N independent intra-cell optimizations.

This observation signifies that the existing intra-cell oppor-

tunistic scheduling is the best way to optimize the network-

wide utility if load balancing is not used and transmission

powers of BSs are constant, e.g., pn(t) = p. It should be

remarked that the intra-cell opportunistic scheduling possesses

a desirable convergence property. That is, it is shown in [22]–

[24] that its gradient algorithm leads to long-term asymptotic

optimality under various assumptions.

The given optimization problem is very complicated due

to the nonlinearities of (1) and (6), combination of binary

variables {Ikn} and real variables {pn(t)}, and twofoldness

in (1). But we have found that the problem becomes more

tractable if it is separated into two subproblems: (i) the outer

problem – maximizing U(t) by varying {Ikn(t)} for a given

{pn(t)} , and (ii) the inner problem – maximizing U(t) by

varying {pn(t)} for a given {Ikn(t)}. Note that the outer

problem does not have (6) as constraints because {pn(t)}
is given. Similarly, the inner problem does not have (4) and

(5) as its constraints. Since the inner problem has a special

characteristic which is to be revealed in Section II-B and

has made our analysis possible, we will focus only on the

inner problem for the moment until a simplified optimization

is reformulated in Section II-C.

To simplify the optimization problem by assuming {Ikn} is

predetermined, let us define k(n,t) as the index of the MS to

be served by BS n at time-slot t. More formally, the set of

pairs (n, k(n,t)) is be defined as:

Ω(t)
.
=
{
(n, k)

Ikn(t) = 1, k ∈ K and n ∈ N
}

.

Since a BS chooses only one MS for each time-slot, the

cardinality of Ω(t) is N . Whenever we use the notation k(n,t)

in this section, we are assuming that Ω(t) is determined in

advance and (n, k(n,t)) ∈ Ω(t). By denoting ǫt
.
= 1

t
, we can

rewrite (3) compactly in the form of the following running

average equation:

r̄k(n,t)(t) = r̄k(n,t) (t − 1) + [rk(n,t)n(t) − r̄k(n,t) (t − 1)] ǫt.
(9)

If the initial condition U(0) = 0 is used, the network-wide

utility becomes:

lim
t→∞

U(t) = lim
t→∞

t∑

τ=1

[U(τ) − U(τ − 1)] . (10)

Here ∆U(t)
.
= U(t) − U(t − 1) corresponds to the utility

difference that should be maximized at each time-slot t without

the knowledge of rkn(τ) for τ > t. If we make use of the

Taylor expansion of ∆U(t), it becomes

∆U(t)=
∑

k∈K

Uk(r̄k(t)) − Uk(r̄k(t − 1))

=
∑

k∈K

∂Uk(r̄k(t−1))
∂r̄k

[r̄k(t) − r̄k(t − 1)] + O(ǫ2t )

=
∑

k∈K

∂Uk(r̄k(t−1))
∂r̄k

[rk(t) − rk(t − 1)︸ ︷︷ ︸
given at t

]ǫt + O(ǫ2t ) (11)
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where the third equality holds by (9). Note that r̄k(t− 1) has

no effect on the maximization of ∆U(t) since it is given at

time-slot t. We adopt the generalized proportional fair utility

function introduced in [11] where Uk(r̄k(t)) is given by:

Uk(r̄k(t)) =

{
wk

r̄k(t)1−α

1−α
, α ≥ 0, α 6= 1 and wk > 0,

wk log r̄k(t), α = 1 and wk > 0.
(12)

which is called (w, α)-proportional fair utility. For α = 1,

Uk(r̄k(t)) = wk log r̄k(t) is called proportional fair utility

function. If we apply this substitution to (11) and neglect

O(ǫ2t ), maximizing ∆U(t) becomes equivalent to the follow-

ing simple form:

max
Ω(t)

max
{pn(t)}

∑

n∈N

wk(n,t)

rk(n,t)n(t)

[r̄k(n,t)n(t − 1)]α
, (13)

which bears a close resemblance to the Weighted Alpha-Rule

scheduling algorithm in [8]. Note that the utility difference

∆U(t) is a linear combination of instantaneous channel rates

rk(n,t)n(t) for given weights
w

k(n,t)n

[r̄
k(n,t)n

(t−1)]α .

It turns out that the form of the objective function given by

(13) can be viewed as a gradient algorithm adopted in [22]–

[24]. The only difference here is that (13) requires the two-

dimensional network-wide selection of an index set, Ω(t), and

transmission powers of BSs, pn(t), while [22]–[24] requires

N independent cell-wide selections of one MS in each cell.

Note also that, to the best of our knowledge, the gradient

algorithm represented by (13) is the only way to exploit

multiuser diversity simultaneously with keeping full control

of network-wide fairness through the flexible control knob α
in multi-cell networks.

B. On the Optimality of Binary Power Control

For a given Ω(t), the inner problem is equivalent to a

problem of assigning transmission powers to BSs. To give a

shape to the instantaneous channel rates rkn(t) which depend

on normalized channel capacity function C(·), we consider the

following channel capacity model.

• C(x) = x
log 2 : Since log2(1 + x) ≈ x

log 2 for x ≈ 0, this

model closely approximates Shannon’s channel capacity

if SINR is not too large. Particularly, this model is well

suited for wide-band systems [15], [16] (where B is large)

and low-power systems (where p is small) for which

Shannon’s channel capacity becomes more linear.

