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Abstract5

Booming and busting populations modulate the accumulation of genetic diversity, encoding6

histories of living populations in present-day variation. Many methods exist to decode these7

histories, and all must make strong model assumptions. It is typical to assume that mutations8

accumulate uniformly across the genome at a constant rate that does not vary between closely9

related populations. However, recent work shows that mutational processes in human and great10

ape populations vary across genomic regions and evolve over time. This perturbs the mutation11

spectrum: the relative mutation rates in different local nucleotide contexts. Here, we develop12

theoretical tools in the framework of Kingman’s coalescent to accommodate mutation spectrum13

dynamics. We describe mushi: a method to perform fast, nonparametric joint inference of14

demographic and mutation spectrum histories from allele frequency data. We use mushi to15

reconstruct trajectories of effective population size and mutation spectrum divergence between16

human populations, identify mutation signatures and their dynamics in different human popu-17

lations, and produce more accurate time calibration for a previously-reported mutational pulse18

in the ancestors of Europeans. We show that mutation spectrum histories can be productively19

incorporated in a well-studied theoretical setting, and rigorously inferred from genomic variation20

data like other features of evolutionary history.21

Introduction22

Over the past decade, population geneticists have developed many sophisticated methods for in-23

ferring population demography, and have consistently found that simple, isolated populations of24

constant size are far from the norm. Population expansions and founder events, as well as migration25

between species and geographic regions, have been inferred from virtually all high resolution ge-26

netic datasets that have been generated, and we now recognize that inferring these non-equilibrium27

demographies is often essential for understanding histories of adaptation and global migration.28

Population genetics has uncovered many features of human history that were once virtually un-29

knowable by other means [1], revealing a complex series of migrations, population replacements,30

and admixture networks among human groups and extinct hominoids. Related analyses of genetic31

variation have also shown that ancestral human populations differed from one another at the bio-32

chemical level, inheriting systematically different patterns of DNA damage. It is not known how33
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many of these differences were genetically encoded as opposed to environmentally induced, but34

either type of perturbation has the potential to complicate the task of inferring population history35

from genetic variation.36

The process of germline mutation is the writing mechanism that records signatures of demo-37

graphic events in genomes, so its influence on modern genomic variation is similar in importance to38

the demographic histories themselves. Demographic inference methods can model complex popula-39

tion splits, migration, and admixture, and while some have the potential to accommodate various40

functional forms for N(t), mutation has long received a comparatively simple treatment. Usually, a41

single mutation rate parameter µ is assumed to apply at all loci, in all individuals, and at all times.42

It may then be regarded as a nuisance parameter needed for time calibration of models where time43

is measured in dimensionless Wright-Fisher generations (i.e. units of 2N). De novo mutation rates44

in humans can be measured by parent-child trio sequencing studies, while for other species it is45

typical to use a phylogenetically calibrated mutation rate parameter, and the accuracy of these46

often uncertain estimates places a fundamental limit on the precision of inferred parameters such47

as times of admixture and population divergence.48

Although modern methods for inferring demography from genetic data tend to assume a mu-49

tational process that is simple and unchanging, mutation rate evolution has long been a subject50

of study in population genetics. Soon after Haldane developed equilibrium theory for alleles in51

mutation-selection balance and used this to provide the first principled estimate of the human52

mutation rate by studying hemophilia incidence [2, 3], Kimura began to consider how mutator al-53

leles—i.e. genetic modifiers of the mutation rate—had the potential to optimize mutation rates by54

balancing adaptive response to environmental changes against increasing genetic load [4]. Kimura55

recognized the tendency of mutators to escape their deleterious consequences via recombination56

away from new mutations that they help create, and therefore deduced that rising mutation rates57

might be a deleterious consequence of increasing reliance on sexual reproduction. The drift-barrier58

hypothesis of Lynch et al. expands upon this idea by considering the effect of genetic drift on mu-59

tation rate optima. Population bottlenecks and low effective population size ultimately limit the60

ability of a population to evolve toward an optimum of high replication fidelity, as the efficiency of61

selection against mutator alleles increases with N [5].62

Growing evidence indicates that germline mutation is a dynamic process that evolves over both63

interspecific and population time scales. The rate of this evolution has the potential to be highly64

pleiotropic; influenced by replication machinery polymorphisms as well as life history, mutagenic65

exposures, and genomic features such as repeats and epigenetic marks. Mutation rates among66

great apes appear to have declined along the lineage leading to humans—a phenomenon called67

the hominoid slowdown [6, 7]—, showing that mutation rate evolution between species distorts68

phylogenetic time calibration. At the level of single generations, children of older parents receive69

more germline mutations, especially from older fathers. Replicative errors in spermatogenesis add70

≈ 1 additional expected mutation per year of paternal age, and the repair efficiency of spermatocyte71

DNA damage declines with age [8]. This parental age effect [9] means that sex-specific life history72

traits can influence mutagenesis at the population level. The first few embryonic cell divisions are73

more error prone than others [10], further demonstrating that not all cell divisions are clock-like.74

These phenomena show that the accumulation of mutations is complexly coupled to other biological75

processes.76

A complex and polymorphic mutation process also reveals itself in associations with genomic77

position and local nucleotide context. The rate of C→T transitions is elevated at methylated CpG78
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sites due to spontaneous deamination [11, 12]. GC-biased gene conversion (gbGC) refers to the79

tendency of stronger-binding GC alleles to overwrite AT alleles during homologous recombination80

[13, 14]. This biased non-Mendelian segregation pattern is tantamount to selection for weak-to-81

strong mutations from AT to GC, and can create new, sequence-biased mutations when non-allelic82

gene conversion transfers variation between paralogous genomic regions.83

It is difficult to disentangle past changes in mutation rate from past changes in effective pop-84

ulation size, which can change the rate of nucleotide substitution even when mutation rate stays85

constant. However, evolution of the mutation process can be indirectly detected by measuring its86

effects on the mutation spectrum: the relative mutation rates among different local nucleotide con-87

texts. Hwang and Green [11] modeled the triplet context-dependence of the substitution process in88

a mammalian phylogeny, finding varying contributions from replication errors, cytosine deamina-89

tion, and biased gene conversion. Many cancers have elevated mutation rates due to different failure90

points in the DNA repair process, and these differences cause hypermutation in different sets of91

triplet sequence motifs [15, 16]. Harris and Pritchard [17, 18] demonstrated the power of examining92

the same triplet-based spectrum in an evolutionary context, and counted single nucleotide vari-93

ants in each triplet mutation type as a proxy for mutational input from each individual’s history.94

Human triplet spectra distinctly cluster according to continental ancestry group, and evidence of95

historical pulses in mutation activity (or suppression of repair) has been found in the distribution96

of allele frequencies in certain mutation types. Mathiesen et al. studied similar mutation signa-97

tures in rare human variants [19], and clarified alternative non-mutational hypotheses for their98

origin, including population differences in demography, patterns of selection, recombination, or99

recombination-associated processes such as gene conversion. Rare variants in large cohorts serve as100

a proxy for recent de novo mutations, and they reveal mutational signatures of replication timing,101

recombination, and sex differences in repair processes [20, 21].102

Emerging from the literature is a picture of a mutation process evolving within and between103

populations, anchored to genomic features and accented by spectra of local nucleotide context. If104

probabilistic models of population genetic processes are to keep pace with these empirical findings,105

mutation deserves a richer treatment in state-of-the-art inference tools. In this paper, we build on106

classical theoretical tools to introduce fast nonparametric inference of population-level mutation107

spectrum history (MuSH)—the relative mutation rate in different local nucleotide contexts across108

time—alongside inference of demographic history. Whereas previous work has demonstrated muta-109

tion spectrum evolution using phenomenological statistics on modern variation, we shift perspective110

to focus on inference of the MuSH, which we model on the same footing as demography.111

Demographic inference requires us to invert the map that takes population history to the pat-112

terns of genetic diversity observable today. This task is often simplified by first compressing these113

genetic diversity data into a summary statistic such as the sample frequency spectrum (SFS), the114

distribution of derived allele frequencies among sampled haplotypes. The SFS is a well-studied115

population genetic summary statistic that is sensitive to demographic history. Unfortunately, in-116

verting the map from demographic history to SFS is a notoriously ill-posed problem, in that many117

different population histories can have identical expected SFS [22, 23, 24, 25, 26]. One way to118

deal with the ill-posedness of demographic inference (and other inverse problems) is to specify119

a parametric model. This is done by allowing a small number of constant or exponential epochs120

whose location and scale parameters are optimized to recapitulate the patterns observed in genomic121

data. An alternative is to allow a more general space of solutions, but to regularize by penalizing122

histories that contain features deemed biologically unrealistic (e.g. high frequency population size123
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oscillations). Both approaches shrink the set of feasible solutions to the inverse problem so that it124

becomes well-posed, and can be thought of as leveraging prior knowledge. In particular, the pe-125

nalization approach leverages knowledge about the granularity of generations in the discrete-time126

reproductive models that the continuous-time coalescent only approximates.127

In this paper, we extend a coalescent framework for demographic inference to accommodate128

inference of the MuSH from a SFS that is resolved into different local k-mer nucleotide contexts.129

This is a richer summary statistic that we call the k-SFS, where e.g. k = 3 means triplet context.130

We show using coalescent theory that the k-SFS is related to the MuSH by a linear transformation,131

while depending non-linearly on the demographic history. We jointly infer both demographic history132

and MuSH using optimization, where the cost that we minimize balances a data fitting term, which133

employs the forward map from coalescent theory, along with a regularization term that favors134

smooth solutions with low complexity. Our open-source software mushi (mutation spectrum history135

inference) is available at https://harrispopgen.github.io/mushi as a Python package alongside136

computational notebooks that both demonstrate its use and reproduce the results of this paper.137

