
symmetryS S

Article

Joint Node Selection and Resource Allocation for
Task Offloading in Scalable Vehicle-Assisted
Multi-Access Edge Computing

Xuan-Qui Pham , Tien-Dung Nguyen, VanDung Nguyen and Eui-Nam Huh *

Department of Computer Science and Engineering, Kyung Hee University, Yongin-si 17104, Korea;

pxuanqui@khu.ac.kr (X.-Q.P.); ntiendung@khu.ac.kr (T.-D.N.); ngvandung85@khu.ac.kr (V.N.)

* Correspondence: johnhuh@khu.ac.kr; Tel.: +82-031-201-2454

Received: 06 December 2018; Accepted: 02 January 2019; Published: 07 January 2019
����������
�������

Abstract: The resource limitation of multi-access edge computing (MEC) is one of the major issues in

order to provide low-latency high-reliability computing services for Internet of Things (IoT) devices.

Moreover, with the steep rise of task requests from IoT devices, the requirement of computation tasks

needs dynamic scalability while using the potential of offloading tasks to mobile volunteer nodes

(MVNs). We, therefore, propose a scalable vehicle-assisted MEC (SVMEC) paradigm, which cannot

only relieve the resource limitation of MEC but also enhance the scalability of computing services

for IoT devices and reduce the cost of using computing resources. In the SVMEC paradigm, a MEC

provider can execute its users’ tasks by choosing one of three ways: (i) Do itself on local MEC,

(ii) offload to the remote cloud, and (iii) offload to the MVNs. We formulate the problem of

joint node selection and resource allocation as a Mixed Integer Nonlinear Programming (MINLP)

problem, whose major objective is to minimize the total computation overhead in terms of the

weighted-sum of task completion time and monetary cost for using computing resources. In order

to solve it, we adopt alternative optimization techniques by decomposing the original problem into

two sub-problems: Resource allocation sub-problem and node selection sub-problem. Simulation

results demonstrate that our proposed scheme outperforms the existing schemes in terms of the total

computation overhead.

Keywords: task offloading; resource allocation; mobile cloud computing; multi-access edge

computing; vehicular cloud; Internet of Things

1. Introduction

During the last decade, we witnessed a striking rise in population of mobile Internet of Things

(IoT) devices, such as smart phones, tablets, wearable devices, and sensors. In addition, according

to Information Handling Services Markit company, the IoT market will grow from an installed base

of 15.4 billion devices in 2015 to 30.7 billion devices in 2020 and 75.4 billion in 2025 [1]. Together

with it, a new breed of applications and services for IoT devices is constantly emerging and attracting

great attentions. For example, the Internet of Medical Things (IoMT) [2] is an application of the IoT

for medical and health-care purposes, from remote monitoring to smart sensors and medical device

integration. The IoMT cannot only provide better treatment and assistant services to patients and

disabled people in daily routine, but also offer health-care providers with actual health data to identify

issues before they become critical [3,4]. Besides health-care systems, the IoT can also assist in the

integration of communications, control and information processing across various transportation

systems, which helps improve the efficiency and convenience of modern day transportation [5].

In particular, the IoT is used for smart road and traffic management as a means of reducing traffic

Symmetry 2019, 11, 58; doi:10.3390/sym11010058 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0003-3684-2923
https://orcid.org/0000-0002-3940-3929
http://www.mdpi.com/2073-8994/11/1/58?type=check_update&version=1
http://dx.doi.org/10.3390/sym11010058
http://www.mdpi.com/journal/symmetry

Symmetry 2019, 11, 58 2 of 17

congestions or redirecting traffic in response to an accident or other types of hazard by building

sensors into highways and surface streets [6]. Moreover, the IoT has driven the autonomous vehicle

revolution. Modern vehicles utilize a series of radar lasers, high-powered cameras, and smart sensors

that map out the vehicles’ surrounding. Accordingly, many applications for autonomous vehicles

have emerged, and can be classified into safety applications (e.g., localization and navigation, obstacle

detection, accident avoidance, remote-sensing, etc.) [7–10] and non-safety applications (e.g., media

sharing, infotainment, file transfer, gaming, etc.) [11–13]. Not only that, the applications of the IoT can

be found in other areas, such as home automation [14], industrial manufacturing [15], environmental

monitoring [16], and so on. Therefore, along with the explosive growth of IoT devices, the potential of

next-generation IoT applications is boundless and they affect every aspects of human life.

However, these next-generation IoT applications usually require intensive computation capacity

and persistent data processing. Meanwhile, IoT devices typically have intrinsic limitations of

battery life, processing power, storage capacity, and network resources. To address this challenge,

mobile cloud computing (MCC) [17] has been introduced to assist IoT devices by enabling offloading

compute-intensive, resource-consuming tasks up to a powerful computing platform in cloud.

Nevertheless, because of the far distance between the cloud and IoT devices, traditional MCC has

the drawbacks of high transmission delay, poor reliability, heavy burden on network performance,

and degradation of quality of service (QoS).

Multi-access edge computing (MEC) [18] or formerly mobile edge computing, as a new

architecture and key technology for the coming 5G networks, has been proposed to tackle the above

issues. MEC promotes the idea of deploying cloud resources (e.g., MEC servers) at the edge of networks

in close proximity to IoT devices (e.g., WiFi access points and base stations). By this way, MEC can

provide low-latency high-reliability computing services for IoT devices. Similar concepts including fog

computing [19] and cloudlet [20] have been perceived as what is known as edge computing paradigm.

However, considering the economic and scalable deployment, the resources of MEC are often limited.

The rapid increase of task requests from IoT devices will cause the resource bottleneck of MEC servers,

and considerably affect the task execution delay.

To deal with the resource limitation of MEC, a solution is to integrate MEC and remote cloud to

extend the total resource capacity [21–24]. The benefit of scalability, on-demand and pay-as-you-go

services of the cloud can help the MEC fulfill the increasing demands of large-scale compute-intensive

offloading tasks if the resources of MEC are not sufficient. Moreover, thanks to the widespread

popularity of the passive optical networks (PONs) recently, the latency and reliability during the data

exchange with the centralized cloud via the wide area network (WAN) have been well improved [21].

Hence, cloud computing and MEC are complementary technologies.

On the other hand, vehicular cloud (VC) [25], the merging of MCC and Vehicular Ad hoc

Network (VANET), has also emerged as another extension of the MEC resources by leveraging the

on-board resources in participating vehicles. In [26], vehicle as a resource (VaaR) vision is introduced

and stimulated by the ubiquity of vehicles and the vehicular resources that are readily available.

To better perceive the VaaR potentialities, in 2015, Gartner estimated a quarter billion connected

vehicles on the road globally by 2020, making connected cars a key enabler for the revolution of

the IoT [27]. Thanks to the advances in automotive industry, vehicles are augmented with a variety

of resources (e.g., wireless communication, on-board storage, and computing units), and can be

regarded as “computers-on-wheels”. However, currently these resources are not exploited efficiently.