Even with linear channel capacity model, (6) still complicates

the analysis due to its nonlinear relations to transmission

powers of other BSs. However, we have found that the

inner problem with the linear channel capacity model has an

interesting property described by Theorem 1. To prove it, we

need a proposition showing an advanced convexity of a certain

function.

Proposition 1. Let us assume that a > 0, ai ≥ 0, bi > 0,
∀i = 1, . . . , M . Consider the following problem:

max
x

ax +
M∑

i=1

ai

bi + x
,

s.t. 0 ≤ x ≤ x.

The above objective is strongly quasiconvex [25], and maxi-
mized at either x = 0 or x = x.

Theorem 1 (Binary Power Control). For given Ω(t), if
C(x) = x

log 2 and the error term O(ǫ2t ) in (11) is neglected§,
the network-wide utility

U(t) =

{ ∑
k∈K wk

r̄k(t)1−α

1−α
, α ≥ 0, α 6= 1 and wk > 0,∑

k∈K wk log r̄k(t), α = 1 and wk > 0.
(14)

cannot be maximized if pn(t) /∈ {0, p} for any n ∈ N .

Considering a downlink CDMA data network and a multi-hop

wireless network, Radunović et al. [26] and Bedekar et al.

[27] respectively obtained a similar result for α = 0 and the

channel capacity model is linear, which coincides with a part

of Theorem 1. Recently, Gjendemsjø et al. [28] generalized

this result and proved that binary power control is optimal for

α = 0 and identical wi not only if SINR factors are very low

but also if they are highly concentrated. However, little can

be said for the case α 6= 0 because it can be easily shown

that the arithmetic mean-geometric mean approximation used

in [28] depends on time-varying factors (weights in (13)) in

this case. The main point may be summarized as follows.

• For all types of network-wide (w, α)-proportional fair-

ness, only binary power control is optimal if the under-

lying physical layer is in the linear regime.

It is worth noticing that multi-carrier systems employing

binary power control can suffer from high PAPR (peak-to-

average power ratio). A number of PAPR reduction techniques

have been proposed and it is well-known that there is a tradeoff

between data rate and PAPR reduction [29]. Therefore, the

net effect of binary power control considering its adverse

effect should be investigated so that we can decide whether

to employ binary power control or not in a specific system.

In this paper, we propose a nonnegative lower-bound for the

transmission powers of BSs, p ≥ 0, so that transmission

powers can be either p or p. Then p can serve as a flexible

control knob to balance the favorable and adverse effects of

binary power control. Note that it is easy to show that Theorem

1 also holds for p 6= 0.

C. A Simplified Formulation

The original optimization problem given in Section II-A

is extremely complicated and we are going to reduce its

complexity by simplifying the power assignment: we assume

that pn(t) ∈ {0, p} by appealing to the fact that binary power

control is optimal for linear channel capacity model though it

is not true when the physical layer regime is nonlinear¶. In

other words, if we revisit the original formulation laid out in

(1)∼(8), its complexity is alleviated due to the property of the

inner problem revealed in Section II-B. The essential point in

§If α = 0, the error term O(ǫ2
t
) in (11) becomes 0. Thus there is no

approximation in this case.
¶If the channel capacity is logarithmic in the SINR, it can be proven that

binary power control is optimal if and only if
wk

[r̄k(t−1)]α
=

wj

[r̄j(t−1)]α
for

all k, j ∈ K and there are at most two BSs in a wireless network. The “if”
part of this proposition can be proven by applying techniques used in [28],
[30] to ∆U(t). The other part can be easily proven by counterexamples.
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the following formulation is that network-wide opportunistic

power control assimilates into network-wide opportunistic

scheduling.

max
{Ĩkn(t)}

∆U(t), (15)

s.t. rk(t) = B
∑

n∈N

C




gkn(t)Ĩkn(t)
σ2

k

p
+
∑

i∈N

i6=n

gki(t)Ĩ·i(t)




, (16)

Ĩ·n(t)
.
=
∑

k∈K

Ĩkn(t) ≤ 1, (17)

∑

n∈N

Ĩkn(t) ≤ 1. (18)

Here the instantaneous channel rate rk(t) does not have

the subscript regarding BSs anymore. We introduce com-

bined scheduling indicator matrix, Ĩ(t) = {Ĩkn(t)} where

Ĩkn(t)
.
= Ikn(t) · pn(t)

p
. The binary control assumption,

i.e., pn(t) ∈ {0, p}, keeps Ĩkn(t) ∈ {0, 1} satisfied. The

constraint (17) allows the inequality that was not allowed in

(4), because a BS with zero power does not serve any MS,

i.e.,
∑

k∈K Ĩkn(t) = 0, where n is the index of the BS. It is

remarkable that the mixed, twofold and nonlinear optimization

(1) is now unfolded into a flat binary optimization (15) where

the only variables to be optimized are {Ĩkn(t)}. The network-

wide utility can be written as:

∆U(t) =
∑

k∈K

wkrk(t)

[r̄k(t − 1)]
α . (19)

Note that this objective takes an opportunistic scheduler form

that opportunistically picks out MSs having relatively high

rk(t) at time-slot t if gkn(t) is fluctuating.