Using default settings and modest hardware, mushi takes only a few seconds to infer histories from138

population-scale sample frequency data.139

The recovered MuSH is a rich object that illuminates both standard and previously hidden140

dimensions of population history. Various biological questions about evolution of the mutation141

process may be addressed by computing MuSH summary statistics, both intrapopulation (patterns142

within a single MuSH) and interpopulation (comparisons between MuSHs). After validating with143

data simulated under known histories, we use mushi to independently infer histories for each of the144

26 populations (from 5 super-populations defined by continental ancestry) from the 1000 Genomes145

Project (1KG) [27]. We demonstrate that mushi is a powerful tool for demographic inference that146

has several advantages over existing demographic inference methods, then go on to describe the147

newly illuminated features of human mutation spectrum evolution.148

We recover accurately timed demographic features that are robust to regularization parameter149

choices, including the out-of-Africa event (OOA) and the more recent bottleneck in the ancestors150

of modern Finns, and we find that effective population sizes converge ancestrally within each151

super-population, despite being inferred independently. Decomposing human MuSH into principal152

mutation signatures varying through time in each population, we find evidence of global divergence153

in the mutation process impacting many mutation types, and recapitulate trees of population and154

super-population relatedness. Finally, we revisit the timing of a previously reported ancient pulse155

of elevated TCC→TTC mutation rate, active primarily in the ancestors of Europeans, and absent156

in East Asians [17, 18, 28]. We find that the extent of the pulse into the ancient past is exquisitely157

sensitive to the choice of demographic history model, and that our best-fitting demographic model158

yields a pulse timing that is significantly older than previously thought, seemingly arising before159

the divergence time of East Asians and Europeans.160

With mushi we can quickly reconstruct demographic history and MuSH without strong model161

specification requirements. This adds a new approach to the toolbox for researchers interested only162

in demographic inference. For researchers studying the mutation spectrum, accurate demographic163

history is essential if time calibration of events in mutation history are sought. Thus we expect164

that jointly modeling demography and mutation spectrum history will be an important tool for165

studying complex histories of mutational processes in population genetics.166
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Model Summary167

Augmenting the SFS with nucleotide context information168

The standard sample frequency spectrum (SFS) is a summary statistic of population variation that169

counts variants partitioned by the number of sampled individuals who carry the derived allele.170

Since rare variants tend to be younger than common variants, this summary preserves considerable171

information about the distribution of allele age, which can reflect temporal variation in either the172

mutation rate or the intensity of genetic drift. To disentangle these two causal factors, we leverage173

the fact that genetic drift affects all mutations uniformly, whereas the mutation rate is more likely174

to exhibit patterns of change that differ between genomic sequence contexts.175

We could choose to partition mutations by any desired genomic characteristics, including their176

presence in epigenetically modified functional genomic regions, but in this work we focus on clas-177

sifying mutations by their derived allele and the ancestral k-mer nucleotide contexts in which178

they occur, with k odd and the variant occupying the central position of the motif. There are179

κ = 2 × 3 × 4k−1 mutation types after collapsing by strand symmetry. For example, when k = 3180

there are κ = 96 triplet mutation types, of which TCC→TTC is one. For a sample of n genomes,181

the standard SFS is an (n − 1)-dimensional vector of the number of variants present in exactly i182

genomes, with i ranging from 1 to n − 1. In contrast, the k-SFS is an (n − 1) × κ-dimensional183

matrix, where the (i, j)-th entry is the number of variants present in exactly i individuals that stem184

from mutations of type j (from one particular k-mer to another).185

Our goal is to jointly infer demographic history and MuSH by efficiently searching for histories186

that optimize a composite likelihood of an observed k-SFS data matrix X. This requires computing187

Ξ ≡ E[X], the expected k-SFS as a function of effective population size and context-dependent188

mutation intensity over time. Our main theoretical result, Theorem 1 in the Methods, shows that189

Ξ is a linear functional of the κ-element mutation spectrum history µ(t) given the haploid effective190

population size history η(t) (where η(t) = 2N(t) for diploid populations): Ξ = L(η)µ⊺ Figure 1a191

sketches the generation of a sampled k-SFS matrix X in a toy setting of n = 4 sampled haplotypes,192

3 mutation types, and a fixed genealogy. Figure 1b clarifies the action of the linear operator L(η).193

Using regularization to select parsimonious population histories194

Even ordinary demographic inference—the recovery of η(t) from SFS summary data—is complicated195

by the fact that different population size histories can have identical expected sample frequency196

spectra. This problem, known as non-identifiability, has been extensively explored in the literature197

[22, 23, 24, 25, 26], and it is generally solved by preferring population size histories that have fewer198

changes and biologically unrealistic oscillations. Here, we use similar smoothing assumptions to199

treat this non-identifiability, as well as a compositional constraint that we explain next.200

A new yet tractable identifiability problem arises in the MuSH inference setting. The effective201

population size η(t) and the mutation intensity µ(t) are mutually non-identifiable for all t, meaning202

that the expected SFS ξ is invariant under a modification of η(t) so long as a compensatory203

modification is made in µ(t). The non-identifiability of η and µ can be understood intuitively by204

example: an excess of variants of a given frequency can be explained by an historical population205

boom, which lengthens coalescent lines in the boom time interval, but it may be explained equally206

well by a period of increased mutation intensity with no demographic change.207

While the overall mutation intensity is confounded with demography, the composition of the208
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Figure 1: Mutation spectrum history and demography are encoded in the k-SFS as joint

inverse problems. a. A schematic of a marked Poisson process with n = 4 sampled haplotypes is
conditioned on coalescent times t4, t3, t2. The mutation spectrum history µ(t) = [µ1(t) µ2(t) µ3(t)]

⊺

shows just three mutation types (colors). Dots indicate mutation events placed by time t, genomic
position p, and coalescent line (which are depicted as extruded in the genomic coordinate axis,
grey sheets). The probability that a mutation of type i occurs in a differential time interval dt
and genomic interval dp on a given line is proportional to the instantaneous mutation intensity
µi(t). The crosses on the sampled haplotypes indicate segregating variants of each mutation type.
The sampled k-SFS data is shown as a stacked histogram (top right), and in matrix form (bottom
right). b. Unpacking the forward map from MuSH µ(t) and demography η(t) to expected k-SFS Ξ.
c. Schematic of the isometric log ratio transform for compositional data, which maps the simplex
(top) to a Euclidean space (bottom) in which optimization is more easily performed. d. Schematic
of regularization concepts for inferring η(t) and µ(t). Complex oscillations in time are penalized,
as is the number of independent mutation spectrum components, and ancestral convergence may
be encouraged.

6

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2020. ; https://doi.org/10.1101/2020.06.16.153452doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.153452
http://creativecommons.org/licenses/by-nc/4.0/


mutation spectrum—the relative mutation intensity of each mutation type—reveals itself in the209

k-SFS. This can also be understood intuitively: an excess of variants of a given frequency in only210

a single mutation type (one column of the k-SFS) cannot be explained by an historical population211

boom, because all mutation types are associated to the same demographic history. In this case,212

we would infer a period of increased relative mutation intensity for this mutation type. Because213

we cannot discern changes in total mutation rate, mushi assumes a constant total rate µ0, so that214

time variation in the rate of drift is modeled only in η(t). Figure 1c schematizes how we handle this215

constraint using a transformation technique from the field of compositional data analysis. Details216

are described in the Methods.217

Even with this compositional constraint on the total mutation rate, many very different and er-218

ratic population histories may be equally consistent with an empirical k-SFS. As mentioned before,219

we overcome this by leveraging recently developed optimization methods to find smoothly regular-220

ized demographies and MuSHs. We penalize the model for three different types of irregularity. One221

penalty is familiar from the demographic inference literature: histories that feature rapid oscilla-222

tions of the effective population size over time are disallowed in favor of similarly likely histories223

with effective population sizes that change less rapidly and less often. The second penalty may be224

more familiar to users of clustering methods such as STRUCTURE [29], where information criteria225

are used to favor explanations of the data with as few independently varying ancestry profiles as226

possible. Analogous to this, we favor models in which the mutation spectrum history matrix µ(t)227

has low rank, meaning that there exist relatively few mutational signatures that independently228

vary in their intensity over time. The third regularization penalty is known as a classical ridge or229

Tikhonov penalty, favoring solutions with small ℓ2 norm, which speeds up convergence of the opti-230

mization without significantly affecting the solution. Figure 1d schematizes intuitions behind our231

regularization approach, and detailed formulation of our optimization problems and regularization232

strategies are in the Methods.233

The intensity of all three regularizations can be tuned up or down by changing the values of234

user-specified hyperparameters. As the strength of regularization is increased, the method returns235

increasingly simple histories, but eventually this may result in a poor fit between the expected236

k-SFS and the empirical k-SFS. Users should tune the regularization parameters to seek histories237

that appear as simple as possible without over-smoothing, a process that is designed to be more238

straightforward than the parametric model specification that is required by many methods that239

infer demography from the SFS.240

Quantifying goodness of fit to the data241

The likelihood of an empirical SFS given an expected SFS is often measured using a Poisson random242

field (PRF) approximation [30], which stipulates that, neglecting linkage, the observed number of243

sites with frequency i is Poisson-distributed around the expected number of sites of this frequency.244

This PRF approximation is easily generalizable to k-SFS data. Recall that X is the observed k-SFS245

matrix, so the SFS is x ≡ X1 (row sums over mutation types). In the Methods we show that the246

generalized PRF likelihood factorizes as P(X | η,µ) = P(x | η) P(X | x, η,µ), with the first factor247

given by a Poisson and the second by a multinomial likelihood. We also show that the SFS x is248

a sufficient statistic for the demographic history η with respect to the k-SFS X. This means that249

estimation of η can be done by fitting the total SFS, which maximizes the first factor. Then the250