Their on-board resources are usually under-utilized for most of their time, during which can be used

for other task. Also, urban vehicular networks are recognized as a significant component of the

future intelligent transportation, supporting three types of communication: Between vehicles (V2V),

between vehicles and infrastructures (V2I and I2V), between vehicles and any neighboring object

(V2X) communications [28]. These features help vehicles become potential computing nodes in a

cloud computing network. For example, in [29,30], vehicles are employed to share the computation

tasks offloaded by MEC providers. By integrating various usable resources of volunteer vehicles,

Symmetry 2019, 11, 58 3 of 17

we can further relieve the resource limitation of MEC, enhance the scalability of computing services

for IoT devices and reduce the cost of using cloud resources. However, we note that most recent task

offloading studies to address the resource limitation problem of MEC have only taken the MEC and

remote cloud resources into consideration while ignoring the abundant resources that can be offered

by volunteer vehicles in the VC.

Therefore, in this paper, we propose to combine MEC with fixed remote cloud and vehicular cloud

to expand the currently available resources of MEC for task requests from IoT devices. In our scenario,

a MEC provideroffers computing services for IoT devices. After receiving the task requests from

IoT devices, the MEC provider makes a strategy to allocate these computation tasks to a computing

platform originated from the infrastructure of MEC, remote cloud, and vehicular cloud. The remote

cloud can help execute excessive offloading tasks of MEC. However, it is accompanied by monetary

cost charged to the MEC provider for using the cloud resources. Meanwhile, in the vehicular cloud,

we use buses in the VC as candidate mobile volunteer nodes (MVNs) that share their idle computing

resources for tasks offloaded from the MEC provider. Incentives are offered to the owners of MVNs

to encourage sharing their resources. Therefore, besides task completion time, the monetary cost for

using computing resource should be in consideration of the MEC provider.

The main contributions of this paper are summarized as follows.

• We investigate an innovative framework of task offloading in a scalable vehicle-assisted MEC

(SVMEC), where the MEC capacity is extended by renting resources from a remote cloud and

vehicular cloud. We stand on the perspective of a MEC provider, whose objective is to minimize

the total computation overhead in terms of the weighted-sum of task completion time and

monetary cost for using computing resources.
• We formulate the problem of joint node selection and resource allocation as a Mixed Integer

Nonlinear Programming (MINLP) problem that jointly optimizes the task offloading decisions

and computing resource allocation to the offloaded tasks, so as to minimize the total computation

overhead of the MEC provider.
• We solve the problem by decomposing the original problem into two-subproblem (i) Resource

allocation (RA) problem with fixed task offloading decision and (ii) Node selection (NS) problem

that optimizes the optimal-value function based on the solution of RA problem.
• We also justify the efficiency of our proposed scheme by extensive simulations. We compare the

performance in terms of total computation overhead between our proposed scheme and three

other strategies. The comparison is conducted under different situations, such as different number

of tasks and task’s profiles (i.e., compute-intensive and data-intensive tasks). In each situation, we

also analyze the trend of task distribution on MEC, remote cloud, and MVNs in order to explain

the achieved result of our proposal.
• Based on the experimental results, we can conclude that compared with other strategies,

our proposed scheme provides the MEC provider a better solution to optimize the total

computation overhead.

The remainder of this paper is organized as follows. In Section 2, we discuss some related works.

The system model and optimization problem are described in Section 3. We present our proposed

solution in Section 4. Simulation results are presented and discussed in Section 5, followed by our

conclusions in Section 6.

2. Related Work

In recent year, there have been various studies that attempt to solve task offloading problem

in MEC. The cooperation of multi-level central/edge clouds introduces new challenges and

attracts relevant investigations on proper node selection and resource allocation for task offloading.

For example, Zhao et al. [24] proposed a cooperative scheduling scheme of MEC (so-called local cloud)

and central cloud to maximize the amount of the tasks served by the MEC while satisfying the delay

requirements of the offloaded tasks. The task offloading decision depends on the task priorities in

Symmetry 2019, 11, 58 4 of 17

terms of delay requirements, and the availability of MEC resources. Specifically, the offloaded tasks are

firstly delivered to the local scheduler within the MEC. The scheduler applies a threshold-based policy,

which defines several buffer thresholds for each priority level. When the computation load of the MEC

server exceeds the buffer threshold, the scheduler delegates the task to the central cloud. Meanwhile,

in [31], the minimization of the task execution delay is done by allocating computing resources of

a cluster of nearby MECs, while avoiding using the central cloud. The MEC cluster is formed by

means of a cooperative game approach such that the available computation resources are maximally

exploited while participating MECs receive incentives in a fair manner. Not only the execution delay,

the selection of computing nodes in [32] also considers power consumption of the computation nodes.

This paper proposes three different MEC clustering strategies to handle a single user’s request in order

to minimize execution delay, minimize overall power consumption of cluster and minimize the power

consumption of each MEC in the cluster, respectively. This work is extended to a multi-user scenario

in [33] where each user has assigned different cluster size depending on the applications and the user’s

requirements. Note that in most of these works, the objective is to minimize the execution delay of

the offloaded tasks and/or the power consumption of computing nodes while the cost for using the

resources is not considered. Moreover, the resources are fixed servers at the edge or central cloud,

while other mobile volunteer resources (e.g., vehicular cloud) are also not considered.

On the other hand, there are also existing researches on task offloading problem in vehicular cloud.

The vehicular cloud consists of both vehicles in movement and statically parked ones. The authors

in [34,35] propose to consider parked vehicles for task offloading and cooperative sensing. The parked

vehicles can be treated as static cloud nodes, which are stable resources and the corresponding task

offloading policy has been well examined [18]. Many other researches focus on utilizing vehicles in

movement. In [36,37], the centralized task offloading and resource allocation problem in vehicular

cloud are formulated based on a semi-Markov decision process (SDMP) approach in order to maximize

the total long-term expected reward of VC in terms of both the income and cost of VC as well as the

variability feature of available resources. However, centralized task scheduling requires large signaling

overheads for updating vehicular states, and the SMDP-based approach suffers from high complexity,

and thus cannot be applied in the scenarios of high density of vehicles. Alternatively, task offloading

can be in distributed manner, i.e., each users makes task offloading decisions individually [38].

However, in this case, it still requires exchanges of vehicular states or requires a learning-based

technique to obtain the performance of other vehicles [39]. To deal with the uncertainty of vehicle

movements and improve service reliability, task replication policies are also proposed, which allows

one task to be executed by several vehicles at the same time [40,41]. However, the drawback of the

task replication approach is the high resource cost. Moreover, it is noteworthy that the above works

focus on task offloading among vehicles in the VC by coordinating the resources of all participants in

the VC while the utilization of remote cloud resources is not considered explicitly. In fact, if there are

no sufficient available resources in the VC, the tasks will be simply offloaded to remote cloud.

Different from the mentioned papers, our paper focuses on the scenario that a MEC provider

can execute its computing tasks locally or offload them to remote cloud or mobile volunteer nodes

in the VC. In the literatures, few works consider offloading tasks from MEC to VC. For example,

in [29], the authors consider a roadside cloudlet system, in which public service vehicles, such as buses,

are leveraged as fog nodes to accomplish the tasks offloaded by the cloudlet. The authors propose an

offloading strategy based on genetic algorithm, which enables the roadside cloudlet to spend the least

incentive cost to motivate the bus and satisfy user experience. However, the paper does not consider

resources of MEC servers. In [30], a combination of vehicular cloud, fixed central cloud, and cloudlet

is proposed to expand the currently available resources. When infrastructure-based cloud does not

satisfy the offloading requirements, a reliable worker node in VC will be selected to accomplish the

offloading task. However, the authors consider offloading only one task and the cost for using the

cloud resources is neglected. Hence, in this paper, we will provide an efficient task offloading strategy

considering both the completion time of tasks and monetary cost for using the computing resources.