D. On the Complexity of the Simplified Formulation

To better understand the complexity of the simplified prob-

lem presented in Section II-C, we will derive the exact number

of possible ways satisfying the two inequalities, (17) and (18).

This will show that the simplified problem is still complex and

it is necessary to develop a distributed heuristic algorithm.

Let us consider the set of all possible scheduler indicator

matrices, I
.
= {Ĩ(t)} and denote its cardinality by ϕ(N, K).

Since (17) and (18) allow both equality and inequality, it is

clear that ϕ(N, K) is bigger than the cardinality of the set

of the indicator matrices introduced in [8, Section 4.1], where

power assignment problem was not considered at all.

There are NCi possible different ways to choose i BSs

among N BSs. Let us assume that the transmission powers

of i BSs are p and those of N − i BSs are 0, without loss

of generality. For each of N Ci ways, there exist KPi ways

to associate i BSs to K MSs. We provide a more tractable

expression of ϕ(N, K) in the following theorem with the help

of the Rodrigues representation of the associated Laguerre

polynomials [31]:
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Fig. 1. A multi-cell network composed of 37 hexagonal cells in four tiers.

Theorem 2. Assuming that the inequality constraints (17) and
(18) hold, the total number of possible ways to associate BSs
with MSs is

ϕ(N, K) =

∣∣∣∣
dN

dxN

(
e−x−1xK

) ∣∣∣∣
x=−1

. (20)

We can see from (26) that ϕ(N, K) is larger than KPN ,

which is the number of possible ways satisfying the constraints

in [8, Section 4.1]. Moreover, (20) shows that a centralized

optimization cannot be deployed in practical systems. For

instance, ϕ(37, 740) ≈ 6.1 × 10105.

III. A DISTRIBUTED HEURISTIC ALGORITHM

The intractable complexity of the network-wide optimiza-

tion formulated by (15)∼(19) makes us feel keenly the neces-

sity of a distributed heuristic algorithm. First of all, we assume

that each MS can be associated only with the BS that is closest

to the MS. By assuming this, we are transferring the task of

load balancing to a centralized entity that should be capable

of transacting a huge amount of computation. Therefore, our

heuristic algorithm tries to approximate only network-wide

opportunistic scheduling that has already absorbed network-

wide opportunistic power control in Section II-C. If we divide

the set of MSs K into N disjoint sets as we did in the proof

of Observation 1, we get a new constraint, Ĩkn(t) = 0 if

k /∈ Kn, which greatly simplifies the optimization. However,

the number of possible ways satisfying the constraints on

{Ĩkn(t)} is ϕ′(N, |Ki|)
.
=
∏

i∈N (|Ki| + 1), which is still too

large. For example, if there are 37 BSs and each BS has 20
MSs, ϕ′(37, 20) ≈ 8.4 × 1048.

To reduce the complexity of the simplified problem, we pro-

pose a heuristic algorithm named Neighbor-Assisted Network-

wide Opportunistic Scheduling algorithm (NANOS), which is

simpler in two regards. Each BS considers only its neighbor

BSs. Furthermore, only a subset of MSs in its neighbors are

considered instead of all MSs in the proposed heuristic. For

example, BS 7 makes use of information from BSs 1, 2, 6,

19, 17 and 18 in Fig. 1. The heuristic consists of three steps.
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Step 1. Local selection of MS candidates: Each BS n makes

a list Λn of candidates that might possibly maximize the sum

of utilities of BS n. We first select a candidate that maximizes

the sum of utilities when all of its neighbors are transmitting

at full power p̄. We repeat the selection process for the cases

in which only one (or none) of its neighboring BSs in (=Ñn−
{n}) is OFF. In the example of Fig. 1, there can be up to 7

possible candidates if each candidate from the above cases is

distinct from the rest. In other words,

Λn(t)
.
= {κj

n(t) | κj
n(t) = arg max

k∈Kn

∆U j
k(t), j ∈ Ñn}, (21)

where the per-MS utility ∆U j
k(t) is defined as:

∆U j
k(t)

.
=

wk

[r̄k(t − 1)]
α · C


 gkn(t)

σ2
k

p
+ Ψj

kn(t)


 . (22)

Here, the other-cell interference is defined as:

Ψj
kn(t)

.
=

{∑
i∈N ,i6=n gki(t), if j = n (All BSs are ON);∑
i∈N ,i6=n,i6=j gki(t), otherwise (Only j is OFF).

(23)

The first case in which j = n is when all neighbor BSs are

transmitting while the other case is when one of neighbor

interference terms, gkj(t), is excluded from the normalized

interference sum of MS k. Therefore, κj
n(t) corresponds to the

MS index which maximizes (19) if neighbor BS j is turned

off. Similarly, κn
n(t) is obtained if no neighbor BS is turned

off. In brief, Step 1 serves to decrease the number of MSs to

be considered in Step 3.

Step 2. Broadcasting of list: Each BS n broadcasts the

candidate list Λn(t) to its neighbor BSs (=Ñn −{n}) through

the backhaul network.