MuSH can be estimated by fitting the k-SFS, maximizing the second factor, conditioned on this η251

estimate.252
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Results253

Reconstructing simulated histories254

We first investigated the ability of mushi to recover histories in simulations where known histories255

are used to generate k-SFS data. Instead of simulating under the mushi forward model itself,256

we used msprime [31] to simulate a succint tree sequence describing the genealogy for 200 haplo-257

types of human chromosome 1 across all loci. This is a more difficult test, as it introduces linkage258

disequilibrium that violates our model assumptions. The results of this section can be repro-259

duced with the supplementary notebook https://harrispopgen.github.io/mushi/notebooks/260

simulation.html.261

We used the human chromosome 1 model implemented in the stdpopsim package [32], which262

includes a realistic recombination map [33]. We used a difficult demography consisting of a series263

of exponential crashes and expansions, variously referred to as the “sawtooth”, “oscillating”, or264

“zigzag” history. This pathological history has been widely used to evaluate demographic inference265

methods [34, 35, 36, 28], and is available in the stdpopsim package as the Zigzag 1S14 model for266

use with msprime. Our simulated tree sequence contained about 250 thousand marginal trees.267

We defined a MuSH with 96 mutation types, two of which are dynamic: one undergoing a pulse,268

and the other a monotonic increase. The total mutation rate varies due to these two components—269

introducing another model misspecification, since inference assumes only compositional changes.270

We placed mutations on the simulated tree sequence according to the historical intensity function271

for each mutation type, and computed the k-SFS.272

Figure 2 depicts inference results for this simulation scenario. We find that mushi accurately273

recovers the difficult sawtooth demography for most of its history, but begins to over-smooth by274

the time of the third population bottleneck because little information survives in the SFS from275

this time period. The MuSH is accurately reconstructed as well, with both the pulse and ramp276

signatures recovered, and the remaining 94 components flat. The timing of the features in the MuSH277

also appears accurate, despite demographic misspecification that has the potential to distort the278

diffusion timescale.279

One noteworthy feature of our fit to the sawtooth demography is the increasing tendency of280

mushi to smooth out older demographic oscillations without smoothing younger oscillations as281

aggressively. In contrast to methods such as the pairwise sequential Markov coalescent (PSMC)282

[37] that tend to infer large, runaway population sizes in the ancient past, mushi is designed such283

that the inferred history flattens in the limit of the ancient past. The same constraint underlies284

both PSMC’s ancient oscillations and our method’s ancient flattening: genomic data sampled from285

modern individuals cannot contain information about history older than the time to most recent286

common ancestor (TMRCA) of the sample, since mutations that occurred before then will be287

fixed, rather than segregating, in the sample. For example, we expect that population bottlenecks288

erase information about more ancient history, since they accelerate the fixation of variant sites289

that predate the bottleneck. While this information loss intuition holds for very general coalescent290

processes [38], the linearity in Theorem 1 enables us to make these statements precise for mutation291

rate history via spectral analysis of the operator L(η). This is explored in detail for the case292

of a simple bottleneck demography in Appendix A.5, and the results may be reproduced from the293

supplementary notebook https://harrispopgen.github.io/mushi/notebooks/observability.294

html.295
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Figure 2: Simulation study of mushi performance. The sawtooth demography (top right) and
a MuSH with 96 mutation types (bottom right, with two non-constant components in bold) were
used to simulate 3-SFS data for n = 200 sampled haplotypes. The MuSH has a total mutation rate
of about µ0 = 83, generating about 8.3 million segregating variants. The top left panel shows the
SFS, and the bottom left shows the k-SFS as a composition among mutation types at each allele
frequency (the two components corresponding to the non-constant mutation rates are in bold).
Time was discretized with a logarithmic grid of 100 points.
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Reconstructing the histories of human populations296

With encouraging results from simulation experiments, we next set out to infer the histories of297

human populations from large publicly-available resequencing data. We computed a k-SFS for298

each of the 26 human populations from 5 continental ancestries sequenced in the 1000 Genomes299

Project (1KG) [27]. Our bioinformatic pipeline for computing the k-SFS for each 1KG population is300

detailed in the Methods, and a reusable implementation is provided in the mushi repository. Briefly,301

we augment autosomal biallelic SNPs in variant call data by adding triplet mutation type (k = 3)302

annotations, masking for strict callability and ancestral triplet context identifiability. Across 1KG303

populations the resulting number of segregating variants ranged from ∼8 million (population CDX)304

to ∼16 million (population ACB). We also computed the genomic target sizes for each ancestral305

triplet context, resulting in a total ascertained genome size of ∼2.0 Gb.306

A few basic model parameters are defined as follows. We use a de novo mutation rate estimate307

of µ0 = 1.25×10−8 per site per generation [39], which corresponds to ∼25.4 mutations per ∼2.0Gb308

masked haploid genome per generation. For time calibration, we assume a generation time of 29309

years [40]. To discretize the time axis, we use a logarithmically-spaced grid of 200 points, with the310

most recent at 1 generation ago, and the oldest at 200 thousand generations (5.8 million years)311

ago. Finally, we mask the last 10 entries in the SFS, which are more vulnerable to ancestral state312

mis-identification. Other details, including regularization parameter settings, are available in the313

supplementary notebook https://harrispopgen.github.io/mushi/notebooks/1KG.html, which314

reproduces the results of this section.315

Human demographic history316

We used mushi to infer demographic history η(t) independently for each 1KG population. Figure 3317

shows results grouped by super-population: African (AFR), Admixed American (AMR), East318

Asian (EAS), European (EUR), and South Asian (SAS). Broadly, we recover many previously-319

known features of human demographic history that are highly robust to regularization parameters,320

genomic masks, and SFS frequency masking: a ∼100 kya out-of-Africa bottleneck in non-Africans,321

a second contraction ∼10 kya due to a founder event in Finland (FIN), and recent exponential322

expansion of all populations. Histories ancestrally converge within each super-population, and323

super-populations converge at the most ancient times.324

Human mutation spectrum history325

Each of our estimated demographic histories induces a mapping of population allele frequency onto326

a distribution of allele ages. With these distributions encoded in our model, we next used mushi327

to infer time-calibrated MuSHs for each population. First, to highlight the time calibration capa-328

bilities of mushi, we focus on the specific triplet mutation type TCC→TTC, which was previously329

reported to have undergone an ancient pulse of activity in the ancestors of Europeans, and is ab-330

sent in East Asians [17, 18, 28]. To produce sharp estimates of the timing of this TCC pulse, we331

used regularization parameters that prefer histories with a minimum number of change points (see332

Methods). Figure 4a shows our fit to this component of the k-SFS for each EUR population, and333

Figure 4b shows the corresponding estimated component of the MuSH.334

With the consistent joint estimation performed by mushi, we find that the TCC pulse is much335

older than previously reported, beginning ∼80 kya. It is also possible to run mushi without es-336

timating a new demographic history from the input data, but instead assuming a pre-specified337
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Figure 3: Effective population size histories for 1000 Genomes Project populations. a.

The left column shows SFS data (open circles) for each population with separate panels for each
super-population, as well as fits based on the expected SFS from the estimated demography history
(points connected by dotted lines). The right column shows the corresponding demographic history
η(t) estimates. b. The same η(t) estimates as in (b.) on common axes, to allow comparison of
super-populations.
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Figure 4: Timing of TCC→TTC pulse in Europeans. More accurate timing of a previously-
reported pulse in TCC→TTC mutation rate in the ancestors of Europeans is enabled by joint
inferencce of MuSH and demography. a. The relative composition of TCC→TTC variants in each
frequency class for each EUR population (computed with the centered log ratio transform, see
Methods), shows an excess at intermediate frequencies (open circles). The expectated values fit
using the inferred MuSH are shown as points connected by dotted lines. b. The corresponding
inferred TCC→TTC mutation intensity histories (in units of mutations per ascertained genome per
generation).

demography. When we use the Tennessen, et al. history [41], which was assumed by Harris and338

Pritchard [18] in their estimate of the timing of the TCC pulse, we recover a pulse beginning around339

15-20 kya, as previously estimated. We estimated a third set of European MuSHs conditioned on340

demographic histories that were inferred using the recently developed method Relate [28], which341

utilized the same 1KG input data that we analyze here, but leveraged linkage information as well342

as allele frequencies to infer population size changes. Conditioning on the Relate demographies also343

yielded younger estimates of the TCC pulse timing, but both pre-specified demographies fit the SFS344

poorly, indicating that demographic misspecification has likely distorted mushi’s time calibration345

(see section “TCC→TTC pulse in Europeans” of the supplementary notebook linked above). It is346

also likely that the mushi-inferred history fails to fit features of the data such as linkage disequilib-347

rium patterns. If further advances in demographic inference manage to produce a history that fits348

both the SFS and orthogonal aspects of the data, this might necessitate further revisions to our349

best estimates of MuSH time calibration.350

After our focused study of the TCC pulse, we aimed to more broadly characterize how human351

MuSH decomposes into principal mutation signatures varying through time in each population.352

We ran mushi on all 1KG populations using regularization parameters that favor smooth variation353

over time, rather than constraining the number of change points (see Methods). This resulted354

in an estimated MuSH for each population of the 26 populations in the 1KG data. Fits to the355

k-SFS and reconstructed MusHs are shown for each 1KG population in supplementary notebook356

section “Mutation spectrum histories for all populations”. We then normalized each MuSH by357

the genomic target size for each triplet mutation type, so that mutation rate is rendered site-wise,358

and stacked the population-wise MusHs to form an order 3 tensor. As pictured in Figure 5a, this359

tensor is a 3D numerical array with dimensions (num. populations) × (num. time points) × (num.360

mutation types) = 26 × 200 × 96. When we slice the array along the time axis, we obtain a series361

of matrices whose rows are the inferred mutation spectra of each 1KG population at a past time362
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t. The numerical value of an entry in the tensor indicates the mutation rate (in units of mutations363

per site per generation) in a given population, at a given time, and for a given mutation type.364