Symmetry 2019, 11, 58 5 of 17

3. System Model and Problem Formulation

3.1. Scenario Description

We consider a scalable vehicle-assisted multi-access edge computing (SVMEC) paradigm as shown

in Figure 1. SVMEC includes three parts: MEC provider, remote cloud, and vehicular cloud (VC).

The MEC provider includes two main components: MEC server and vehicular cloud controller (VCC),

which are deployed near the roadside base station. The MEC server virtualizes physical resources

and acts as a cloud computing node. The VCC stores the status information (e.g., real-time location,

available resources) of vehicles within the communication coverage of the MEC. IoT devices have

compute-intensive tasks that cannot be accomplished themselves. So they access the MEC provider

via access point and use the computing service of the MEC provider. Nevertheless, the computation

resources of MEC are limited. When many IoT devices have requests, the resources of MEC may

be insufficient.

Internet

MEC provider

Vehicular cloud

controller
MEC server

IoT devices

Remote cloud

Vehicular cloud

Mobile volunteer nodeMobile volunteer node

Access service

Offloading task

Figure 1. Illustration of scalable vehicle-assisted multi-access edge computing (SVMEC).

The resource capacity of MEC is extended by computing resources from a remote cloud.

The remote cloud has rich computation resources, but it takes time to transfer data to the cloud

node for task execution. Moreover, there is monetary cost charged to the MEC provider for the use of

cloud resources.

On the other hand, the SVMEC transforms the conventional VC model and aims at exploiting the

under-utilized resources of the vehicles in the VC. By this way, SVMEC can enhance its computing

scalability by enabling different number of volunteering vehicles. We use the word “mobile volunteer

node” (MVN) to indicate the vehicle that share its excess resource for the workload of the MEC.

Specifically, we consider buses as potential candidates. We distinguish buses and other vehicles

since buses have fixed mobility trajectories and strong periodicity, which are desirable for the MEC

provider to offload the computing tasks. In addition, buses are public facilities and hence the issues

of privacy and security are alleviated. The MEC provider offers some incentive to the bus owners to

encourage sharing their excess resources. It is also noteworthy that compared to the rural environment,

the SVMEC paradigm is better suited to the urban environment because of the following reasons. First,

the vehicular network infrastructure is more developed and the mobility of vehicles is reasonably low

in urban areas, so it enables a guaranteed and prolonged duration of the connection between vehicles

and the infrastructure. In addition, the greater traffic density in urban areas provides more MVNs for

task offloading.

The SVMEC works as a cyclical mechanism. In every cycle, the MEC provider has a number

of tasks to be accomplished and the information of each computing node (e.g, available resources,

Symmetry 2019, 11, 58 6 of 17

duration and data rate of connection with MEC). The MEC provider makes a strategy of node selection

and resource allocation including two parts: (i) In which node should each task be placed, i.e., either

MEC node, cloud node, or mobile volunteer node; and (ii) how much computing resource of the node

should be allocated to each task? The main objective of the MEC provider is to minimize the total

computation overhead in terms of the weighted-sum of task completion time and monetary cost for

using cloud resources.

3.2. Computing Node and Task Model

Let M = {1, 2, 3, ..., M} denote the set of mobile volunteer nodes (MVNs) within the

communication coverage of the MEC in one cycle. Let J = {−1, 0, 1, 2, 3, ..., M} denote the set

of all computing nodes in the SVMEC. A computing node is indexed by j ∈ J , in which j = −1

indicates the MEC server, j = 0 indicates the remote cloud server, and j ∈ {1, 2, ..., M} indicates the jth

MVN. Here, M ⊂ J .

Let N = {1, 2, 3, ..., N} denote the set of tasks of the MEC provider. Each computation task can

be described by a tuple of two parameters as Ti = (di, wi), ∀i ∈ N , where di is the size of input

data for the computation (in bits), wi is the computation workload or intensity, i.e., the amount of

computation to accomplish the task (in CPU cycles). We assume that task Ti is atomic and cannot

be divided. Each computation task is executed on only one computing node, i.e., either MEC server,

remote cloud server, or a MVN.

3.3. Local Computing on MEC

When task Ti is executed locally on MEC (i.e., j = −1), we denote fi,−1 as the computational

resource (in CPU cycles per second) allocated to task Ti by the MEC server. The completion time of

task Ti on MEC can be calculated as

ti,−1 =
wi

fi,−1
(1)

In this case, since the task is executed on the computing node owned by the MEC provider, there is

no monetary cost for using the resource.

3.4. Offloading to Remote Cloud

In the case that the MEC provider decides to offload its task Ti to the remote cloud (i.e., j = 0),

the completion time of the task is composed of the transmission time of the input data to the remote

cloud, and the execution time of the task on the remote cloud. Since the size of the computation

outcome is much smaller than that of the input data, we omit the time cost for sending the computation

result from the remote cloud to the MEC [21,22,29]. Let fi,0 and R0 be the computational resource

allocated to task Ti by the remote cloud and the uplink data rate of the wired link from the MEC to the

remote cloud, respectively. The completion time of task Ti by offloading to the remote cloud can be

calculated as

ti,0 =
di

R0
+

wi

fi,0
(2)

The MEC provider has to pay for cloud computing resource to accomplish its workload. Let δ
comp
0

be the unit cost of computation for using remote cloud resource. The monetary cost of task Ti on the

remote cloud node is calculated as

ci,0 = δ
comp
0 wi (3)

3.5. Offloading to Mobile Volunteer Node

In this case, the selection of a MVN for task offloading depends on the node’s duration within the

communication range of MEC.

Symmetry 2019, 11, 58 7 of 17

We consider a two-dimensional space. Let (x0, y0) and Dr be the coordinate and the maximum

communication radius of the base station, respectively. Since the MVNs (i.e., buses in the VC) have

fixed mobility trajectories, the VCC can easily estimate the duration of each MVN m ∈ M within

the communication coverage of MEC, denoted by ∆tm. Let lm = {(x1, y1), (x2, y2), ..., (xk, yk)} be the

two-dimensional coordinate trajectory of the MVN m ∈ M such that the distance between the base

station and the moving trajectory lm satisfies

dmi
=
√

(xi − x0)2 + (yi − y0)2 ≤ Dr, i = 1, 2, 3..., k (4)

At each coordinate (xi, yi), the transmission rate can be obtained by

Rmi
= Wmlog2

(

1 +
Prd−α

mi

σ2 + I

)

(5)

where Wm is the channel bandwidth, Pr is transmission power of base station, α is the path loss

exponent, while σ2 and I denote the addictive Gaussian noise and inter-cell interference, respectively.

The average transmission rate of the MEC to MVN m is as follows.

Rm =

k

∑
i=1

Rmi

k
(6)

Since the limited computing resource and transient nature of MVNs, we assume that each MVN

can receive at most one computation task at a given time. Let fm be the computational capacity of the

MVN m. The completion time of task Ti on MVN m can be calculated as

ti,m =
di

Rm
+

wi

fm
, ∀m ∈ M (7)

In this case, the completion time of the task Ti must not exceed the duration of MVN m within the

communication range of MEC. Hence, ti,m ≤ ∆tm, ∀m ∈ M.

