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Abstract: 1 

This paper considers a high-speed rail corridor that requires high fidelity scheduling of train speed for a 2 

large number of trains with both tight power supply and temporal capacity constraints. This research aims 3 

to systematically integrate problems of macroscopic train timetabling and microscopic train trajectory 4 

calculations. We develop a unified modeling framework using three-dimensional space-time-speed grid 5 

networks to characterize both second-by-second train trajectory and segment-based timetables at different 6 

space and time resolutions. The discretized time lattices can approximately track the train position, speed, 7 

and acceleration solution through properly defined spacing and modeling time intervals. Within a 8 

Lagrangian relaxation-based solution framework, we propose a dynamic programming solution algorithm 9 

to find the speed/acceleration profile solutions with dualized train headway and power supply constraints. 10 

The proposed numerically tractable approach can better handle the non-linearity in solving the differential 11 

equations of motion, and systematically describe the complex connections between two problems that have 12 

been traditionally handled in a sequential way. We further use a real-world case study in the Beijing-13 

Shanghai high-speed rail corridor to demonstrate the effectiveness and computational efficiency of our 14 

proposed methods and algorithms. 15 

 16 

Keywords: train trajectory planning; train timetabling; energy consumption; space-time-speed network 17 
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1 Introduction 1 

 2 

In general, high-speed rail offers a fast and comfortable transportation mode with a high carrying capacity. 3 

Throughout the world, many new high-speed rail lines are being operated or designed to serve increasing 4 

inter-city passenger flow along economic corridors. On the other hand, due to its increased operating speed, 5 

high-speed train units have higher energy demand than conventional locomotives to overcome extra 6 

aerodynamic resistance. For high-speed rail operators, the design of time-efficient train timetables for 7 

passengers and energy-efficient train speed profiles under tight power supply and track capacity constraints 8 

becomes extremely important. Faced with service competitions from emerging fuel-efficient automobiles 9 

and state-of-the-art aircraft (Chester and Horvath, 2012), it is important for the rail industry to improve its 10 

own ridership in the multimodal inter-city transportation market, reduce the overall rail system operating 11 

cost, and contribute to societal sustainability in a long run.  12 

In the last few decades, there has been a steady move towards the systematical use of computer 13 

simulation models and optimization tools to evaluate and further improve the energy use for single or groups 14 

of trains running on a corridor. Planners and dispatchers of high-speed trains need to target an ever-widening 15 

range of analysis goals, each with a particular set of constraints and focus areas. To name a few, commonly 16 

used optimization criteria for train operations include time-optimal, energy-optimal, or waiting-time-17 

minimal. A typical train timetabling application focuses on a time-optimal schedule to minimize passenger 18 

in-vehicle travel time to meet the high mobility requirement of high-speed rail riders. However, demand-19 

oriented timetable solutions might lead to higher energy consumption compared to energy-optimal 20 

schedules that typically have sophisticated, pre-designed acceleration and breaking profiles at various grade 21 

segments and speed-limit constraints. As a result, for emerging high-speed rail scheduling applications, the 22 

commonly used sequential processing of train timetabling and speed control is difficult in its own right to 23 

achieve the full system benefit under tight resource constraints.  24 

The focus of our literature review, presented herein, is mainly on two related research areas, train 25 

timetabling, and train speed control. Cordeau et al. (1998), Lusby et al. (2011), and Cacchiani and Toth 26 

(2012) offered comprehensive surveys on both train routing and scheduling problems, including early 27 

literature summaries with both constant and variable train speed at segment levels. Recent studies, Törnquist 28 

and Persson (2007), D'Ariano et al. (2007, 2008), Corman et al. (2010), Meng and Zhou (2014), Samà et 29 

al. (2016), Fu and Dessouky (2016) have examined various important topics of train scheduling, including 30 

timetabling under a complex network or N-track condition and real time scheduling to mitigate delay 31 

propagation under various degrees of disturbances. Corman and Meng (2013) offered a systematic review 32 

on real-time train dispatching, rescheduling, and disposition under stochastic and dynamic conditions. In 33 

order to describe many complex but practically important train operational constraints, and focus on 34 