We used non-negative canonical polyadic tensor factorization (NNCP, reviewed by Kolda and365

Bader [42]) to extract factors in the population, time, and mutation type domains. This is analogous366

to extracting mutational signatures that form a low rank vocabulary for explaining the mutation367

spectrum variation between tumor mutational profiles. NNCP generalizes non-negative matrix368

factorization to tensors of arbitrary order. The addition of the time dimension means that each369

mutational signature is associated with a dosage that can jointly increase or decrease over the370

histories of all populations.371

Briefly, we hypothesize that the MuSH tensor can be approximated by a sum of a few rank-1372

tensors (Figure 5a). This is tantamount to assuming that most evolving mutational processes are373

shared across multiple populations, possibly with different relative intensities over time. We find374

that a tensor of rank 8, which describes a set of 8 mutational processes, can accurately represent375

the 1KG MuSH tensor (Figure 5b). This NNCP decomposition results in 26×8, 200×8, and 96×8376

factor matrices for population, time, and mutation type, respectively. Figure 5c–e projects each set377

of factors from 8 dimensions to 2 principal components for visualization. The population factors378

(Figure 5c) clearly cluster by super-population. The time factors (Figure 5d) trace out a continuous379

trajectory in factor space for the set of all populations, which is expected since regularization in380

mushi imposed smoothness in the time domain. The mutation type factors (Figure 5e) show a381

number of mutation types with distinct outlier behavior, including TCC→TTC, as expected.382

We next recast the MuSH for each population in terms of the 8 mutation signatures that383

comprise the tensor factors, capturing covariation among the set of 96 triplet mutation types with384

the smaller set of signatures. This allows us to characterize and biologically interpret the time385

dynamics of each mutation signature in each population. Figure 6a shows the 8 mutation signatures386

as loadings in each triplet mutation type. Figure 6b shows how each of these 8 signatures varies387

through time in each 1KG population (computed by projecting 96-dimensional spectra to the 8388

mutational signatures in each population at each time). Signature 3 fits the profile of the TCC389

pulse that affects Europeans, South Asians, and European-admixed Amerindians, containing all390

previously reported minor components of the pulse such as ACC→ATC and CCC→CTC. Signatures391

1 and 5, which are consistent with deamination of CpG sites, are consistently enriched in rare392

(young) variants across populations, which is likely due to a combination of purifying selection and393

biased gene conversion. Biased gene conversion disfavors the increase in frequency of C/G→A/T394

mutations (also called strong-to-weak mutations), and many CpG sites are conserved due to their395

role in the regulating chromatin accessibility as well as gene expression. Signatures 2 and 6 are396

enriched for common (old) variants, and have high loadings of A→G, which is consistent with the397

action of biased gene conversion to select for the retention of weak-to-strong mutations.398

Although the time profiles of these 8 signatures appear to be modulated by biased gene con-399

version, they also vary between populations at recent times and cannot be explained by a selective400

force acting uniformly on all non-GC-conservative mutations. Signature 8 fits the profile of a sig-401

nature reported to be enriched specifically in the Japanese population [18]; though this signature402

may stem from a subtle cell line artifact affecting the Japanese Hap Map samples [43], it is still403

a feature of the 1KG data that is expected to fit the profile of a population-specific mutational404

signature. Signature 4, which is dominated by C→T transitions, is enriched in Europeans and405

South Asians relative to East Asians and Africans, charting the time course of a trend that was406

previously reported in empirical heat map data [18]. Another reported trend is the existence of407
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Figure 5: Decomposition of mutation spectrum histories for 1000 Genomes Project

populations into nonnegative factors. a. Schematic of tensor decomposition, showing the
MuSH for all populations stacked into a 3rd dimension, and approximated as the sum of tensors of
rank 1. The set of rank 1 tensors in this sum are composed (via an outer product) of factors for
populations, times, and mutation signatures, which are amenable to biological interpretation. b.

Tensor reconstruction error over a range of ranks for NNCP decomposition, indicating rank 8 as a
good approximation. c. 8-dimensional population factors projected to first 2 principal components.
d. 8-dimensional time factors projected to first 2 principal components. e. 8-dimensional mutation
signature factors projected to first 2 principal components. Overall, variation in the rates of select
transitions account for most of the mutation spectrum variation between populations.
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Figure 6: Dynamics of mutation signatures in the history of 1000 Genomes Project

populations. a. Triplet mutation signatures, shown as loading into triplet mutation types for
each signature (rows) b. Historical dynamics of each mutation signature in each 1KG population,
with rows corresponding to signatures in (a). The first column shows all populations on common
axis ranges to indicate relative scale, and the remaining columns show the same histories for each
super-population, with ranges for each signature.
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a b

Figure 7: Global divergence in the mutation signature history of 1000 Genomes Project

populations. a. UMAP embedding of mutation signature histories was initialized using the first
two PCs of the time-domain factors, and then performed with default parameters. b. Equivalent
embedding with time coordinate added as a 3rd dimension.

differences between populations in the rates of CA*→CG* mutations which can be explained by408

differences between populations in the recent dosages of signatures 7 and 8.409

Finally, we used uniform manifold approximation and projection (UMAP) [44] to compute a 2D410

embedding of mutation signature histories (after initially decomposing the MuSHs into 8 mutation411

signatures as described) of each 1KG population at each time point. Figure 7a shows this embedding412

with all times in the same axes. Despite performing independent inferences for each population’s413

MuSH, we see recapitulation of trees of population and super-population ancestry. Figure 7b shows414

the same embedding with the time coordinate resolved as a 3rd dimension.415

Discussion416

It is becoming increasingly clear that mutation spectrum variation is a common feature of large417

genomic datasets, having been discovered and formally reported in population sequencing panels418

from humans, great apes, and mice [18, 45, 46]. Initial reports on the existence of such variation419

were mostly qualitative in nature, focused on enumerating which populations exhibit robust vari-420

ation along this newly characterized dimension and putting bounds on the possible contributions421

of bioinformatic error. Here, we have introduced a novel quantitative framework for characterizing422

mutation spectrum evolution within populations, which utilizes variation of all ages from unphased423

whole genome data to resolve a time-varying portrait of germline mutagenesis. Our method mushi424

can decompose context-augmented sample frequency spectra into time-varying mutational signa-425

tures, regardless of whether those signatures are sparse and obvious like the European TCC pulse or426

represent more subtle concerted perturbations of mutation rates in many sequence contexts. Pre-427
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vious estimates of the timescale of mutation spectrum change were restricted to sparse signatures428

that are more obvious but less ubiquitous than diffuse signatures appear to be [18, 28].429

Not all of the temporal structure unveiled by mushi can be interpreted as time variation in430

the germline mutational processes. Some time variation in signature dosage is consistent with431

the action of biased gene conversion, and there is no automated mechanism to flag signatures432

that have suspicious hallmarks of cell line artifacts [43]. The strengths of mushi are to automate433

the visualization of deviations from mutation spectrum uniformity and quickly localize them to434

particular populations, frequency ranges, and time periods, enabling straightforward scrutiny and435

the design of downstream investigations of their validity and ontogeny.436

Although mushi’s most novel feature is the ability to infer mutation spectrum variation over437

time, it includes a demographic inference subroutine with several advantages over existing de-438

mographic inference methods. Ours is only the second method to infer population size changes439

non-parametrically from SFS data [47], and its state-of-the-art regularization methods yield pop-440

ulation size histories with some more desirable properties than other methods for non-parametric441

effective population size history inference. With mushi, adaptation to temporally localized smooth-442

ness levels is much better than with smoothing splines [48]. Histories inferred by mushi stabilize443

to a constant size in the limit of the ancient past rather than exhibiting runaway behavior due to444

overfitting, and the use of sample allele frequencies rather than phased whole genomes should make445

the method broadly useful to researchers working on non-model organisms, which are still beyond446

the scope of many state-of-the-art methods that require long sequence scaffolds and phased data.447

The software is also very fast, returning results in seconds on a modest computer, and is designed448

to be easily used by biologists familiar with scripting in Python.449

The mushi model calibrates the times at which mutational signatures wax and wane using a450

demographic model inferred from the same input allele frequency data from which the signatures451

themselves are extracted. However, it can also calibrate its timescale using a user-specified demo-452

graphic history, which reveals that the timing of transient events like the TCC pulse in Europe are453

exquisitely sensitive to underlying assumptions about effective population size. When we input de-454

mographic histories previously inferred from other datasets, we conclude that the TCC pulse began455

15,000 to 30,000 years ago, comfortably later than Europeans’ divergence from East Asians, which456

were not affected by the TCC pulse. However, inferred demographic histories are notoriously poor457

at predicting the distributions of genomic summary statistics other than the ones that were used to458

fit the models [49], and these external demographic history estimates yield poor fits to the 1KG SFS459

data. When we use mushi to estimate population histories that do fit the 1KG sample frequency460

spectra well, we estimated a surprisingly old start time to the TCC pulse, around 80 kya, which461

is older than any estimates of European/East Asian divergence times. This might invoke ancient462

population structure to explain the allele frequency distribution of excess TCC→TTC mutations463

in Europe. For example, the pulse may have initially been active in a basal European popula-464

tion that diverged from East Asians earlier than other populations that contributed to modern465

European ancestry. This puzzle points to the need for future work modeling mutation spectrum466

evolution jointly with more complex demographic history involving substructure and migration467

between populations. It also points to the tantalizing possibility that the distribution of muta-468

tional signatures could provide extra information about hard-to-resolve substructure and gene flow469

between populations that no longer exist in “pure” form today.470

Although powerful new methods for inferring ancestral recombination graphs (ARGs) ultimately471

have the potential to estimate more accurate demographic histories than can be accomplished by472
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fitting more compressed SFS data, these methods are still in a relatively early stage of development.473