If the MVN m accomplishes the offloaded task, it will receive some incentives offered by the MEC

provider to encourage the willingness of MVNs to participate in sharing their resources. Let δ
comp
m be

the incentive unit cost of computation for using resources of the MVN m. We assume that δ
comp
m < δ

comp
0

since it motivates the MEC provider to utilize MVN’s resources in order to reduce the cost of cloud

resources. The incentive cost of task Ti on the MVN m can be obtained by

ci,m = δ
comp
m wi, ∀m ∈ M (8)

3.6. Problem Formulation

The focus of our work is on the perspective of the MEC provider, who aims to minimize the

total computation overhead in terms of the weighted-sum of task completion time and monetary cost

for using cloud resources. We define the node selection profile as X = {xi,j|i ∈ N , j ∈ J }, in which

xi,j = 1 means that task i is placed on node j, and xi,j = 0 otherwise. We denote the resource allocation

profile as F = { fi,j|i ∈ N , j ∈ J }. The objective function is defined as follows.

G(X, F) = ∑
i∈N

∑
j∈J

xi,j

(

λ
t
i ti,j + λ

c
i ci,j

)

, (9)

where λt
i , λc

i ∈ {0, 1}, and λt
i + λc

i = 1 are the weighted parameters of the completion time and

resource cost of task Ti, respectively. They represent the MEC provider’s preference on task completion

time and resource cost, respectively.

Symmetry 2019, 11, 58 8 of 17

For a given node selection profile X, and resource allocation profile F, the optimization problem

of joint node selection and resource allocation (JNSRA) can be expressed as follows.

min.
X,F

G(X, F) (10)

s.t.

xi,j ∈ {0, 1} , ∀i ∈ N , j ∈ J , (10a)

∑
j∈J

xi,j = 1, ∀i ∈ N , (10b)

∑
i∈N

xi,j ≤ 1, ∀j ∈ M, (10c)

∑
i∈N

xi,jti,j ≤ ∆tj, ∀j ∈ M, (10d)

fi,j > 0, ∀i ∈ Nj, j ∈ J , (10e)

∑
i∈Nj

fi,j ≤ f max
j , ∀j ∈ J . (10f)

The constraint in (10a) denotes X is a binary vector. The constraint in (10b) ensures that each

computation task is executed on only one computing node, i.e., either MEC server, remote cloud server,

or a MVN. The constraint in (10c) and (10d) state that each MVN can receive at most one task at a given

time, and the selected MVN accomplishes its assigned task within its duration of connection with MEC.

The constraint in (10e) states that each computing node must allocate a positive computing resource

to each task assigned to it, where Nj = {i ∈ N |xi,j = 1} denotes the set of tasks assigned to the

computing node. The constraint in (10f) makes sure that the total computing resources of a computing

node allocated to its assigned tasks does not exceed its maximum capacity, denoted by f max
j .

4. Joint Node Selection and Resource Allocation Solution

The JNSRA is considered as a Mixed Integer Nonlinear Programming (MINLP) problem since

the node selection profile X is a binary vector and the resource allocation profile F is a continuous

vector. Hence, the JNSRA problem is NP-hard [42]. In this section, we give the solution to the above

problem, which is related with both aspects of node selection and resource allocation. Here, we adopt

alternative optimization techniques and consider two sub-problems as follows.

(i) Computing resource allocation problem: When the strategy of node selection is given, i.e., X = X0,

the original problem in (10) is a convex problem with respect to F. Then we can obtain the optimal

solution F∗ by using the Karush-Kuhn-Tucker (KKT) conditions.
(ii) Node selection problem: Based on the solution F∗, the sub-problem G(X, F∗) is transferred to 0–1

integer programming problem with respect to X. By adopting branch-and-bound algorithm,

the optimal solution X∗ can be obtained.

4.1. Computing Resource Allocation Problem

Theorem 1. Given X = X0, the original optimization problem in (10) with respect to F is a convex

optimization problem.

Symmetry 2019, 11, 58 9 of 17

Proof of Theorem 1. Given X = X0, the objective function becomes function of F. After omitting the

terms of the objective function that are independent with F, we can rewrite the JNSRA problem in (10)

as follows.

min.
F

∑
j∈J

∑
i∈Nj

λt
i wi

fi,j
(11)

s.t.(10e), (10 f).

Notice that the feasible solution set of the above problem is convex. The remaining task is to show

the convexity of the objective function. Denote the objective function in (11) as Ψ(F), we calculate the

second-order derivatives or Hessian matrix ∇2Ψ(F), whose elements are as follows.

∂2Ψ(F)

∂ f 2
i,j

=
2λt

i wi

f 3
i,j

, ∀i ∈ Nj, j ∈ J (12)

∂2Ψ(F)

∂ fi,j∂ fm,n
= 0, ∀(i, j) 6= (m, n) (13)

It is easy to check that ∇2Ψ(F) � 0. Hence, the Hessian matrix is a positive semidefinite matrix.

We conclude that this problem is a convex optimization problem.

Since the problem in (11) is a convex problem, the optimal solution can be obtained by using KKT

conditions. Let ν = {νj}j∈J be the Lagrange multiplier vector associated with the second constraint.

The Lagrange function is as follows.

L(F, ν) = ∑
j∈J

∑
i∈Nj

λt
i wi

fi,j
+ ∑

j∈J

νj(∑
i∈Nj

fi,j − f max
j) (14)

From the KKT conditions, we have

∇L(F, ν) = 0 (15)

∑
i∈Nj

fi,j − f max
j = 0 (16)

By setting the first-order derivative of the Lagrange function with respect to fi,j equal to zero as

in (15), we can obtain the optimal f ∗i,j as follows.

f ∗i,j =

√

λt
i wi

νj
(17)

Substituting (17) into (16), we can obtain the optimal ν∗j as follows.

ν
∗
j =

∑
i∈Nj

√

λt
i wi

f max
j

2

(18)

Finally, substituting (18) back to (17), the optimal computing resource allocation f ∗i,j is given by

f ∗i,j =
f max
j

√

λt
i wi

∑
i∈Nj

√

λt
i wi

(19)

Symmetry 2019, 11, 58 10 of 17

4.2. Node Selection Problem

According to the above discussion, we have obtained the optimal resource allocation F∗. Based on

this, the original problem in (10) is rewritten as follows.

min.
X

∑
i∈N

∑
j∈J

xi,j

(

λ
t
i ti,j + λ

c
i ci,j

)

(20)

s.t.(10a), (10b), (10c), (10d).

where ti,j and ci,j can be given as

ti,j =

wi
f ∗i,−1

, if j = −1

di
R0

+ wi
f ∗i,0

, if j = 0

di
Rj

+ wi
fm

, if j = 1, 2, ...M

(21)

ci,j =

0, if j = −1

δ
comp
0 wi, if j = 0

δ
comp
j wi, if j = 1, 2, ...M

(22)

The above problem is a 0–1 integer programming problem with respect to X. Hence, the problem

can be solved by using the branch-and-bound algorithm. The optimal result represents node selection

and resource allocation strategy of the MEC provider.

5. Performance Evaluation

5.1. Simulation Settings

In this simulation, we evaluate the performance of our proposed scheme, which includes MEC,

remote cloud, and MVNs to collaboratively execute compute-intensive or data-intensive tasks.

For MVNs, we use the Seattle bus trace [43], which was also adopted in some other recent

researches [29,44,45]. The Seattle bus trace includes the actual movement of approximately 1200 city

buses on their normal routes in Seattle, Washington metropolitan area, USA for several weeks. For our

experiment, we choose a sampled map from 23:30 p.m. to 23:40 p.m. of date 30 October in the dataset.