Step 3. Finding a locally optimal solution: In this step,

each BS n finds a local optimal solution by solving a

problem composed of the neighbor BS set Ñn and MSs

K̃n
.
=
⋃

n∈Ñn
Λn(t)‖. The local optimization at each BS n

is solved as if the BS set N and the MS set K were replaced

by Ñn and K̃n, respectively. Note that the cardinality of index

set Λn(t) is less than or equal to min
[
|Kn|, |Ñn|

]
. In addition

to this, since it is likely that κj
n(t) are repeated for different

j′, it can be even smaller. Once a local optimal solution

{Ĩ∗km(t)|k ∈
⋃

n∈Ñn
Λn(t), m ∈ Ñn} is determined, BS n

serves an MS whose index k satisfies Ĩ∗kn(t) = 1. Note that

BS n may not transmit at all if Ĩ∗kn(t) = 0 for all k ∈ Λn(t).
Even though BS n solves the problem including neighboring

BSs, it only uses a subset of the solution and disregards all

solutions of neighbor BSs.

The MS selection algorithm is based on the following

observations. Firstly, if the set Λn(t) is decided under the

assumption that all BSs transmit at full power, MSs located

around cell boundaries are rarely selected since rk(t) of them

are underestimated due to interference signal from neighbor

BSs. That is, MSs that might be served more frequently after

coordinating transmission powers of BSs are discriminated

against. This certainly diminishes the network-wide utility.

‖We assume that BSs not in Ñn are turned on.

Secondly, the situations in which two consecutive BSs do

not transmit anything rarely coincide with the optimal power

assignments∗∗. For instance, consider an MS in the middle of

the two BSs as shown in Fig. 1, where the strongest interferers

of the MS correspond to BS 5 and 14 due to their closeness to

the MS. If BS 5 serves the MS and BS 14 does not transmit,

the instantaneous channel rate of the MS becomes quite large

because the main interferer is removed. Therefore, it is more

plausible that the network-wide utility is increased if one of

them transmits data at full power. Thus it is imperative that

we should introduce Ψj
kn(t).

Even though the proposed heuristic is simpler than the

optimal algorithm, we should admit there are many challenges

in implementing it. For example, if K is sufficiently large,

|Λn(t)| approaches |Ñn| and the complexity of an exhaustive

search becomes (|Ñn|+1)|Ñn| ≈ 2×106 with |Ñn| = 7. How-

ever, it is virtually impossible to finish the global optimization

laid out in (15)∼(19) even if there is no load balancing,

due to its extreme complexity, e.g., ϕ′(37, 2) ≈ 4.5 × 1018,

ϕ′(37, 4) ≈ 7.3×1025 and ϕ′(37, 20) ≈ 8.4×1048. As of now,

we claim that our heuristic is the only possible way to evaluate

the performance of network-wide opportunistic scheduling.

We see that there are many possible ways to decrease the

complexity of the proposed heuristic algorithm. For example,

let us assume that a cell can be divided into 3 or 6 sectors

such that each of the sectors is allocated 1/3 or 1/6 of the

total bandwidth. Then, a sector needs to consider 2 or 1

adjoining sectors, respectively. In this case, the complexity of

the proposed algorithm for each cell becomes (|Ñn|+ 1)|Ñn|

= 9 or 2, respectively. However, as this sectorization scheme

leads to less optimal results, we decided not to adopt this

scheme.

Finally, we note that the proposed algorithm necessitates

additional measurements in the network. Provided that the

approximate values of σ2
k and p are known to MSs, each

MS should be able to measure or infer the values of gki(t)
where k ∈ Kn and i ∈ Ñn. These values should be regularly

delivered to BSs so that they can solve the optimization

problems laid out in Step 1 and 3.

IV. SIMULATION RESULTS

To evaluate the performance of opportunistic scheduling

algorithms in multi-cell networks, various scenarios having

different fairness objectives are considered by varying α. The

weights of MSs are assumed to be equal, i.e., wi = 1. A four-

tier multi-cell network composed of 37(= N ) hexagonal cells

shown in Fig. 1 is adopted, where each cell is circumscribed

by a circle of radius R = 1 km. The number of MSs, K , is

varied to change MS density in the network. Since we assume

the uniformity of MS location distribution in Section IV-A, the

probability distribution of the number of MSs associated with

BS i is given by Prob{|Ki| = k} = KCk

(
1
N

)k (
1 − 1

N

)K−k
.

Nonuniform MS distribution is considered in Section IV-B. For

∗∗For simplicity, our algorithm excludes situations in which two consecu-
tive BSs are turned off. For instance, if an MS is located at the vertex where
hexagonal cells of BS 8, 9 and 21 meets as shown in Fig. 1, there is some
possibility of improving the network-wide utility by turning off two of them.
As α increases, this possibility becomes higher.
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Fig. 2. Utility, throughput and QoS performance of network-wide and intra-cell opportunistic scheduling algorithms.

each given parameter set, we execute 50∼100 runs where each

run has 4,000∼16,000 time-slots and MSs are located over the

network at the beginning of each run. Intra-cell opportunistic

scheduling (which we denote by ICOS) and neighbor-assisted

network-wide opportunistic scheduling (which we denote by

NANOS), are evaluated under the same configuration.