Chinese railroad timetabling applications, early work by Zhou et al. (1998) applied a Discrete Event 35 

Dynamic System (DEDS) method for offline train scheduling applications. Medanic and Dorfman (2002) 36 

and Dorfman and Medanic (2004) discussed time-efficient and energy-efficient scheduling methods using 37 

a general DEDS modeling framework for prioritizing train movement events for a group of trains running 38 

along a rail corridor. 39 

Early studies on energy-efficient train movement control (e.g., Milroy, 1980; Benjamin et al., 1989) 40 

typically focused on controlling single train speed under various track and geometric conditions, where a 41 

locomotive has several levels of traction control gears, each corresponding to different energy consumption 42 

rates. Cheng and Howlett (1992, 1993) studied critical speed thresholds to minimize the fuel consumption 43 

of individual trains on horizontal lines. Howlett (1996) proposed various optimal train speed control 44 

strategies for a train on segmented constant grades, followed by the study by Howlett and Cheng (1997) on 45 

optimal driving strategies on a track with continuously varying grades, and the paper by Cheng et al. (1999) 46 

on segmented constant gradient with speed limits. As one of the key studies in this area, Liu and Golovitcher 47 

(2003) proposed an analytical model for the energy-efficient train speed/acceleration control along long 48 

distance rail lines with various speed limits and grade changes. They considered continuously changing 49 

control variables to reduce the computational complexity associated with different resolutions. Wong and 50 

Ho (2003) studied coast control strategies and related switch points of subway train movement using 51 
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hierarchical genetic algorithms. Bai and Mao (2009) discussed the energy consumption performance with 1 

respect to different coasting distances under various practical considerations such as braking/lower speed 2 

restrictions and train speed uniformity. Aiming for a globally optimal strategy, the study by Howlett et al. 3 

(2009) calculates the critical switching points on a track with steep grades through a local energy 4 

minimization principle. Recent notable processes along this research line have been made by Bocharnikov 5 

et al. (2010), Domínguez et al. (2012), Rodrigo et al. (2013) to optimize energy through the fully utilized 6 

regenerative energy sources. Though a comprehensive perturbation analysis for local optimal points 7 

(satisfying necessary optimality conditions), the studies by Albrecht et al. (2011, 2013) show that the 8 

optimal switching points can be uniquely determined for each steep section of track.  9 

There has been a number of emerging studies presenting methods to perform train timetabling and 10 

speed profile optimization simultaneously. To achieve a better energy performance for subway trains, Su et 11 

al. (2013) proposed an iterative sequential optimization model to take into account both train speed profiles 12 

and trip times. Li and Lo (2014a) proposed a nonlinear integer optimization model and a genetic algorithm-13 

based solution method to jointly consider timetabling and speed control between switching points along a 14 

metro rail line. They also specifically considered (1) how to synchronize the acceleration and breaking 15 

events and (2) how to utilize regenerative energy to minimize energy consumption. Li and Lo (2014b) 16 

developed a simplified but innovative analytical model that assumes two switching points per segment for 17 

dynamic train control and schedule adjustment, in order to construct a linear approximation-based convex 18 

programming model. Using a discretized space-time network modeling framework proposed by Yang and 19 

Zhou (2014), Yang et al. (2015) considered to optimize energy-efficient train timetables through variable 20 

segment speed expressed as different segment travel times. Using a multi-train simulator, Zhao et al. (2015) 21 

recently developed a number of solution search algorithms, such as enhanced brute force, ant colony 22 

optimization, and genetic algorithm, to optimize multiple train trajectories, with joint goals of minimizing 23 

energy consumption and delay. Recently, Goverde et al. (2016) recognized and highlighted the importance 24 

of a consistent cross-resolution representation for macroscopic aggregated railroad network optimization, 25 

microscopic train timetabling, and fine-tuning train trajectory computation. Furthermore, Besinovic et al. 26 