Each record includes the bus route ID and the location in terms of the x-coordinate and y-coordinate

along with time. The MEC base station is assumed to be located at the center of the map of the sampled

dataset and the communication coverage is assumed to be 2 km. Due to the fixed trajectories of the

buses, the number and duration of the buses within the communication range of the MEC in the

cycle time can be estimated. The average data rate of each bus can also be calculated as in Section 3.5.

Among these buses, the MEC provider can choose a number of MVNs for task offloading.

We use the following simulation settings for all experiments. For the computation task Ti,

we adopt the face recognition application in [46,47], where the input data size is di = 2000 KB, and the

required number of CPU cycles is wi = 1000 Megacycles. For the computing nodes, the computational

capacity of the MEC server and remote cloud server are set as 4 GHz and 10 GHz, respectively.

The computational capacity fm of the MVN m ∈ M is randomly assigned from the set {0.5, 0.8, 1.0}

GHz. The uplink data rate from MEC to remote cloud is R0 = 100 Mbps. For wireless communication

from MEC to MVNs, we consider the system using orthogonal frequency-division multiple access

(OFDMA) scheme [48]. We assume that there are 20 equal sub-bands. Each MVN is assigned to one

sub-band. Thus, there are at most 20 MVNs connected to MEC at the same time. The transmission

Symmetry 2019, 11, 58 11 of 17

power of the base station is Pr = 46 dBm and the channel bandwidth is W = 10 MHz. In addition,

there is no interference, we assume the path loss exponent is α = 4, and the background noise power

is σ2 = −100 dBm [21]. From the dataset, the duration of connection with MEC of each MVN ranges

from 20 s to 300 s, and the achieved average data rate from MEC to each MVN ranges from 5 Mbps

to 12 Mbps. The unit cost of computation for using cloud resources and MVNs’ resources are set as

0.9 $/gigacycles and 0.5 $/gigacycles, respectively. The weighted parameters of the task completion

time and monetary cost for using computing resources are both 0.5, i.e., λt
i = λc

i = 0.5, ∀i ∈ N .

Unless otherwise stated, the default number of tasks and MVNs are set as N = 40 and M = 10,

respectively.

5.2. Simulation Results

In the following experiments, we evaluate the offloading performance in terms of total

computation overhead, which is the weighted sum of task completion time and monetary cost for

using computing resources. The proposed scheme is compared with other strategies as follows.

• MEC only scheme: The system includes only MEC server and all computation tasks are executed

locally on MEC server. In this case, there is no monetary cost for using computing resources.

The total computation overhead considers only the completion time of tasks. The resource

allocation strategy in Section 4.1 is applied.
• MEC + Cloud scheme: The system combines MEC server and remote cloud server. The proposed

joint node selection and resource allocation strategy is applied to allocate each computation task to

the MEC server or the remote cloud server in order to achieve optimal total computation overhead.
• Random offloading in MEC + Cloud + MVNs scheme (RO_ECM): The system includes MEC

server, remote cloud server, and MVNs. Each computation task is randomly assigned to only

one computing node, i.e., either the MEC server, the remote cloud server or a MVN with equal

probability such that the resource constraint and duration constraint of the selected computing

node are satisfied. The resource allocation is given by the strategy in Section 4.1.

In Figure 2, we vary the number of tasks from 10 to 100 and evaluate the offloading performance.

Figure 2a compares the performances of our proposed approach and three other schemes. It is shown

that when the number of tasks increases, the total computation overhead of all schemes increases,

especially in MEC only scheme. Due to the resource bottleneck of the MEC server, the completion time

of tasks of MEC only scheme significantly increases and its effect dominates the total computation

overhead. Hence, the performance of MEC only scheme is the worst in most cases (except in case the

number of tasks is small enough for MEC to handle, e.g., N = 10). In MEC + Cloud scheme, although

there is monetary cost for using the cloud resources, the remote cloud can help the overloaded MEC

to execute the increasing number of tasks so that the completion time of tasks can be significantly

reduced. Hence, the performance of MEC + Cloud scheme becomes much better than that of MEC

only scheme when the number of tasks gets larger. In RO_ECM scheme, besides MEC and remote

cloud, the MEC provider can also utilize MVNs. However, in this case, randomly assigning tasks to

computing nodes with equal probability will not provide a stable and optimal solution. From Figure 2a,

when the number of tasks is N = 10, the performance of RO_ECM scheme is even worse than that of

MEC only scheme. Meanwhile, our proposed scheme can always achieve the best total computation

overhead because it comprehensively considers both the completion time and monetary cost for using

computing resources on MEC, remote cloud and MVNs. Figure 2b shows the task distribution on

MEC, remote cloud and MVNs of the proposed scheme under different number of tasks. It can be

observed that when the number of task is small (N = 10), the percentage of tasks allocated to MVNs

is equal to 0. It means that the tasks can be executed optimally by using MEC and remote cloud and

without using MVNs. It is the reason why the performance of our proposed scheme is the same as that

of MEC + Cloud scheme in case N = 10 as shown in Figure 2a. When the number of tasks increases

from 10 to 40 tasks, the percentage of tasks allocated to MVNs increases until the maximum number

Symmetry 2019, 11, 58 12 of 17

of MVNs (M = 10) is utilized (at N = 40 tasks). Meanwhile, the percentages of tasks allocated to

MEC and remote cloud decrease. When the number of tasks is greater than 40 tasks, the percentage

of tasks allocated to MVNs decreases while the percentages of tasks allocated to MEC and remote

cloud increase. It is because there are no more MVNs that can receive the offloaded tasks and the tasks

will be executed on MEC or remote cloud. Moreover, it can also be seen that the percentage of tasks

allocated to remote cloud is greater than the percentage of tasks allocated to MEC when the number of

tasks increases.

10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

T
o
ta

l
c
o
m

p
u
ta

ti
o
n
 o

v
e
rh

e
a
d

Number of tasks

 MEC only

 MEC+Cloud

 RO_ECM

 Proposed

10 20 30 40
0

25

50

75

100

T
o

ta
l
c
o

m
p

u
ta

ti
o

n
 o

v
e

rh
e

a
d

Number of tasks

(a)

10 20 30 40 50 60 70 80 90 100
0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n
ta

g
e
 o

f
a
llo

c
a
te

d
 t

a
s
k
s

Number of tasks

 MVNs

 Cloud

 MEC

(b)

Figure 2. Performance evaluation under different number of tasks. (a) Comparison of our proposed

scheme and three other schemes; (b) Task distribution of the proposed scheme.