Regarding the physical model, B = 1.5MHz and C(x) =
log2(1 + x) are used. All BSs have the same maximum

transmission power p = 40dBm when they transmit data and

the same thermal noise σ2
k = −100dBm which represents 3G

networks. The signal gain from BS n to MS k is defined

as gkn(t)
.
= min {1, skn(t) · Γ(dkn)} where skn(t) is a unit-

mean log-normal fading variable such that 10 log10 skn(t) is a

memoryless Gaussian random variable with a standard devia-

tion σs = 4dB and Γ(dkn) = −130 − 35 log10(dkn) dB (dkn

is the distance from BS n to MS k in kilometers). Note that

this corresponds to a path loss exponent of 3.5. The NANOS

parameter Ñn is defined as Ñn
.
= {i ∈ N | d′in ≤ 2R · cos π

6 }
(d′in is the distance between BS i and n) so that each BS

located in the interior of the network has 6 neighbor BSs

excluding itself and |Ñn| = 7.

A. Utility, Throughput, QoS and Fairness Performance

It is our understanding that the network-wide utility U(t)
itself is not meaningful since there is no direct relevance

between U(t) and performance indices. For instance, perfor-

mance indices of NANOS with α > 1 are greatly improved

even with slight increment of U(t). However, to make it

clear that NANOS is superior to ICOS, we present Fig. 2(a)

where r̄k(t) in bits per seconds (bps) is used for calculating

U(t). NANOS does result in higher U(t) than ICOS for all

combinations of K/N and α.



8

10
2

10
3

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

MS throughput (Kbps)

P
ro

b
ab

il
it

y
 d

en
si

ty
 o

f 
M

S
 t

h
ro

u
g
h
p
u
t

ICOS,  K/N=1,  α=1

NANOS,  K/N=1,  α=1

ICOS,  K/N=4,  α=1

NANOS,  K/N=4,  α=1

ICOS,  K/N=10,  α=1

NANOS,  K/N=10,  α=1

Decrease of dissatisfied MSs

 K/N =1

 K/N =4

 K/N =10

α=1

10
2

10
3

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

MS throughput (Kbps)

P
ro

b
ab

il
it

y
 d

en
si

ty
 o

f 
M

S
 t

h
ro

u
g
h
p
u
t

ICOS,  K/N=1,  α=16

NANOS,  K/N=1,  α=16

ICOS,  K/N=4,  α=16

NANOS,  K/N=4,  α=16

ICOS,  K/N=10,  α=16

NANOS,  K/N=10,  α=16

Decrease of dissatisfied MSs

 K/N =10

 K/N =4

 K/N =1

α=16

Fig. 3. Probability densities of MS throughput of network-wide and intra-cell opportunistic algorithms.

Observation 2. If the network objective is throughput maxi-

mization (α = 0) and the number of MSs is not too small,

network-wide optimization does not help.

Observe that in Fig. 2(b) that the two topmost lines of ICOS

and NANOS are overlapping when α = 0. To maximize

throughput, an MS with the best channel condition would

be chosen in each BS in ICOS. Since the MS with the best

channel is likely to be close to the BS, the impact of other-

cell interference may be negligible, which is why the cell

throughputs of NANOS and ICOS are almost the same.

Observation 3. As a network pursues fairness-oriented net-

work objectives (α > 0), NANOS results in a bit lower total

throughput than ICOS. However, cell boundary MSs get more

throughput.

In Fig. 2(b), when α=1, 4 and 16, NANOS results in slightly

lower throughput than those of ICOS. When α > 0, there is no

plausible reason for NANOS to achieve higher throughput than

ICOS does. The network just does its own duty to maximize

its utility in each cell (ICOS) or in a network-wide way

(NANOS). As the network pursues fairness-oriented utilities

with larger α, the throughput gap between two scheduling

algorithms becomes more obvious because a network operated

by NANOS algorithm gradually approaches a max-min fair

network where all MSs have the same throughput.

To observe benefits of NANOS that are received by cell

boundaries MSs, let us consider the sum of MS throughputs

not exceeding the 5th percentile††of MS throughput distri-

bution which is shown in Fig. 2(c). It is noteworthy that

throughput performance of dissatisfied users in NANOS is sig-

nificantly improved (Fig. 2(c)) whereas the average throughput

performance of NANOS is similar to that of ICOS (Fig. 2(b)).

For example, when α = 4 and the number of MSs is six,

NANOS is 38% better than ICOS. The throughput increases

in percentage for α = 4 and α = 16 are written down in

††The pth percentile cuts off lowest p% data.

Fig. 2(c). Anther noteworthy point is that the throughput gap

between two scheduling algorithms gets smaller as the number

of MSs becomes larger. This phenomenon is due to the fact

that the oversatisfied users are more reluctant to return their

spare utilities which might be used to increase utilities of

dissatisfied users as the network gets more loaded.

Observation 4. Throughput performance of ICOS is satu-

rated for large α while NANOS mitigates this saturation.

If we look into Fig. 2(b) again, the cell throughputs of ICOS

are almost the same for α = 4 and α = 16, but on the other

hand those of ICOS become smaller as a network pursues

fairness-oriented objectives. In other words, for α ≥ 4, ICOS

cannot increases its network-wide utility even if it reduces

its cell throughput while NANOS does increase its network-

wide utility at the sacrifice of its cell throughput. Note also

that the throughput performance of dissatisfied users shown

in Fig. 2(c) does not improve for ICOS and does improve for

NANOS. From these results, we can conclude that generalized

proportional fair scheduling without inter-cell interference

coordination becomes meaningless as α gets larger (α > 1).