In the method Relate [28], mutation rate history is approximately inferred from an ARG using474

independent marginal estimates for each epoch in a piecewise-constant history. This avoids joint475

inference over all epochs—which can also be formulated as a linear inverse problem—by ignoring476

mutation rate variation within branches. Although this lowers computational complexity, it comes477

at the cost of estimator bias that is not well characterized.478

Our results underscore the importance of using more compressed summary statistics to validate479

inference results. In theory, an ARG contains perfect information about the SFS as well as addi-480

tional information about linkage, meaning that demographic history inferred from an ARG should481

be consistent with the SFS. The differences between our SFS-inferred histories and Relate-inferred482

histories have significant implications with regards to the joint distribution of allele age and allele483

frequency. This could affect claims about the timing of gene flow and selection in addition to the484

claims about the timing of the TCC pulse that we focus on in this paper. Until the field of demo-485

graphic inference achieves its holy grail of inferring histories that are compatible with all features486

of modern datasets, it will be important for researchers to practice inferring histories from different487

data summaries including classical, compressed statistics like the SFS in order to understand the488

sensitivity of various biological and historical claims to methodological eccentricities.489
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Methods655

The expected SFS is a linear transform of the mutation intensity history656

We work in the setting of Kingman’s coalescent [50, 51, 52, 53], with all the usual niceties: neutrality,657

infinite sites, linkage equilibrium, and panmixia [54, 55]. In Appendix A we retrace the derivation658

by Griffiths and Tavaré [56] of the frequency distribution of a derived allele conditioned on the659

demographic history, while generalizing to a time inhomogeneous mutation process. We make use660

of the results of Polanski et al. [57, 58] to facilitate computation. We use the time discretization of661

Rosen et al. [26], and adopt their notation. Detailed proofs can be found in the Appendix.662

With n denoting the number of sampled haplotypes, denote the expected SFS column vector663

ξ = [ξ1 . . . ξn−1]
⊺, where ξi is the expected number of variants segregating in i out of n haplotypes.664

Let η(t) denote the haploid effective population size history, with time measured retrospectively665

from the present in Wright-Fisher generations. Note that η(t) = 2N(t) for diploid populations.666

Let µ(t) denote the mutation intensity history, in units of mutations per ascertained genome per667

generation, understood to apply uniformly across individuals in the population at any given time.668

Under these model assumptions, we obtain the following theorem, whose detailed proof can be669

found in Appendix A.1.670

Theorem 1. Fix the number of sampled haplotypes n. Then, for all bounded functions η : R≥0 →
R>0 and µ : R≥0 → R≥0, the expected SFS is ξ = L(η)µ, where L(η) is a finite-rank bounded
linear operator parameterized by η that maps mutation intensity histories µ to (n− 1)-dimensional
SFS vectors ξ. Viewed as a nonlinear operator on η, L(η) is also bounded. In particular, L(η)µ ≡
Cd(η, µ), where C is an (n − 1) × (n − 1) constant matrix with elements that can be computed
recursively, and d(η, µ) is an (n− 1)-vector with elements

dj(η, µ) ≡

∫ ∞

0
exp

[

−

(

j

2

)
∫ t

0

dt′

η(t′)

]

µ(t)dt, for j = 1, . . . , n− 1, (1)

which is linear in µ and nonlinear in η.671

Recursions for computing C can be procedurally generated using Zeilberger’s algorithm [59], which672

we detail in Appendix A.2).673

In order to partition the expected SFS ξ by k-mer mutation type, we promote the (n − 1)-
element expected SFS vector ξ to the (n − 1) × κ expected k-SFS matrix Ξ (not to be confused
with the simultaneous multiple merger coalescent of Schweinsberg [60, 38] or the “SFS manifold”
of Rosen et al. [26]). Similarly, the mutation intensity history function µ(t) is promoted to the
κ-element mutation spectrum history µ(t), a column vector with each element giving the mutation
intensity history function for one mutation type. Then Theorem 1 generalizes to

Ξ = L(η)µ⊺. (2)

As in Theorem 1, the time coordinate is integrated over by the action of the operator L.674

We use the notation X to denote a sampled k-SFS matrix, i.e. the (n−1)×κ matrix containing675

the sample counts for each mutation type. By construction, Ξ ≡ E[X].676

Compositional modeling leads to identifiable mutation spectrum histories677

As mentioned in the summary methods, the effective population size η(t) and the mutation intensity
µ(t) are non-identifiable for all t, meaning that the expected SFS ξ is invariant under a modification
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of η so long as a compensatory modification is made in µ. We now demonstrate this formally by
introducing a change of variables that measures time in expected number of coalescent events since
the present, i.e. the diffusion timescale [22, 26]. Let Rη(t) ≡

∫ t
0

dt′

η(t′) , and substitute τ ≡ Rη(t) in

(1) to give

dj(η, µ) =

∫ ∞

0
exp

[

−

(

j

2

)

τ

]

η̃(τ)µ̃(τ)dτ, (3)

where η̃(τ) ≡ η(R−1(τ)) and µ̃(τ) ≡ µ(R−1(τ)). In this timescale, we see η and µ appear as a678

product on the right of (3). This means we cannot jointly infer η and µ, since only their product679

influences the data. This non-identifiability is similarly manifest by a change of variables to measure680

time in expected number of mutations.681

Because we cannot discern changes in total mutation rate, we assume a constant total rate µ0,682

so that time variation in the rate of drift is modeled only in η(t). A MuSH with κ mutation types683

can then be written as µ(t) = µ0ν(t), where ν(t) ∈ Sκ for all t, and Sκ ≡ {x ∈ R
κ
>0 :

∑κ
j=1 xj = 1}684

denotes the standard simplex. We call the relative mutation spectrum history ν(t) a composition,685

and employ techniques from compositional data analysis [62, 63].686

To avoid difficulties arising from optimizing directly over the simplex, we represent compositions
using Aitchison geometry [62]. Briefly, analogs of vector-vector addition, scalar-vector multiplica-
tion, and an inner product are defined for compositions, and the simplex is closed under these
operations. It is then possible to construct an orthonormal basis in the simplex ψ1, . . . ,ψκ−1 using
the Gram-Schmidt orthogonalization. We first introduce the centered log ratio transform of some
x ∈ Sκ, defined as

clr(x) ≡
[

log
x1
x̄
, . . . , log

xκ
x̄

]

⊺

, (4)

where x̄ = (
∏κ

i=1 xi)
1/κ denotes the geometric mean. The inverse transform clr−1 is the softmax687

function.688

The isometric log ratio transform and its inverse allow us to transform back and forth between
the simplex and a Euclidean space in which we will cast our optimization problem. The transform
ilr : Sκ → R

κ−1 and its inverse are defined as

ilr(x) ≡ Ψ⊺clr(x), x ∈ Sκ (5)

ilr−1(y) ≡ clr−1(Ψy)), y ∈ R
κ−1 (6)

where Ψ ≡ [ψ1 . . . ψκ−1] is the κ× (κ− 1) matrix of basis vectors. To build intuition about this689

transformation, which is an isometric isomorphism, we highlight the following behaviors: First, the690

center of the simplex maps to the origin in the Euclidean space. Second, approaching a corner691

of the simplex, i.e. with a component of the composition vanishing, corresponds to diverging to692

infinity in some direction the Euclidean space. Finally, a ball in the Euclidean space maps to a693

convex region in the simplex that is more distorted the further the ball is from the origin. These694

intuitions are illustrated in Figure 1c.695

We use the convention that the clr and ilr act row-wise on matrices. Finally, we introduce the
ilr-transformed MuSH: z(t) ≡ ilr(µ(t)) and write (2) as

Ξ = µ0L(η) ilr
−1(z)⊺. (7)

Again, the time coordinate is integrated over by the action of the linear operator. Although the696

forward model is non-linear in z(t), it is convex given the convexity of the softmax function that697

appears in ilr−1(·).698
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Formulating and solving the inverse problem for population history given ge-699

nomic variation data700

The inverse problem (8) is ill-posed in general, meaning many very different and erratic histories701

can be equally consistent with the data [64]. We deal with this problem using regularization,702

seeking solutions that are constrained in their complexity without sacrificing data fit. We leverage703

recently-developed optimization algorithms to find regularized demographies and MuSHs.704

Time discretization705

For numerical implementation, we need finite-dimensional representations of η(t) and z(t). We use
piecewise constant functions of time on m segments [t0, t1), [t1, t2), . . . , [tm−1, tm) where the grid
0 = t0 < t1 < · · · < tm−1 < tm = ∞ is common to η(t) and z(t). We take the boundaries of the
segments as fixed parameters and, in practice, use a logarithmically-spaced dense grid of hundreds
of segments to approximate infinite-dimensional histories. Let the m-vector y = [y1, . . . , ym]⊺

denote the population size η(t) during each segment, and define the m × (κ − 1) matrix Z as the
constant ilr-transformed MuSH z(t) during each segment. In Appendix A.3, we show that equation
(7) discretizes to the following matrix equation

Ξ = µ0L(y) ilr
−1(Z), (8)

where the (n−1)×m matrix L(y) is fixed given a fixed demographic history y. The transformation706

ilr−1(Z) is applied to each time point, i.e. row of Z, independently.707

Regularization708

We implement three different regularization criteria: smoothness of the solutions y and Z (hypoth-709

esizing that the time variation of η(t) and z(t) is not excessively erratic), limited complexity of the710

matrix Z (hypothesizing that the number of independently evolving mutational signatures is much711

less than the number κ of distinct mutation types), and improved numerical conditioning of the712

problem. These goals are in some cases overlapping, but we add a regularization term for each one.713