In Figures 3 and 4, we evaluate the offloading performance with respect to the computation

task’s profiles in terms of input data size di’s and computation intensity wi’s, respectively. Figure 3a

shows that when the input data size di increases, the total computation overhead of MEC only scheme

remains unchanged since there is no offloading. However, the performance of MEC only scheme

is the worst due to the high completion time of tasks on MEC. RO_ECM scheme performs better

than MEC + Cloud scheme when the input data size di is small (e.g., in case di = 1 MB and di = 2

MB), however, the performance of RO_ECM scheme significantly decreases and becomes worse than

that of MEC + Cloud scheme when the input data size increases. Meanwhile, our proposed scheme

performs the best when the input data size is small. When the input data size di is large enough (9 MB

in this case), the total computation overhead of our proposed scheme can reach that of MEC + Cloud

scheme. It is caused by the gradual decrease to 0 of the percentage of tasks allocated to MVNs when

the input data size increases as seen in Figure 3b. The reason for this is that by increasing the input

data size, the transmission time of input data to MVNs significantly increases. Due to the unstable

connection with MEC of MVNs, a computation task with small data size is more preferable to be

offloaded to MVNs than one with high data size. Instead of being offloaded to MVNs, the tasks with

high data size can be executed by using MEC and remote cloud. From Figure 4a, we can observe that

the total computation overhead of all schemes increases with the number of CPU cycles wi required to

accomplish the tasks. Similarly, the performance of MEC only scheme is the worst due to the resource

bottleneck of the MEC server. In general, RO_ECM performs better than MEC + Cloud scheme since the

MVNs can help alleviate the workload of MEC and remote cloud as the computation intensity of tasks

increases. Meanwhile, our proposed scheme can always achieve lower total computation overhead

than both MEC + cloud scheme and RO_ECM scheme by performing optimal task distribution on

MEC, remote cloud and MVNs as can be seen in Figure 4b. It shows that the proposed scheme utilizes

the maximal number of MVNs (i.e., M = 10) when the computation intensity of task increases.

Symmetry 2019, 11, 58 13 of 17

1 2 3 4 5 6 7 8 9 10
0

40

80

120

160

200

240

T
o
ta

l
c
o
m

p
u
ta

ti
o
n
 o

v
e
rh

e
a
d

Input data size (MB)

 MEC only

 MEC+Cloud

 RO_ECM

 Proposed

(a)

1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n
ta

g
e
 o

f
a
llo

c
a
te

d
 t

a
s
k
s

Input data size (MB)

 MVNs

 Cloud

 MEC

(b)

Figure 3. Performance evaluation under different tasks’ input data sizes. (a) Comparison of our

proposed scheme and three other schemes; (b) Task distribution of the proposed scheme.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

200

400

600

800

1000

1200

T
o
ta

l
c
o
m

p
u
ta

ti
o
n
 o

v
e
rh

e
a
d

Computation intensity (gigacycles)

 MEC only

 MEC+Cloud

 RO_ECM

 Proposed

0.5 1.0 1.5 2.0
0

50

100

150

200

T
o

ta
l
c
o

m
p

u
ta

ti
o

n
 o

v
e

rh
e

a
d

Computation intensity (gigacycles)

(a)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n
ta

g
e
 o

f
a
llo

c
a
te

d
 t

a
s
k
s

Computation intensity (gigacycles)

 MVNs

 Cloud

 MEC

(b)

Figure 4. Performance evaluation under different tasks’ computation intensities. (a) Comparison of

our proposed scheme and three other schemes; (b) Task distribution of the proposed scheme.

We now conduct an experiment to examine the effect of the number of MVNs M on the total

computation overhead of our proposed scheme. Figure 5 shows that the total computation overhead

declines with the increase of number of MVNs. It is because the increasing number of MVNs brings

more options for the MEC provider to offload the computation tasks to MVNs. When the number of

MVNs M increases from 2 to 10, the total computation overhead decreases dramatically. After that,

it slightly reduces to a stable value.

Finally, by varying the weighted parameter of the completion time λt
i from 0.1 to 0.9 with a step

deviation of 0.1 and setting the weighted parameter of resource cost as λc
i = 1− λt

i , we can also analyze

the effect of the weighted parameters on the completion time of all tasks and monetary cost for using

computing resources. It can be seen from Figure 6 that the changing trends in terms of the completion

time and resource cost are the same in both cases where the number of tasks is N = 40 and N = 50.

It is that the completion time of tasks decreases with the increase of monetary cost for using computing

resources when λt
i increases. In addition, when N = 50, the completion time of tasks and monetary

cost is higher than in the case when N = 40. It is also highly noticeable that the completion time of

tasks and the monetary cost significantly decreases and increases, respectively, when the value of λt
i

Symmetry 2019, 11, 58 14 of 17

changes from 0.1 to 0.2. Therefore, selection of the weighted parameters plays an important role in the

achieved completion time of tasks and monetary cost for using computing resources.

2 4 6 8 10 12 14 16 18 20
60

62

64

66

68

70

T
o
ta

l
c
o
m

p
u
ta

ti
o
n
 o

v
e
rh

e
a
d

Number of MVNs

Figure 5. Effect of the number of mobile volunteer nodes (MVNs) on the total computation overhead.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
80

120

160

200
 Time (N=40)

 Time (N=50)

 Monetary cost (N=40)

 Monetary cost (N=50)

Weighted parameter �
i

t

T
im

e

10

20

30

40

M
o
n
e
ta

ry
 c

o
s
t

Figure 6. Effect of the weighted parameters on the completion time of tasks and monetary cost for

using computing resources.

6. Conclusions

In this paper, we have proposed an SVMEC paradigm, in which the MEC capacity is expanded

by renting resources from a remote cloud and vehicular cloud (VC) so as to efficiently handle the

steep rise of task requests from IoT devices. In our scenario, we use buses in the VC as candidate

mobile volunteer nodes that share their under-utilized resources for tasks offloaded from the MEC

provider. The MEC provider makes a strategy to select proper computing nodes and amount of

computing resources for the task requests of IoT devices. We present the joint node selection and

resource allocation problem with the aim of minimizing the total computation overhead in terms of the

weighted-sum of task completion time and monetary cost for using computing resources. We formulate

Symmetry 2019, 11, 58 15 of 17

the problem as a MINLP and give the solution by alternative optimization techniques. Finally, a lot

of simulations have been conducted and their results prove that our proposed scheme can achieve

better performances than the existing schemes. In future work, we will extend our model considering

the various QoS requirements of task requests. Moreover, it is noteworthy that in addition to buses,

the MVNs can also be extended to other types of vehicle (e.g., cars, trucks, etc.), however, further

investigation should be conducted in order to deal with various mobility trajectories of vehicles.

Author Contributions: Methodology, X.-Q.P.; supervision, E.-N.H.; validation, X.-Q.P.; writing—original draft,
X.-Q.P.; writing—review and editing, X.-Q.P., T.-D.N., and V.N.

Funding: This work was supported by Institute for Information & communications Technology Promotion(IITP)
grant funded by the Korea government(MSIT) (No.2017-0-00294, Service mobility support distributed cloud
technology). It was also supported by Korea Institute for Advancement of Technology(KIAT) grant funded by the
Korea government(MSIT) (Tech Commercialization Supporting Business based on Research Institute-Academic
Cooperation system).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

IoT Internet of Things

MCC Mobile cloud computing

MEC Multi-access edge computing

SVMEC Scalable vehicle-assisted multi-access edge computing

VC Vehicular cloud

VCC vehicular cloud controller

MVN Mobile volunteer node

QoS Quality of service

JNSRA Joint node selection and resource allocation

References

1. Lucero, S. IoT Platforms: Enabling the Internet of Things. 2016. Available online: https://cdn.ihs.com/

www/pdf/enabling-IOT.pdf (accessed on 13 October 2018).