To strengthen our claim that network-wide opportunistic

scheduling with a large value of α helps cell boundaries

MSs, let us compute the QoS violation probability with a

minimum-throughput condition, r̄k(t) > rmin. In Fig. 2(d),

we show the percentages of MSs whose rate is lower than the

threshold for rmin = 128 and 192 Kbps. It is an expected

result that the violation ratio decreases with a larger α. But

it is noteworthy that the violation percentage of NANOS is

much lower than that of ICOS for large α (α = 16). This

implies that network-wide opportunistic scheduling pertains to

fairness-oriented network where users demands their average

throughput to be larger than a certain threshold.

NANOS with large α enables MSs in the network to receive

benefits of BS coordination equally while ICOS fails to do that

even with large α. If we look into Fig. 3, where probability

densities of MS throughput for α = 1 and α = 16 are shown



9

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of MSs per BS

A
v

er
ag

e 
P o

ff
 i

n
 N

A
N

O
S

 

 

2 4 6 8 10 12 14 16 18 20
1

1.05

1.11

1.18

1.25

1.33

1.43

1.54

1.67

1.82

2

D
y

n
am

ic
 f

re
q

u
en

cy
 r

eu
se

 f
ac

to
r

 

 
P

off
,  α=0

P
off

,  α=1

P
off

,  α=4

P
off

,  α=16

DFRF,  α=0

DFRF,  α=1

DFRF,  α=4

DFRF,  α=16

Fig. 4. Average BS off probabilities and frequency reuse factor in NANOS.

for various numbers of MSs per BS, such phenomenon is

revealed more clearly. NANOS significantly increases through-

puts of dissatisfied MSs while slightly sacrificing those of

oversatisfied MSs in underloaded networks. Therefore, we

conclude that NANOS gives preferential treatments to discon-

tented MSs with large α by proving itself an able coordinator

to better channel conditions around cell boundaries.

We can summarize the aforementioned results as follows:

Network-wide opportunistic scheduling remarkably improves

the throughput performance of users around cell boundaries by

offering fairer chances to them while the aggregate throughput

is maintained. Network-wide opportunistic scheduling is most

suitable for fairness-oriented or underloaded networks.

Let us turn our attention on the probability that BS does not

transmit data, i.e., Poff
.
= Prob{pn(t) = 0}. It is clear from

Fig. 4 that NANOS controls BS powers more aggressively as α
becomes larger and K/N gets smaller except the case K/N =
1 where too many BSs (≈ 0.363×37) having no MSs in their

cells are excluded from the calculation of Prob{pn(t) = 0}.

Moreover, it should be remarked that DFRF
.
= (1 − Poff)

−1

can be interpreted as dynamic frequency reuse factor where

DFRF−1 · B represents the portion of bandwidth utilized for

achieving the network objective. As shown in Fig. 4, DFRF

increases with α and decreases with K/N .

B. NANOS as an Implicit Load Balancer

Compared with existing frequency reuse schemes where all

BSs should follow a global rule that specifies the usage of

the whole bandwidth in the network and cannot be adapted

dynamically, NANOS can cope with hot-spot scenarios in

which several cells (called hot-spot cells) are more crowded

than the other cells in the network.

To avoid repetitive figures and results, only the probability

that each BS is turned off in NANOS is shown in Fig. 5 for

two cases: (i) without hot-spot cells, and (ii) with hot-spot

cells. The number of MSs per BS is 10 and α = 16 in all

cases. In Fig. 5(a), the MS density function in each BS is

given by the same function used in Section IV-A. In Fig. 5(b),

it is assumed that each of six hot-spot cells, i.e., BS 8, 10, 12,
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Fig. 5. Per-BS off probabilities in NANOS with and without hot-spot cells.

14, 16 and 18 in Fig. 1 has twice as many MSs as each of

the other cells has in average while the total number of MSs

in the two networks is 370 (= 37 × 10) for all cases.

It is shown in Fig. 5(b) that NANOS with hot-spot cells

provides more scheduling chances to MSs in hot-spot cells

by preventing hot-spot cells from being turned off. That is,

NANOS can be viewed as an implicit load balancer which

improves the network-wide utilities of fairness-oriented net-

works through inter-cell power control. For reference, Poff of

hot-spot cells and the others are 0.090 and 0.462, respectively,

as shown in Fig. 6. In addition, it is shown in Fig. 5(a) that

NANOS differentiates Poff of BSs even if there are no hot-spot

cells. As outer cells are interfered with by less number of cells

than inner cells are, there is an upward tendency of Poff with

distance from the center. As shown in Fig. 6, Poff of BS 1 (tier

1), BS 2∼7 (tier 2), BS 8∼19 (tier 3), and BS 20∼37 (tier 4)

are 0.259, 0.272, 0.288 and 0.346, respectively.
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Fig. 6. Comparison of Per-BS off probabilities in NANOS.