(2015) proposed a hierarchical framework for robust timetable design that produced feasible timetables 27 

through a heuristic micro-macro interaction algorithm. Table 1 provides a comparison of recent studies in 28 

integrated train timetabling and speed profile optimization. 29 

 30 

Table 1 Recent studies on integrated train timetabling and speed profile optimization. 31 

Major decision variables for 
timetabling 

Model Algorithm Publication 

Trip time; speed between switching 
points 

Nonlinear constraints 
and objective functions 

Iterative algorithm to solve 
macroscopic and microscopic 
problems sequentially 

Su et al. (2013) 

Arriving/departure time; speed 
between switching point 

Nonlinear constraints 
and objective functions Genetic algorithm Li and Lo (2014a) 

Arriving/departure time; speed 
between switching point 

Convex optimization 
model Analytical method Li and Lo (2014b) 

Arriving/departure time; average 
segment speed 

Discretized space-time 
network to represent 
variable speed 

Commercial optimization 
software GAMS 

Yang et al. (2015) 

Train trajectories 

Time-step based multi-
train simulation with 
continuous speed, 
space, time 
representation 

Enhanced brute force, ant 
colony optimization, and 
Genetic algorithm 

Zhao et al. (2015) 

Arriving/departure time; running 
time 

Integer linear 
programming (for 
macroscopic problem) 

Randomized multi-start 
greedy heuristic 

Goverde et al. (2016) 

Discretized space-time-speed grid Multi-flow network Dynamic programming This paper  



5 

 

network, multi-commodity 
variables representing both 
timetable and speed profile 
characteristics 

model with linear 
objective function and 
constraints  

 1 

Most of the existing studies on train speed control for energy-efficient operations focus on optimizing 2 

single train movement or a cluster of train speed profiles with simple overtaking relationships. It is more 3 

challenging to construct mathematically tractable models and computationally efficient algorithms for a rail 4 

line with a number of switching points, especially on long rail segments with non-regular gradient changes. 5 

Improving both travel time and energy measures through joint train timetabling and speed control 6 

optimization requires a broader understanding of complex constraints and operating processes at different 7 

spatial and temporal regimes. In particular, the lack of a unified theoretical model that simultaneously 8 

represents these two coupled problems makes the existing sequential optimization models difficult to work 9 

together in a seamless manner.  10 

One important challenge in operating a large number of high-speed trains on an electrified high-speed 11 

rail corridor is that the trackside traction power supply facilities need to supply the voltage required by 12 

different trains on a second-by-second basis. The conversional train timetabling stage, typically operated at 13 

a minute-by-minute resolution, is inflexible to meet the overall energy supply constraints and consider the 14 

total power consumption optimization for trains spatially distributed at the power supply segments of a 15 

corridor. 16 

The relatively long modeling time interval (e.g., min by min) used in timetabling is difficult to connect 17 

to the high-fidelity spatial and temporal second-by-second representation for the subsequent train 18 

movement control stage. In this research, we construct a space-time-speed (STS) network that seamlessly 19 

maps train trajectories to: (1) the space-time network for scheduling (subject to time headway constraints), 20 

and then to (2) space-speed network for detailed train control that involves train position, speed, and 21 

acceleration for accurate energy calculation. Through a customized spatial and temporal discretization 22 

scheme, our research creates a cell-based network with a flexible representation of a number of constraints 23 

for different train space-time-speed trajectories. These key constraints include: (1) the spatial and temporal 24 

safety headway for timetabling signal systems and (2) total energy consumption across trains running on 25 

the same power supply segments but possibly on different tracks. It should be remarked that, one closely 26 

related study by Miyatake et al. (2009) solve the train optimal speed control problem using Bellman’s 27 

dynamic programming method and described the discretized, linearized state in a three-dimensional graph. 28 