Before computing the penalties on the demography y, we apply a log transform, because variation714

over orders of magnitude is expected from population crashes and exponential expansions. This715

also has the benefit of enforcing non-negative solutions. We now explain the regularizations in716

detail.717

Our first regularization encourages smoothness in the time domain, as well as a limited number718

of change points, preferring to fuse consecutive segments of the history to the same value. This can719

be achieved by penalizing ℓ1 or ℓ2 norms of the time derivatives of log η(t) and z(t). In the discrete720

setting, the derivative operator can be approximated by a matrix ∆ of first differences. This leads721

to the smoothing penalties ‖∆ logy‖pp and ‖∆Z‖pp. The penalty with p = 1 constrains the total722

number of time points at which a change in the function occurs and is referred to as a fused LASSO723

or total variation (TV) penalty [65, 66, 67]. Using p = 2 is called a spline penalty, as it enforces724

1st-order smoothness analogous to differentiability [68]. Many demographic inference methods fit725

models composed of a small number of constant or exponential epochs that are motivated by prior726

knowledge about population histories. Although our histories are represented on a dense time grid,727

our regularization fuses neighboring time points to discover longer epochs of constant or smoothly728

varying behavior, while remaining flexible to capture more complicated behavior if the data justify729

it.730
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Second, because specific mutation processes may affect multiple mutation types, it is reasonable731

to assume that a small number of latent processes drive the majority of the variation across mutation732

types. We thus hypothesize that Z can be approximated by a low-rank matrix and propose two733

regularizations to enforce this. Let σ be the vector of singular values of Z − Zref , where Zref is a734

reference, or baseline, MuSH taken to be the MLE constant solution by default. We use the nuclear735

norm ‖Z− Zref‖∗ = ‖σ‖1 as a soft rank penalty, as it is the convex envelope of the rank function736

[69]. The soft rank penalty constrains the number of non-zero singular values, while also shrinking737

them toward zero. As an alternative to the soft rank penalty we also implement a hard rank738

penalty, which directly penalizes rank(Z − Zref) = ‖σ‖0, equal to the number of nonzero singular739

values. The hard rank penalty results in a singular value thresholding step without shrinkage in740

the resulting algorithm, and it is not convex. Either of these rank regularizations assure that Z is a741

low-rank perturbation of the constant solution Zref . Although the MuSH represents the history of742

each of κ mutation types, this attempts to explain them using a smaller set of mutation signatures.743

Finally, we include classical ℓ2 (also called ridge or Tikhonov) penalties on both logy and Z. A744

small amount of this kind of regularization speeds up convergence without significantly influencing745

the solution. For the ridge penalty on the demography y, we use a generalized Tikhonov term746

‖logy − logyref‖
2
Γ
that allows the option of shrinking toward a reference demography yref . Here747

Γ is a positive definite weight matrix which can be used to vary the strength of shrinkage across748

the time domain, and the notation ‖x‖2
Γ
≡ x⊺Γx denotes the weighted norm squared. Note that749

the smoothing spline penalty is also of this form, but with the indefinite matrix ∆. By default we750

use the MLE constant history for yref , and Γ = I (the identity matrix) to speed the convergence751

of the y problem. Similarly, the ridge penalty on the MuSH is a generalized Tikhonov term for752

each mutation type ‖Z− Zref‖
2
Γ
, where the notation ‖X‖2

Γ
≡ Tr(X⊺ΓX) denotes the square of753

the weighted Frobenius norm. Although we model each population independently from the others,754

the generalized Tikhonov penalty can also be used to fuse the histories of populations that are755

known to share ancestry. For inferring 1KG demographies, we first performed inference for the756

YRI population using the default constant yref and Γ = I. For the other populations, we use the757

YRI history for yref , and a diagonal Γij = −✶[i=j] log(1 − F0(ti)), where F0 is the CDF of the758

TMCRA of the focal population using a constant demography estimate. This applies essentially759

no shrinkage for most of the history, but ramps up shrinkage toward YRI at times pre-dating the760

focal population’s TMRCA.761

Likelihood factorization: The SFS is a sufficient statistic for the demographic history762

with respect to the k-SFS763

The PRF neglects linkage disequilibrium to model the probability of the SFS x given the expected
SFS ξ as independent Poisson random variables for each sample frequency

P(x | ξ) =

n−1
∏

i=1

P(xi | ξi) =

n−1
∏

i=1

e−ξiξxi

i

xi!
. (9)

We similarly model the k-SFS as generated by independent mutational targets for each mutation764

type.765

Proposition 1. The standard PRF indexed on sample frequencies generalizes to be indexed on the766

2D grid of sample frequency and mutation type, and factorizes as P(X | Ξ) = P(x | ξ) P(X | x, Ξ̂),767

with Ξ̂i,j ≡
Ξi,j

ξi
. Here, P(x | ξ) is the Poisson distribution (9), and P(X | x, Ξ̂) is multinomial.768
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Proof. We have that

P(X | Ξ) =

n−1
∏

i=1

κ
∏

j=1

P(Xi,j | Ξi,j) =

n−1
∏

i=1

κ
∏

j=1

e−Ξi,jΞ
Xi,j

i,j

Xi,j !

=
n−1
∏

i=1

e−ξiξxi

i

κ
∏

j=1

1

Xi,j !

(

Ξi,j

ξi

)Xi,j

=

n−1
∏

i=1

P(xi | ξi) xi!

κ
∏

j=1

1

Xi,j !

(

Ξi,j

ξi

)Xi,j

=
n−1
∏

i=1

P(xi | ξi) P

(

[Xi,1, . . . , Xi,κ] | xi,

[

Ξi,1

ξi
, . . . ,

Ξi,κ

ξi

])

= P(x | ξ) P(X | x, Ξ̂). (10)

In the last two lines we’ve recognized the multinomially distributed mutation type partitioning of769

counts in each sample frequency i, with the rows of Ξ̂i,j defining a multinomial parameter vector770

for each sample frequency i. The factorization of independent Poissons into an aggregate Poisson771

and a multinomial is a well-known result often called “Poissonization” [70].772

Next we restore the η and µ dependence of ξ and Ξ (with fixed total mutation rate µ0) so (10)
gives the factorization in the main text

P(X | η,µ) = P(x | η) P(X | x, η,µ). (11)

Lemma 1. If the total mutation rate is a constant µ(t) = µ0 ∈ R>0, then the SFS x is a sufficient773

statistic for η with respect to the k-SFS X.774

Lemma 1 is proved via a Poisson thinning argument in Appendix A.4. The result is intuitively775

obvious because information about historical coalescence rates recorded in the SFS does not change776

if we further specify how mutation counts are partitioned into different mutation types; this only777

adds information about relative mutation rates for alleles with a given age distribution. Although778

η appears in the second factor of (11), this only serves to map the MuSH rendered on the natural779

diffusion timescale µ̃(τ) to time measured in Wright-Fisher generations. Because this map is780

one-to-one, there is no statistical information about η in X not already present in x. That is,781

P(X | x, η,µ) = P(X | x, µ̃).782

This sufficiency is important from an inference perspective, because it means we can sequentially
infer demography from the SFS, then infer the MuSH from the k-SFS with the demography fixed
from the previous step. Sufficiency implies that the negative log-likelihood factors into the sum of
two losses. We thus formulate two sequential optimization problems using negative log-likelihoods
from the factors (11) as loss functions for assessing data fit. Recall that y and Z are the discrete
forms of η and µ, respectively, Ξ is given by equation (8), and ξ is given by the row sums of Ξ and
thus independent of Z. Neglecting constant terms, the two loss functions are

loss1(logy) =
n−1
∑

i=1

(ξi − xi log ξi) and loss2(Z;y) = −
n−1
∑

i=1

κ
∑

j=1

Xij log Ξij . (12)

As with regularization, we parameterize in terms of logy.783
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Optimization problems for mushi784

We infer demography and MuSH by minimizing cost functions that combine the loss functions
above, which measure error in fitting the data, with regularization. This may be considered a
penalized likelihood method and, from a Bayesian perspective, may be interpreted as introducing
a prior distribution over histories. Inference of logy and Z is performed sequentially. We first
initialize logy = yref using the elementary formula for the MLE constant demography S

2µ0Hn−1

where S ≡
∑n−1

i=1 xi is the number of segregating sites, and Hn−1 denotes the n-th harmonic
number. We then minimize

f1(logy) = loss1(logy) + α1 ‖∆ logy‖1 +
α2

2
‖∆ logy‖22 +

αridge

2
‖logy − logyref‖

2
Γ

(13)

over logy ∈ R
m to obtain the demographic history. Here, the α terms are hyperparameters which785

we soon describe in more detail.786

Having fixed y from the previous step, we next infer Z. We initialize Z = Zref to the MLE
constant MuSH: mutation type j has the constant rate µ0

Sj

S , where Sj ≡
∑n−1

i=1 Xi,j is the number
of segregating sites in mutation type j. Using the default soft rank penalty, we then minimize

f2(Z) = loss2(Z;y) + β1 ‖∆Z‖1 +
β2
2

‖∆Z‖22 + βrank‖Z− Zref‖∗ +
βridge
2

‖Z− Zref‖
2
Γ

(14)

over Z ∈ Rm×(κ−1) to obtain the ilr-transformed MuSH. Using the hard rank penalty instead of the787

default soft rank penalty, we would replace the nuclear norm ‖ · ‖∗ with the rank function rank(·).788

In equations (13) and (14), the α and β hyperparameters control the strength of the penalties on789

y and Z respectively.790

We now briefly cover the methods used for optimization. The cost function (13) is nonconvex791

due to the nonlinear dependence of ξ on y, while the cost function (14) is convex (although using the792

hard rank penalty renders it nonconvex). The TV penalties on both (13) and (14) are nonsmooth,793

as is the soft rank penalty on (14). If the hard rank penalty is used instead of the soft rank794

penalty, (14) is also nonconvex. Although we cannot guarantee convergence to the global minimum795

for the demographic history (y) problem, we have found that proximal gradient methods rapidly796

converge to good solutions. Briefly, in proximal methods the cost is split into differentiable and797

non-differentiable parts, gradient descent steps are taken using the smooth part of the cost, then the798

proximal operator (or prox ) of the non-differentiable piece is applied. The prox projects to a nearby799

point which ensures that the nonsmooth part of the cost is small and is easily computed for the800