C. Discussion on Simulation Results

Unlike wired networks, wireless networks inclining to max-

min fair bandwidth allocation suffer from solidarity property

[4] that forces all users to have the same throughput. For

instance, let us consider a wireless network where all BS trans-

mit data all the time, i.e., pn(t) = p, and MS i ∈ Kn achieves

average throughput r̂i when it monopolizes BS n. If we neglect

the opportunistic gain caused by user diversity and denote the

portion of time-slots allocated to MS i by τi, r̂is should satisfy

r̂iτi = r̂jτj for any i, j ∈ Kn, and
∑

i∈Kn
τi = 1. In this case,

it is easy to show that the actual average throughputs of all

MSs are equalized as r̄ = 1/
∑

i∈Kn
r̂−1
i , which illustrates

how max-min wireless networks suffer from their fairness

objective. Thus it is important to improve r̂is of the tail-enders

when fairness is preferable to efficiency.

Besides, it sounds plausible that oversatisfied users are will-

ing to return their utilities in lightly-loaded networks, whereas

it does not make sense to divert utilities of more satisfied

users to less satisfied users in heavily-loaded networks. That is,

fairness is preferable to efficiency in lightly-loaded networks.

V. CONCLUSION

Prospective high speed wireless networks [15], [16] are

faced with wireless environments where downlink signals from

different base stations are randomly interfering with each other

while those from the same BS are orthogonal to each other.

Aggregate throughput increases as wireless networks adopt

more advanced wireless techniques and broader frequency

bands, but on the other hand users at cell boundaries are still

suffering from the inter-cell interference problem. Therefore, it

is imperative that a sophisticated inter-cell scheduling scheme

should provide satisfactory throughput to users who have

been treated unfairly for their disadvantageous positions. It

is also remarkable that there is a consensus of opinion in the

evolved UTRA [32] that cell throughput can be sacrificed for

users at cell boundaries not to mention that several inter-cell

interference mitigation schemes are in the design stage.

Our contribution is four-fold: Firstly, to the best of our

knowledge, this is the first work dealing with an analytical

framework that optimizes generalized utilities of multi-cell

networks through network-wide opportunistic scheduling and

power control. Secondly, we have shown that the optimization

can be simplified because network-wide opportunistic power

control can be absorbed into the network-wide opportunis-

tic scheduling when the underlying physical layer is in the

linear regime. Thirdly, we have proposed a heuristic algo-

rithm which makes distributed and simplified operations of

base stations possible. Fourthly, we have obtained remarkable

findings which answer the questions brought up in Section I

by simulating various scenarios. In particular, network-wide

opportunistic scheduling brings on significant performance

improvement to discontented mobile stations at cell boundaries

and is most suitable for

1) networks having a preference for fairness to efficiency

because users demand their throughputs to be larger than

a certain threshold and

2) underloaded networks where excessively satisfied users

do not mind reducing their utilities.

It should be remarked that the generalized proportional fair

scheduling, which covers most well-known fairness concepts,

becomes meaningless for networks pursuing fairness criteria

fairer than proportional fairness, i.e., α > 1, if there is no

interference coordination between neighboring base stations.

Our last finding is that network-wide opportunistic scheduling

is capable of elevating fairness in multi-cell networks with

hot-spots while existing frequency reuse schemes are useless

for localized overloading.

Though we have barely managed to finish evaluating per-

formance of network-wide opportunistic scheduling by our

heuristic algorithm, it is necessary to develop an advanced

algorithm which has lower computational complexity and

results in better performance.

APPENDIX: PROOFS

A. Proof of Observation 1

If there is no load balancing, the set of MSs, K, is divided

into N disjoint sets, K1, . . . ,KN , such that

⋃
i∈N Ki = K and Ki

⋂
Kj = ∅ for i 6= j,

which also implies that Ikn(t) = 0 if k /∈ Kn. Since this

condition forces MSs to belong to predetermined BSs, (4) be-

comes equivalent to
∑

k∈Kn
Ikn(t) = 1, (5) becomes needless,

and (3) is reduced to r̄k(t) = 1
t

∑t
τ=1 rkn(τ)Ikn(τ) where

k ∈ Kn. If transmission powers of BSs are not adjustable, it

is easy to see that
∑

k∈Kn
Uk(r̄k(t)) depends only on Ikn(t)

where k ∈ Kn. Therefore, each BS can maximize its own

objective
∑

k∈Kn
Uk(r̄k(t)) independently.

B. Proof of Proposition 1

Let us denote the given objective function by f(x). If df
dx

=

a−
∑M

i=1
ai

(bi+x)2 = 0 holds, at least one ai should be positive

by the assumption a > 0. Thus it is straightforward to see that

df

dx
= 0 =⇒

d2f

dx2
> 0. (24)
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This means that whenever the function df
dx

crosses the value

0, it is strictly increasing. Therefore it can cross the value 0
at most once. If df

dx
does not cross the value 0 at all, then

f(x) is either strictly increasing or strictly decreasing, i.e.,
df
dx

> 0, ∀x ∈ [0, x] or df
dx

< 0, ∀x ∈ [0, x]. Otherwise it

must cross the value 0 exactly once, say at x̃ ∈ [0, x]. Since
d2f
dx2 (x̃) > 0, it follows that df

dx
< 0, ∀x ∈ [0, x̃), and df

dx
> 0,

∀x ∈ (x̃, x]. Thus, it can be easily shown that, for each distinct

x1, x2 in the interval [0, x] with df
dx

(x1) · (x2 − x1) ≥ 0, we

have f(x2) > f(x1). Therefore, f(x) is strictly pseudoconvex

[25, pp. 113]. Since every differentiable strictly pseudoconvex

function is strongly quasiconvex [25, pp. 112], f(x) satisfies

f(x) < max {f(0), f(x)} , ∀x ∈ (0, x).