In comparison, our research focuses more on how to establish an internally consistent three-dimensional 29 

space-time-speed network to connect train speed control and timetabling problems.  30 

Furthermore, we will develop a dynamic programming-based algorithmic solution framework for 31 

single-train subproblems. In particular, the dynamic programming (DP) algorithm can work well for the 32 

acyclic STS network with only forward moving arcs along the time axis, and the Lagrangian relaxation 33 

(LR) method can dualize the safety headway and energy consumption constrains. In a decomposed sub-34 

problem, each single-train subproblem searches its own STS network with generalized costs from LR 35 

multiplier, which allows us to effectively solve the joint optimization problem. 36 

The reminder of this paper is organized as follows. The next section describes the joint train timetable 37 

and speed profile optimization problem and provides the conceptual illustration of a space-time-speed 38 

network. Section 3 develops a linear integer programming model and Lagrangian relaxation based dynamic 39 

programming algorithm. Section 4 evaluates our proposed model and algorithm with some real-world 40 

medium-scale and large-scale examples, and the final section concludes the paper. 41 

 42 

2 Problem Statement and Conceptual Illustration 43 

 44 

2.1 Problem statement  45 

This paper considers a high-speed rail line as illustrated in Fig 1, with a series of bi-directional track 46 

segments within a power supply district. The power supply district has an autotransformer in the middle, a 47 
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section post on the left, and a traction/power substation on the right. Through contact wires, the power 1 

supply district covers three train stations and two track segments. In this high-speed train corridor, we 2 

consider a regular traffic signal system, where trains can follow each other on a track segment when 3 

satisfying minimum time headway requirements. For simplicity, only one type of train is included in the 4 

scheduling process and different trains can pass each other only at station track sidings. The traction 5 

substation supplies power for all trains within its coverage territory. In general, an intercity high-speed rail 6 

line consists of a number of power supply districts. A power supply district typically has a service range 7 

from 50 to 300 km.  8 

A typical passenger train scheduling process consists of the following sequential steps: passenger 9 

demand survey, train service plan development, and train timetabling. This paper focuses on the third step, 10 

which receives input from the train service plans including desired train departure time windows and train 11 

stop plans (Yue et al., 2016). Indirectly, passenger demands are considered in this timetabling process as 12 

the number of trains to be scheduled, with preferred departure/arrival times and stop plans (intermediate 13 

stops). Given train service plans, the problem under consideration needs to find optimal train schedules that 14 

can minimize energy consumption subject to essential safety headway constraints and power supply 15 

resource constraints.  16 

Station1

Station2

Station3

Segment1 Segment 2

Section Post
Traction SubstationContact Wire

Outbound

Train 2
Train 1 Train 3 Train 5

Train 4

AT

Autotransformer

 17 

Fig 1. The network representation of a high-speed rail line within a power supply district (Tang, 2012) 18 

The space-time diagram or the train string diagram in Fig 2 shows a schedule with 5 trains numbered 19 

from 1 to 5. If we only consider the minimum safety headway ℎ between each pair of trains at stations, this 20 

schedule is feasible without any safety conflicts. When we need to consider the power supply resource 21 

constraint across all trains running within the same power supply district, it is extremely complex to 22 

consider tractive effort and line voltage for a set of high-speed trains, as briefly discussed in Appendix A.  23 

 24 

Station 1

Station 2

Station 3

Distance

train 1 train 3

train 4

Segment 2

train 2

train 5

h

0

10 20 30 40 50 60

minute

0

Segment 1

 25 

Fig 2. A sample high-speed train schedule (Tang, 2012) 26 

 27 

Fig 3 shows a piecewise linear curve between maximum available tractive effort and line voltage 28 

supplied from a power substation for high-speed trains. The tractive effort at the wheel/rail interface is a 29 

nonlinear function of train speed, acceleration, mass, as well as aerodynamic and friction resistance under 30 

specific grade and curve conditions. If the supplied line voltage from the power supply system to a specific 31 

train is insufficient, the available power is reduced and impacts the tractive effort, resulting in a narrower 32 
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acceleration range and/or lower maximum speed. 1 