2. Gatouillat, A.; Badr, Y.; Massot, B.; Sejdić, E. Internet of Medical Things: A Review of Recent Contributions

Dealing With Cyber-Physical Systems in Medicine. IEEE Internet Things J. 2018, 5, 3810–3822. [CrossRef]

3. Połap, D.; Winnicka, A.; Serwata, K.; Kęsik, K.; Woźniak, M. An Intelligent System for Monitoring Skin

Diseases. Sensors 2018, 18, 2552. [CrossRef]

4. Malūkas, U.; Maskeliūnas, R.; Damaševičius, R.; Woźniak, M. Real Time Path Finding for Assisted Living

Using Deep Learning. J. Univ. Comput. Sci. 2018, 24, 475–487.

5. Gurvey, S. IoT and Intelligent Transportation. 2015. Available online: https://newsroom.cisco.com/feature-

content?articleId=1601746 (accessed on 18 December 2018).

6. Salman, M.A.; Ozdemir, S.; Celebi, F.V. Fuzzy Traffic Control with Vehicle-to-Everything Communication.

Sensors 2018, 18, 368. [CrossRef]

7. Ito, S.; Hiratsuka, S.; Ohta, M.; Matsubara, H.; Ogawa, M. Small Imaging Depth LIDAR and DCNN-Based

Localization for Automated Guided Vehicle. Sensors 2018, 18, 177. [CrossRef]

8. Połap, D.; Kęsik, K.; Książek, K.; Woźniak, M. Obstacle Detection as a Safety Alert in Augmented Reality

Models by the Use of Deep Learning Techniques. Sensors 2017, 17, 2803. [CrossRef]

9. Qi, B.; Shi, H.; Zhuang, Y.; Chen, H.; Chen, L. On-Board, Real-Time Preprocessing System for Optical

Remote-Sensing Imagery. Sensors 2018, 18, 1328. [CrossRef]

10. Zhu, Q.; Xiao, C.; Hu, H.; Liu, Y.; Wu, J. Multi-Sensor Based Online Attitude Estimation and Stability

Measurement of Articulated Heavy Vehicles. Sensors 2018, 18, 212. [CrossRef]

11. Garrido Abenza, P.P.; Malumbres, M.P.; Piñol, P.; López-Granado, O. Source Coding Options to Improve

HEVC Video Streaming in Vehicular Networks. Sensors 2018, 18, 3107. [CrossRef]

https://cdn.ihs.com/www/pdf/enabling-IOT.pdf
https://cdn.ihs.com/www/pdf/enabling-IOT.pdf
http://dx.doi.org/10.1109/JIOT.2018.2849014
http://dx.doi.org/10.3390/s18082552
https://newsroom.cisco.com/feature-content?articleId=1601746
https://newsroom.cisco.com/feature-content?articleId=1601746
http://dx.doi.org/10.3390/s18020368
http://dx.doi.org/10.3390/s18010177
http://dx.doi.org/10.3390/s17122803
http://dx.doi.org/10.3390/s18051328
http://dx.doi.org/10.3390/s18010212
http://dx.doi.org/10.3390/s18093107

Symmetry 2019, 11, 58 16 of 17

12. Nguyen, T.D.T.; Nguyen, T.D.; Nguyen, V.D.; Pham, X.Q.; Huh, E.N. Cost-Effective Resource Sharing in an

Internet of Vehicles-Employed Mobile Edge Computing Environment. Symmetry 2018, 10, 594. [CrossRef]

13. Zhu, W.; Li, D.; Saad, W. Multiple Vehicles Collaborative Data Download Protocol via Network Coding.

IEEE Trans. Veh. Technol. 2015, 64, 1607–1619. [CrossRef]

14. Froiz-Míguez, I.; Fernández-Caramés, T.M.; Fraga-Lamas, P.; Castedo, L. Design, Implementation and

Practical Evaluation of an IoT Home Automation System for Fog Computing Applications Based on MQTT

and ZigBee-WiFi Sensor Nodes. Sensors 2018, 18, 2660. [CrossRef] [PubMed]

15. Yang, C.; Shen, W.; Wang, X. The Internet of Things in Manufacturing: Key Issues and Potential Applications.

IEEE Syst. Man Cybern. Mag. 2018, 4, 6–15. [CrossRef]

16. Fingas, M.; Brown, C.E. A Review of Oil Spill Remote Sensing. Sensors 2018, 18, 91. [CrossRef] [PubMed]

17. Dinh, H.T.; Lee, C.; Niyato, D.; Wang, P. A survey of mobile cloud computing: Architecture, applications,

and approaches. Wirel. Commun. Mob. Comput. 2013, 13, 1587–1611. [CrossRef]

18. Mach, P.; Becvar, Z. Mobile Edge Computing: A Survey on Architecture and Computation Offloading.

IEEE Commun. Surv. Tutor. 2017, 19, 1628–1656. [CrossRef]

19. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog Computing and Its Role in the Internet of Things.

In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, MCC’12, Helsinki,

Finland, 17 August 2012; ACM: New York, NY, USA, 2012; pp. 13–16.

20. Satyanarayanan, M.; Bahl, P.; Caceres, R.; Davies, N. The Case for VM-Based Cloudlets in Mobile Computing.

IEEE Pervasive Comput. 2009, 8, 14–23. [CrossRef]

21. Guo, H.; Liu, J. Collaborative Computation Offloading for Multiaccess Edge Computing Over Fiber–Wireless

Networks. IEEE Trans. Veh. Technol. 2018, 67, 4514–4526. [CrossRef]

22. Guo, H.; Liu, J.; Qin, H. Collaborative Mobile Edge Computation Offloading for IoT over Fiber-Wireless

Networks. IEEE Netw. 2018, 32, 66–71. [CrossRef]

23. Pham, X.Q.; Man, N.D.; Tri, N.D.T.; Thai, N.Q.; Huh, E.N. A cost- and performance-effective approach for

task scheduling based on collaboration between cloud and fog computing. Int. J. Distrib. Sens. Netw. 2017,

13, 1550147717742073. [CrossRef]

24. Zhao, T.; Zhou, S.; Guo, X.; Zhao, Y.; Niu, Z. A Cooperative Scheduling Scheme of Local Cloud and Internet

Cloud for Delay-Aware Mobile Cloud Computing. In Proceedings of the 2015 IEEE Globecom Workshops

(GC Wkshps), San Diego, CA, USA, 6–10 December 2015; pp. 1–6.

25. Whaiduzzaman, M.; Sookhak, M.; Gani, A.; Buyya, R. A survey on vehicular cloud computing. J. Netw.

Comput. Appl. 2014, 40, 325–344. [CrossRef]

26. Abdelhamid, S.; Hassanein, H.S.; Takahara, G. Vehicle as a resource (VaaR). IEEE Netw. 2015, 29, 12–17.

[CrossRef]

27. Rob van der Meulen, J.R. Gartner Says By 2020, a Quarter Billion Connected Vehicles Will Enable New

In-Vehicle Services and Automated Driving Capabilities. 2015. Available online: https://www.gartner.com/

newsroom/id/2970017 (accessed on 22 December 2018).

28. Hou, X.; Li, Y.; Chen, M.; Wu, D.; Jin, D.; Chen, S. Vehicular Fog Computing: A Viewpoint of Vehicles as the

Infrastructures. IEEE Trans. Veh. Technol. 2016, 65, 3860–3873. [CrossRef]

29. Ye, D.; Wu, M.; Tang, S.; Yu, R. Scalable Fog Computing with Service Offloading in Bus Networks.

In Proceedings of the 2016 IEEE 3rd International Conference on Cyber Security and Cloud Computing

(CSCloud), Beijing, China, 25–27 June 2016; pp. 247–251.