C. Proof of Theorem 1

If the factor 1
log 2 in C(x) = x

log 2 is ignored, the objective

function in (13) becomes:

∑

n∈N

Bwk(n,t)

[r̄k(n,t)n(t − 1)]α
·

pn(t)gk(n,t)n(t)

σ2
k(n,t) +

∑N
i=1
i6=n

pi(t)gk(n,t)i(t)
. (25)

If we examine the above expression carefully, we can see

that Proposition 1 is applicable to (25) with the following

substitutions:

N → M + 1, pm(t) → x, p → x,

Bwk(m,t)gk(m,t)m(t)

[r̄k(m,t)m(t − 1)]α
(

σ2
k(m,t) +

∑N
i=1
i6=m

pi(t)gk(m,t)i(t)

) → a

Bwk(n,t)pn(t)gk(n,t)n(t)

[r̄k(n,t)n(t − 1)]αgk(m,t)m(t)
→ an

(
σ2

k(n,t) +
∑N

i=1
i6=n, m

pi(t)gk(n,t)i(t)

)/
gk(m,t)m(t) → bn.

Note that pm(t) appears at no constants other than variable

x. In this way, we can show that, for each variable pm(t),
the maximum of the objective function in (13) is achieved at

pm(t) = 0 or pm(t) = p. We can also see that the conclusion

is independent of Ω(t). This completes the proof.

D. Proof of Theorem 2

According to the arguments we provided in Section II-D,

ϕ(N, K) can be written as follows.

ϕ(N, K) =
N∑

i=0

N Ci · KPi =
N∑

i=0

N Ci · KPN−i (26)

=
N∑

i=0

N ! · K!

(N − i)! · i! · (K − N + i)!

= N ! · LK−N
N (−1) (27)

where the equality in (27) holds by the definition of the

associated Laguerre polynomial [31, pp. 832]:

Lk
n(x) =

n∑

i=0

(n + k)!

(n − i)! · (k + i)! · i!
(−x)i.

It is also shown in [31, pp. 833] that the Rodrigues represen-

tation of Lk
n(x) can be obtained as

Lk
n(x) =

exx−k

n!

dn

dxn

(
e−xxk+n

)
.

Therefore, we can simplify (27) further as follows.

ϕ(N, K) = e−1(−1)−(K−N) dN

dxN

(
e−xxK

) ∣∣∣
x=−1

=

∣∣∣∣
dN

dxN

(
e−x−1xK

) ∣∣∣∣
x=−1

.
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[13] P. Brémaud, Markov Chains, Gibbs Field, Monte Carlo Simulation and
Queues. Springer-Verlag, 1999.

[14] 3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; Physical layer procedures (FDD) (Release 4), 3GPP
Std. Tech. Rep. 25.214, Mar. 2003.

[15] Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access
Systems–Amendment for Physical and Medium Access Control Layers
for Combined Fixed and Mobile Operation in Licensed Bands, IEEE
Std. 802.16e, 2005.

[16] 3rd Generation Partnership Project; Technical Specification Group Radio
Access Network; Feasibility study for evolved UTRA and UTRAN
(Release 7), 3GPP Std. Tech. Rep. 25.912, Sep. 2006.

[17] Downlink inter-cell interference co-ordination/avoidance–evaluation of
frequency reuse, 3GPP TSG-RAN WG1 Contribution R1-061 374,
2006. [Online]. Available: http://www.3gpp.org/ftp/tsg ran/WG1 RL1/
TSGR1 45/Docs/R1-061374.zip

[18] S. G. Kiani, G. E. Øien, and D. Gesbert, “Maximizing multicell capacity
using distributed power allocation and scheduling,” in Proc. IEEE

WCNC, Hong Kong, Mar. 2007.
[19] M. K. Karakayali, G. J. Foschini, and R. A. Valenzuela, “Network

coordination for spectrally efficient communications in cellular systems,”
IEEE Wireless Commun. Mag., vol. 13, pp. 56–61, Aug. 2006.

[20] G. Li and H. Liu, “Downlink radio resource allocation for multi-cell
OFDMA system,” IEEE Trans. Wireless Commun., vol. 5, pp. 3451–
3459, Dec. 2006.



12

[21] H. Liu and G. Li, OFDM-Based Broadband Wireless Networks: Design

and Optimization. Wiley-Interscience, 2005.
[22] A. L. Stolyar, “On the asymptotic optimality of the gradient scheduling

algorithm for multiuser throughput allocation,” Oper. Res., vol. 53, no. 1,
pp. 12–25, Jan. 2005.

[23] R. Agrawal and B. Subramanian, “Optimality of certain channel aware
scheduling policies,” in Proc. 40th Annual Allerton Conf. Comm.,
Control, and Comput., Monticello, IL, Oct. 2002.

[24] H. J. Kushner and P. A. Whiting, “Convergence of proportional-fair
sharing algorithms under general conditions,” IEEE Trans. Wireless

Commun., vol. 3, pp. 1250–1259, Jul. 2004.
[25] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming:

Theory and Algorithms, 2nd ed. John Wiley & Sons Inc., 1993.
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