 2 

Voltage / kV

Available 

traction effort 

rate

1

0.9

17.5 22.5 25 29 31  3 

Fig 3. Relationship between pantograph-catenary voltage and traction effort rate at wheel rim (from 4 

CRRC Corporation Limited, China) 5 

Consider an example using Fig 2, where the total power supplied to trains running in both directions 6 

is insufficient at a particular time stamp (e.g., min 20). In this scenario, high-speed trains cannot run at their 7 

target speed and this may result in arrival time delays at stations. In a real-time scheduling application, a 8 

train (e.g., train 1) with an initial delay sometimes needs to accelerate and speed up in order to return to the 9 

planned schedule as soon as possible. Its additional power demand has the potential to affect other trains 10 

operating within the same power supply district. A method to fully synchronize the (spatially distributed) 11 

train movements and schedules, more specifically, starts and stops of trains, is an extremely complex 12 

process as it has to deal with the complicated interconnections between multiple trains at very high time 13 

and space resolutions. 14 

2.2 Continuous functional form for train motion 15 

To derive detailed energy consumption based on the kinematics of train movements, we now list a number 16 

of related differential train motion equations and the notations in Table 2. For notational convenience, we 17 

omit the train index.  18 

 19 

Table 2 Parameters used in the equation of motion 20 

Symbol Definition 𝑯 Set of time clocks for analysis, {1, … , 𝑇} 𝒕 Indices of time clocks, 𝑡 ∈ 𝐻 𝒅(𝒕) Distance along the track at time 𝑡 𝒗(𝒕) Train speed at time 𝑡 𝒎 Train mass 𝒂𝒄𝒄(𝒕) 
Acceleration associated with train traction force at time 𝑡, that is the ratio of 
tractive force 𝐹 and mass 𝑚.  𝒅𝒆𝒄(𝒕) Deceleration associated with train breaking force at time 𝑡 𝒘(𝒗(𝒕)) Resistive acceleration due to train motion at speed 𝑣(𝑡) 𝒉(𝒅(𝒕)) Resistive acceleration due to the track gradient and curve at location 𝑑(𝑡) 

 21 

Eq. (1) defines the vehicle speed 𝑣(𝑡)  from distance change. Eq. (2) indicates that the resultant 22 

acceleration/deceleration is affected by train traction 𝑎𝑐𝑐(𝑡) or braking force 𝑑𝑒𝑐(𝑡), speed-related train 23 

motion resistance 𝑤(𝑣(𝑡)) and location-related track grade and curve resistance ℎ(𝑑(𝑡)). 24  d𝑑(𝑡)d𝑡 = 𝑣(𝑡)  (1) 25 
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d𝑣(𝑡)d𝑡 = 𝑎𝑐𝑐(𝑡) − 𝑑𝑒𝑐(𝑡) − 𝑤(𝑣(𝑡)) − ℎ(𝑑(𝑡)) (2) 1 

The energy cost of the train journey is the total energy supplied to the train, which can be calculated 2 

from the work done by the traction force. The total energy cost or the total mechanical power at the 3 

wheel/rail interface 𝐽 of the journey from time 1 to time 𝑇 is formulated in Eq. (3). 4 𝐽 = ∫ 𝑚 ∙ 𝑎𝑐𝑐(𝑡) ∙ 𝑣(𝑡)𝑇𝑡=1 d𝑡  (3) 5 