30. Zhang, H.; Zhang, Q.; Du, X. Toward Vehicle-Assisted Cloud Computing for Smartphones. IEEE Trans.

Veh. Technol. 2015, 64, 5610–5618. [CrossRef]

31. Tanzil, S.M.S.; Gharehshiran, O.N.; Krishnamurthy, V. Femto-Cloud Formation: A Coalitional

Game-Theoretic Approach. In Proceedings of the 2015 IEEE Global Communications Conference

(GLOBECOM), San Diego, CA, USA, 6–10 December 2015; pp. 1–6.

32. Oueis, J.; Strinati, E.C.; Barbarossa, S. Small cell clustering for efficient distributed cloud computing.

In Proceedings of the 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile

Radio Communication (PIMRC), Washington, DC, USA, 2–5 September 2014; pp. 1474–1479.

33. Oueis, J.; Strinati, E.C.; Sardellitti, S.; Barbarossa, S. Small Cell Clustering for Efficient Distributed Fog

Computing: A Multi-User Case. In Proceedings of the 2015 IEEE 82nd Vehicular Technology Conference

(VTC2015-Fall), Boston, MA, USA, 6–9 September 2015; pp. 1–5.

http://dx.doi.org/10.3390/sym10110594
http://dx.doi.org/10.1109/TVT.2014.2330978
http://dx.doi.org/10.3390/s18082660
http://www.ncbi.nlm.nih.gov/pubmed/30104529
http://dx.doi.org/10.1109/MSMC.2017.2702391
http://dx.doi.org/10.3390/s18010091
http://www.ncbi.nlm.nih.gov/pubmed/29301212
http://dx.doi.org/10.1002/wcm.1203
http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1109/MPRV.2009.82
http://dx.doi.org/10.1109/TVT.2018.2790421
http://dx.doi.org/10.1109/MNET.2018.1700139
http://dx.doi.org/10.1177/1550147717742073
http://dx.doi.org/10.1016/j.jnca.2013.08.004
http://dx.doi.org/10.1109/MNET.2015.7018198
https://www.gartner.com/newsroom/id/2970017
https://www.gartner.com/newsroom/id/2970017
http://dx.doi.org/10.1109/TVT.2016.2532863
http://dx.doi.org/10.1109/TVT.2015.2480004

Symmetry 2019, 11, 58 17 of 17

34. Liu, N.; Liu, M.; Lou, W.; Chen, G.; Cao, J. PVA in VANETs: Stopped cars are not silent. In Proceedings of

the 2011 IEEE INFOCOM, Shanghai, China, 10–15 April 2011; pp. 431–435.

35. Eckhoff, D.; Sommer, C.; German, R.; Dressler, F. Cooperative Awareness at Low Vehicle Densities: How

Parked Cars Can Help See through Buildings. In Proceedings of the 2011 IEEE Global Telecommunications

Conference—GLOBECOM 2011, Kathmandu, Nepal, 5–9 December 2011; pp. 1–6.

36. Zheng, K.; Meng, H.; Chatzimisios, P.; Lei, L.; Shen, X. An SMDP-Based Resource Allocation in Vehicular

Cloud Computing Systems. IEEE Trans. Ind. Electron. 2015, 62, 7920–7928. [CrossRef]

37. Wang, Z.; Zhong, Z.; Ni, M. Application-Aware Offloading Policy Using SMDP in Vehicular Fog Computing

Systems. In Proceedings of the 2018 IEEE International Conference on Communications Workshops

(ICC Workshops), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6.

38. Feng, J.; Liu, Z.; Wu, C.; Ji, Y. AVE: Autonomous Vehicular Edge Computing Framework with ACO-Based

Scheduling. IEEE Trans. Veh. Technol. 2017, 66, 10660–10675. [CrossRef]

39. Sun, Y.; Guo, X.; Zhou, S.; Jiang, Z.; Liu, X.; Niu, Z. Learning-Based Task Offloading for Vehicular Cloud

Computing Systems. arXiv 2018, arXiv:1804.00785.

40. Jiang, Z.; Zhou, S.; Guo, X.; Niu, Z. Task Replication for Deadline-Constrained Vehicular Cloud Computing:

Optimal Policy, Performance Analysis, and Implications on Road Traffic. IEEE Internet Things J. 2018,

5, 93–107. [CrossRef]

41. Sun, Y.; Song, J.; Zhou, S.; Guo, X.; Niu, Z. Task Replication for Vehicular Edge Computing: A Combinatorial

Multi-Armed Bandit based Approach. arXiv 2018, arXiv:1807.05718.

42. Pochet, Y.; Wolsey, L.A. Production Planning by Mixed Integer Programming; Springer Series in Operations

Research and Financial Engineering; Springer: Berlin/Heidelberg, Germany, 2006.

43. Jetcheva, J.G.; Hu, Y.C.; PalChaudhuri, S.; Saha, A.K.; Johnson, D.B. Design and evaluation of a metropolitan

area multitier wireless ad hoc network architecture. In Proceedings of the 2003 Fifth IEEE Workshop on

Mobile Computing Systems and Applications, Monterey, CA, USA, 9–10 October 2003; pp. 32–43.

44. Dias, D.S.; Costa, L.H.M.; de Amorim, M.D. Data offloading capacity in a megalopolis using taxis and buses

as data carriers. Veh. Commun. 2018, 14, 80–96. [CrossRef]

45. Zheng, H.; Chang, W.; Wu, J. Traffic flow monitoring systems in smart cities: Coverage and distinguishability

among vehicles. J. Parallel Distrib. Comput. 2018, in press. [CrossRef]

46. Soyata, T.; Muraleedharan, R.; Funai, C.; Kwon, M.; Heinzelman, W. Cloud-Vision: Real-time face recognition

using a mobile-cloudlet-cloud acceleration architecture. In Proceedings of the 2012 IEEE Symposium on

Computers and Communications (ISCC), Cappadocia, Turkey, 1–4 July 2012; pp. 000059–000066.

47. Chen, X.; Jiao, L.; Li, W.; Fu, X. Efficient Multi-User Computation Offloading for Mobile-Edge Cloud

Computing. IEEE/ACM Trans. Netw. 2016, 24, 2795–2808. [CrossRef]

48. Bazzi, A.; Zanella, A.; Masini, B.M. An OFDMA-Based MAC Protocol for Next-Generation VANETs.

IEEE Trans. Veh. Technol. 2015, 64, 4088–4100. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIE.2015.2482119
http://dx.doi.org/10.1109/TVT.2017.2714704
http://dx.doi.org/10.1109/JIOT.2017.2771473
http://dx.doi.org/10.1016/j.vehcom.2018.10.002
http://dx.doi.org/10.1016/j.jpdc.2018.07.008
http://dx.doi.org/10.1109/TNET.2015.2487344
http://dx.doi.org/10.1109/TVT.2014.2361392
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	System Model and Problem Formulation
	Scenario Description
	Computing Node and Task Model
	Local Computing on MEC
	Offloading to Remote Cloud
	Offloading to Mobile Volunteer Node
	Problem Formulation

	Joint Node Selection and Resource Allocation Solution
	Computing Resource Allocation Problem
	Node Selection Problem

	Performance Evaluation
	Simulation Settings
	Simulation Results

	Conclusions
	References