TV and hard or soft rank penalties. For the y problem, we use the Nesterov accelerated proximal801

gradient method with adaptive line search [71, 72, 73, 74]. For the MuSH (Z) problem, we use a three802

operator splitting method to deal with the two nonsmooth terms [75]. Our optimization algorithms803

are implemented very generally as a submodule in the mushi package: https://harrispopgen.804

github.io/mushi/stubs/mushi.optimization.html. For development purposes, we used similar805

simulations to those in the main text, but using the mushi forward model instead of msprime (where806

the PRF likelihood is exact) (see https://harrispopgen.github.io/mushi/developer.html).807

Hyperparameter tuning808

Although mushi does not require a parametric model to be specified, it requires the user to tune809

a few key regularization parameters to target reasonable solutions. This tuning was performed by810
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hand as we now describe. Rather than treat the ridge penalties as adjustable parameters, we fix811

them by default to αridge = βridge = 10−4. This leaves the two smoothing parameters α1 and α2 for812

demographic inference. Setting both very small gives erratic, unregularized solutions. Increasing813

α1 limits the number of change points, and can be set to produce solutions that are consistent with814

known features of human demographic history. Subsequently increasing α2 smooths these change815

points to produce for example phases of exponential-like growth, but over-smoothing is indicated816

when the fit to the SFS becomes poor.817

We take a similar approach for the MuSH inference step. The three parameters in that case are818

the smoothing parameters β1 and β2 and the complexity parameter βrank. We set β1 and β2 such819

that most mutation types are nearly flat or smoothly and monotonically varying, while allowing820

minimal oscillations in mutation types that appear pulse-like in their frequency spectrum (e.g. the821

TCC→TTC pulse). Again, over-smoothing is indicated by poor fit to the k-SFS. We set βrank to822

target a specific rank (number of latent histories), generally between 3 and 6. If βrank is too large,823

the rank will be too small to fit all components of the k-SFS well. By default we prefer the soft rank824

penalty for its convexity, but can choose the hard rank penalty if the former results in undesirable825

shrinkage.826

Software implementation methods827

The open-source mushi Python package828

The mushi software is available as a Python 3 package at https://harrispopgen.github.io/829

mushi with extensive documentation. We use the JAX package [76] for automatic differentiation830

and just-in-time compilation of our optimization methods, and the ProxTV package [77] for fast831

computation of total variation proximal operators. We modified the compositional data analysis832

module in the scikit-bio package http://scikit-bio.org to allow JAX compatibility. Using833

default parameters, inferring the demography and MuSH for a population of hundreds of individuals834

takes a few seconds on a laptop with a modest hardware configuration.835

Reproducible analysis notebooks836

All of the analysis and figures for this paper can be reproduced using Jupyter [78] notebooks avail-837

able at https://harrispopgen.github.io/mushi. We used msprime [31] and stdpopsim [32] for838

simulations, TensorLy [79] for NNCP tensor decomposition, umap-learn [44] for UMAP embed-839

ding, and several other standard Python packages. We used the Mathematica package fastZeil840

[81] to procedurally generate recursion formulas for the combinatorial matrix C in Theorem 1 (see841

Appendix A.2).842

Bioinformatic pipeline for 1000 Genomes Project data843

We wrote our pipeline for generating a k-SFS for each 1KG population using SCons (https://844

scons.org), BCFtools (http://samtools.github.io/bcftools), and mutyper (https://github.845

com/harrispopgen/mutyper). It is available at https://github.com/harrispopgen/mushi/1KG.846

Pre-computed k-SFS data for all 1KG populations is available at https://github.com/harrispopgen/847

mushi/tree/master/example_data.848
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1KG variant call data were accessed in BCF format at ftp://ftp.1000genomes.ebi.ac.uk/849

vol1/ftp/release/20130502/supporting/bcf_files/, with sample manifest available at ftp://850

ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/integrated_call_samples_v3.20130502.851

ALL.panel. Ancestral state estimates were accessed at ftp://ftp.1000genomes.ebi.ac.uk/852

vol1/ftp/phase1/analysis_results/supporting/ancestral_alignments/human_ancestor_GRCh37_853

e59, and the strict callability mask was accessed at ftp://ftp.1000genomes.ebi.ac.uk/vol1/854

ftp/release/20130502/supporting/accessible_genome_masks/20140520.strict_mask.autosomes.855

bed.856
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A Appendix923

A.1 Proof of Theorem 1: the expected SFS given demographic and mutation924

intensity histories925

Suppose n haplotypes are sampled in the present, and let random vector T = [T2, . . . , Tn]
⊺ denote926

the coalescent times measured retrospectively from the present, i.e. Tn is the most recent coalescent927

time, and T2 is the TMRCA of the sample.928

As in Section 3 of Griffiths and Tavaré [56], we consider a marked Poisson process in which929

every mutation is assigned a random label drawn iid from the uniform distribution on (0, 1). This is930

tantamount to the infinite sites assumption, with the unit interval representing the genome, and the931

random variate labels representing mutant sites. Further suppose that mutation intensity at time932

t (measured retrospectively from the present in units of Wright-Fisher generations) is a function of933

time 0 ≤ µ(t) < ∞ (measured in mutations per genome per generation) applying equally to all lines934

in the coalescent tree. A given line in the coalescent tree then acquires mutations on a genomic935

subinterval (p, p+ dp) ⊆ (0, 1) at rate µ(t)dp.936

Let Edp,b denote the event that a mutation present in b ∈ {1, 2, . . . , n − 1} haplotypes in the
sample occurred within a given genomic interval (p, p+dp). Given the uniform labeling assumption,
the probability of this event is independent of p, but the following argument can be generalized to
allow the labelling distribution to be nonuniform over the unit interval without changing the result.
Let Ik denote the kth intercoalescent time interval, i.e. In = (0, Tn), In−1 = (Tn, Tn−1), . . . , I2 =
(T3, T2). Let Edp,b,k denote the event that the mutation Edp,b occurred during interval Ik. For small
dp and finite µ(t) we have

P(Edp,b | T) =

n
∑

k=2

P(Edp,b,k | T)

=

n
∑

k=2

pn,k(b)

(

k dp

∫

t∈Ik

µ(t)dt+O
(

(dp)2
)

)

,

where

pn,k(b) ≡

(

n−b−1
k−2

)

(

n−1
k−1

) (15)

is the probability that a mutant that arose when there were k ancestral lines of n sampled haplotypes
will be present in b of them (see [56], eqn. 1.9). The quantity in parentheses is the probability that a
mutation arose during the kth intercoalescent interval in a genomic interval of size dp. Marginalizing
T gives

P(Edp,b) = dp

n
∑

k=2

kpn,k(b)❊T

[
∫

t∈Ik

µ(t)dt

]

+O
(

(dp)2
)

.

For small dp, each genomic interval (p, p + dp) contains zero or one mutations. Therefore, taking
the limit dp → 0 and integrating over the genome, the expected number of mutations subtending
b haplotypes (i.e. the bth component of the SFS) is

ξb =

∫ 1

0
P(Edp,b) =

n
∑

k=2

kpn,k(b)❊T

[
∫

t∈Ik

µ(t)dt

]
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We now substitute in the bounds of every intercoalescent interval Ik = (Tk+1, Tk), giving

ξb =

n
∑

k=2

kpn,k(b)❊Tk

[
∫ Tk

0
µ(t)dt

]

−

n−1
∑

k=2

kpn,k(b)❊Tk+1

[
∫ Tk+1

0
µ(t)dt

]

=

n
∑

k=2

kpn,k(b)❊Tk

[
∫ Tk

0
µ(t)dt

]

−

n
∑

k=3

(k − 1)pn,k−1(b)❊Tk

[
∫ Tk

0
µ(t)dt

]

=

n
∑

k=2

Bb,k❊Tk

[
∫ Tk

0
µ(t)dt

]

, (16)

where

Bb,k ≡

{

kpn,k(b), k = 2

kpn,k(b)− (k − 1)pn,k−1(b), k > 2
(17)

are combinatorial terms.937

Polanski et al. [57], eqns. 5-8, give the marginal density for the coalescent time Tk as

πk(tk) =
n
∑

j=k

Ak,jqj(tk), (18)

for k = 2, . . . , n, where A is an (n− 1)× (n− 1) matrix indexed from 2, . . . , n with

Ak,j ≡















1, k = j = n

0, j < k,
∏n

l=k 6=j (
l

2)∏n
l=k 6=j((

l

2)−(
j

2))
, otherwise

and

qj(t) ≡

(

j
2

)

η(t)
exp

[

−

(

j

2

)
∫ t

0

dt′

η(t′)

]

,

for j = 2, . . . , n, and η(t) is the haploid effective population size history. We assume that 0 <938

η(t) < ∞. Note that qj(t) is the probability density of the time to the first coalescent event among939

any subset of j individuals in the present, with inhomogeneous Poisson intensity function
(

j
2

)

/η(t).940

The expectations in (16) can be expressed using (18) as

❊Tk

[
∫ Tk

0
µ(t)dt

]

=

∫ ∞

0
πk(tk)

∫ tk

0
µ(t)dt dtk

=
n
∑

j=k

Ak,j

∫ ∞

0
qj(tk)

∫ tk

0
µ(t)dt dtk

=

n
∑

j=k

Ak,j

∫ ∞

0
qj(tk)

∫ ∞

0
✶[0<t<tk]µ(t)dt dtk

=
n
∑

j=k

Ak,j

∫ ∞

0
rj(t)µ(t)dt (19)
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where in the last line we exchange integration order (by Fubini’s theorem) and define the inhomo-
geneous Poisson survival function

rj(t) ≡

∫ ∞

0
qj(t

′)✶[0<t<t′]dt
′ = exp

[

−

(

j

2

)
∫ t

0

dt′

η(t′)

]

(20)

corresponding to density qj(t).941

Using (19) in (16) gives

ξb =
n
∑

k=2

Bb,k

n
∑

j=k

Ak,j

∫ ∞

0
rj(t)µ(t)dt

=
n
∑

j=2

(

j
∑

k=2

Bb,kAk,j

)

∫ ∞

0
rj(t)µ(t)dt, (21)

exchanging summation order in the last line. We then have a linear expression for the expected
SFS as a function of the mutation intensity history µ(t):

ξ = Cd(η, µ), (22)

where the (n− 1)× (n− 1) matrix C = BA is constant in µ and η, and

dj(η, µ) ≡

∫ ∞

0
rj(t)µ(t)dt =

∫ ∞

0
exp

[

−

(

j

2

)
∫ t

0

dt′

η(t′)

]

µ(t)dt, (23)

for j = 1, . . . , n− 1, is a linear functional of µ and a nonlinear functional of η.942

Given the boundedness assumptions that we have on η and µ, we now prove boundedness of943

the map from joint history functions (η, µ) to expected SFS vectors ξ.944

Lemma 2. For all bounded functions η : R≥0 → R>0 and µ : R≥0 → R≥0, dj(η, µ) is bounded.945

Proof. We pass to the diffusion timescale, which measures time in expected number of coalescent
events since the present. Let Rη(t) ≡

∫ t
0

dt′

η(t′) , which is strictly increasing R≥0 → R≥0. Substitute

τ ≡ Rη(t) in (23) to give

dj(η, µ) =

∫ ∞

0
exp

[

−

(

j

2

)

τ

]

η̃(τ)µ̃(τ)dτ, (24)

where η̃(τ) ≡ η(R−1(τ)) and µ̃(τ) ≡ µ(R−1(τ)). Note that dj is the Laplace transform of the
bounded function η̃µ̃ evaluated at

(

j
2

)

, and is thus bounded. In particular,

0 ≤ dj ≤
ηmaxµmax
(

j
2

) , (25)

where ηmax and µmax are the respective bounds on η and µ.946

The vector d(η, µ) may be viewed as a nonlinear operator d : L∞(R≥0)× L∞(R≥0) → ℓ∞n−1 of947

rank n − 1, and is bounded element-wise (Lemma 2). Boundedness of the full operator mapping948

(η, µ) to the expected SFS ξ follows from the fact that C is a matrix with bounded norm. This949

completes the proof of Theorem 1.950
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A.2 Computing the elements of C951

We next develop an efficient recursive procedure for computing the matrix C. Using (17)

Cb,j =

j
∑

k=2

kpn,k(b)Ak,j −

j
∑

k=3

(k − 1)pn,k−1(b)Ak,j

= W
(1)
b,j −W

(2)
b,j ,

where

W
(1)
b,j ≡

j
∑

k=2

kpn,k(b)Ak,j (26)

W
(2)
b,j ≡

j
∑

k=3

(k − 1)pn,k−1(b)Ak,j . (27)

Polanski et al. [58], eqn. 11, show that the nonzero entries of A can be expressed as

Ak,j =
n!(n− 1)!

(j + n− 1)!(n− j)!
·
(2j − 1)

j(j − 1)
·

(j + k − 2)!

(k − 1)!(k − 2)!(j − k)!
· (−1)j−k.

Given the form of pn,k(b) in (15), we see that (26) and (27) are definite sums over hypergeometric
terms. We used Zeilberger’s algorithm [59, 81], which finds polynomial recurrences for definite sums
of hypergeometric terms, to procedurally generate the following second-order recursions in j:

W
(1)
b,2 =

6

(n+ 1)

W
(1)
b,3 =

10(5n− 6b− 4)

(n+ 2)(n+ 1)

W
(1)
b,j+2 =−

[

(2j + 3)
(

− (2j − 1)W
(1)
b,j+1

(

2j(j + 1)
(

b2
(

j2 + j − 2
)

− 6b− j(j + 1)− 2
)

− j(j + 1)n
(

3b
(

j2 + j + 2
)

+ j2 + j − 2
)

+
(

j(j + 1)
(

j2 + j + 6
)

+ 4
)

n2 + 4n
)

− (j − 1)(j + 1)2(j − n)W
(1)
b,j (4(n+ 1)− j(j + 2)(b− n− 1))

)

]

/[

j2(j + 2)(2j − 1)(j + n+ 1)
(

−bj2 + b+
(

j2 + 3
)

(n+ 1)
)

]

and

W
(2)
b,2 = 0

W
(2)
b,3 =

20(n− 2)

(n+ 1)(n+ 2)

W
(2)
b,j+2 =

(2j + 3)(j − n+ 1)

j

(

(j + 1)

(2j − 1)(j + n)
W

(2)
b,j −

(j(j + 1)(2b− n+ 1)− 2(n+ 1))

(j − 1)(j + 2)(j − n)(j + n+ 1)
W

(2)
b,j+1

)

.

These formulae are used to numerically compute the entries in C. The results of this section can be952

reproduced from the supplementary Mathematica notebook https://github.com/harrispopgen/953

mushi/blob/master/docsrc/notebooks/recurrence.nb954
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A.3 Discretization of history functions and computation of d(η, µ)955

We represent histories as piecewise constant functions of time onm pieces [t0, t1), [t1, t2), . . . , [tm−1, tm),956

where 0 = t0 < t1 < · · · < tm−1 < tm = ∞. The grid is common to η(t) and µ(t). We take the957

boundaries of the pieces as fixed parameters and in practice use a logarithmically-spaced dense958

grid of hundreds of pieces to approximate infinite-dimensional histories. Let column vector y =959

[y1, . . . , ym]⊺ denote the constant population size η(t) during each piece, and let w = [w1, . . . , wm]⊺960

denote the constant mutation rate µ(t) during each piece.961

With this we can follow the proof of Proposition 1 in [26], mutatis mutandis, with our (24) to
arrive at

d = M(y)w (28)

where

M(y) ≡













1
1
3

. . .
1

(n2)

























1 u1 . . .
∏m−1

i=1 ui
1 u31 . . .

∏m−1
i=1 u3i

...
...

. . .
...

1 u
(n2)
1 . . .

∏m−1
i=1 u

(n2)
i



























1
−1 1

−1 1
. . .

. . .

−1 1















diag(y), (29)

and ul ≡ exp(−(tl−tl−1)/yl) for l = 1, . . . ,m. Note that the (n−1)×m matrix M(y) is a nonlinear
function of the demographic history y because the ul are nonlinear functions of y. This reflects the
fact that it is a discretization of the nonlinear operator d(·, µ). Combining (28) with (22) gives the
discretized forward model

ξ = L(y)w, (30)

where L(y) ≡ CM(y).962

A.4 Proof of Lemma 1963

Fix the mutation type i, and consider the multinomial over j

P

(

[Xi,1, . . . , Xi,κ] | xi,

[

Ξi,1

ξi
, . . . ,

Ξi,κ

ξi

])

.

We must show that any element of the multinomial vector

Ξ̂i,j ≡
Ξi,j

ξi

can be formulated without reference to η. From elementary properties of the multinomial, the
conditional expection value of Xi,j given xi is

E[Xi,j | xi] = xi Ξ̂i,j .

Now, since mutation events are independent we perform a thinning operation on each of the xi
mutation events

E[Xi,j | xi] = xi P (a mutation of sample frequency i is of type j) (31)

= xi

∫ ∞

0

µ̃j(τ)

µ0
ai(τ)dτ, (32)

37

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2020. ; https://doi.org/10.1101/2020.06.16.153452doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.153452
http://creativecommons.org/licenses/by-nc/4.0/


where ai(τ) is the pdf of a mutation’s age τ measured in expected coalescent events (diffusion time)
conditioned on its sample frequency i. So

Ξ̂i,j =

∫ ∞

0

µ̃j(τ)

µ0
ai(τ)dτ.

This is independent of η by definition of the diffusion time scale as the intensity measure of the964

coalescent process. This completes the proof of Lemma 1.965

A.5 Tempora incognita: observability toward the coalescent horizon966

The time-domain singular vectors of L(η) form an eigenbasis for solutions µ(t) that are possible,967

in principle, to reconstruct from the SFS. However, sampling noise about the expected SFS will968

corrupt information from singular vectors that are associated to smaller singular values. These969

corrupted components will be the directions in solution space associated with higher frequency and970

less smooth dynamics. Since the singular values of L(η) have a very large dynamic range (the971

condition number is large), the presence of noise will limit reconstruction to smoother, more slowly972

varying components that are least corrupted and erase information about more sudden events.973

Figure 8 depicts the observability of mutation rate history via spectral analysis of L(η) for a974

case with η(t) a simple bottleneck history. From (18) and (20) in the Appendix A, the CDF of the975

TMRCA can be computed given η(t). We see only the top few components (ranked by singular976

value) persist at times older than the bottleneck, and all components vanish beyond the TMRCA977

of the sample. Higher frequency behavior becomes more difficult to observe if it is older than978

the bottleneck, concretely illustrating how demographic events erase information about population979

history. The results of this section can be reproduced from the supplementary notebook: https:980

//harrispopgen.github.io/mushi/notebooks/observability.html.981
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Figure 8: Observability of mutation rate history via the spectral analysis of L(η) for the case of a
bottleneck history. The top panel plots demographic history with a bottleneck from about 3000 to
1000 generations ago (blue, left ordinate), and TMRCA CDF (orange, right ordinate). The bottom
panel plots the top 20 time domain singular vectors, with the inset showing the corresponding
ranked singular values. Time was discretized with a logarithmic grid of 1000 points, and n = 200
sampled haplotypes were assumed.

39

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2020. ; https://doi.org/10.1101/2020.06.16.153452doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.16.153452
http://creativecommons.org/licenses/by-nc/4.0/