 6 

2.3 Constructing a space-time-speed grid network for joint train routing, timetabling and trajectory 7 

optimization as a path finding problem  8 

Before constructing the space-time network representation, we now start discretizing the time horizon to a 9 

sequence of time intervals with a certain length (e.g., 1 second) and the time index can be denoted as 𝑡 =10 1, 2, … . , |𝐻|. 11 

A space-time network representation has been widely used in transportation route optimization, various 12 

scheduling applications, and general dynamic network flow modeling. Interested readers are referred to 13 

general survey papers by Powell et al. (1995), and recent development for time-dependent stochastic 14 

shortest path by Yang and Zhou (2014). Typically, for a physical rail segment (𝑖, 𝑗) connecting a pair of 15 

physical nodes 𝑖 and 𝑗, we can create the corresponding time-expanded arcs (𝑖, 𝑗, 𝑡, 𝑠) where 𝑡 is entering 16 

time, 𝑠 is the exit time of a traveling arc, and 𝑠 − 𝑡 corresponds to the train running time for a certain train 17 𝑘 on link/segment (𝑖, 𝑗). For a waiting arc at node 𝑖, one can use (𝑖, 𝑖, 𝑡, 𝑠 = 𝑡 + 1) to denote the waiting 18 

step from time 𝑡 to time 𝑠 = 𝑡 + 1 at the same node 𝑖. 19 

As shown in Eq. (3) for calculating train energy consumption, one of the key elements is the 20 

acceleration 𝑎𝑐𝑐(𝑡) as a difference of 𝑣(𝑡) at different times. In a conventional space-time network, for a 21 

pair of space-time vertices (𝑖, 𝑡) and (𝑗, 𝑠), there are an infinite number of trajectories connecting these two 22 

points, each with the same speed but different possible acceleration/deceleration strategies. In this case, it 23 

is difficult to directly use the attributes at two adjacent points (𝑖, 𝑡) and (𝑗, 𝑠) to calculate the resulting train 24 

motion characteristics and energy consumption rates that highly depend on the train speed 𝑢 at each time 25 

clock.  26 

For a set of physical nodes/stations 𝑁 and a set of physical rail links 𝐿, this paper defines a directed 27 

STS network 𝐺 = (𝑄, 𝐴)  with each STS vertex (𝑖, 𝑡, 𝑢) ∈ 𝑄  and each STS arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣) ∈ 𝐴  that 28 

indicates the train movement from node 𝑖 to node 𝑗 at entering time 𝑡 with speed 𝑣 and exit time 𝑠 with 29 

speed 𝑢. The notations based on STS network are listed in Table 3.  30 

 31 

Table 3 Subscripts, parameters, and variables used in mathematical formulations. 32 

Symbol Definition 𝑲 Set of trains 𝑯 Set of time stamps in the planning time horizon 𝑵 Set of nodes/stations 𝑳 Set of links 𝑽 Set of speed values 𝑸 Set of STS vertices 𝑨 Set of STS arcs 𝒌 Index of trains, 𝑘 ∈ 𝐾 𝒕, 𝒔, 𝝉 Time indices, 𝑡, 𝑠, 𝜏 ∈ 𝐻 𝒊, 𝒋 Indices of nodes, 𝑖, 𝑗 ∈ 𝑁 ∆𝒕, ∆𝒅 Time increment and space increment  (𝒊, 𝒋) Index of physical link, (𝑖, 𝑗) ∈ 𝐿 𝒖, 𝒗 Values of instantaneous speed, 𝑢, 𝑣 ∈ 𝑉  (𝒊, 𝒕, 𝒖), (𝒋, 𝒔, 𝒗) Indices of space-time-speed vertexes, (𝑖, 𝑡, 𝑢), (𝑗, 𝑠, 𝑣) ∈ 𝑄 (𝒊, 𝒋, 𝒕, 𝒔, 𝒖, 𝒗) 
Index of space-time-speed arcs indicating the train movement from node 𝑖 to node 𝑗 at 
entering time 𝑡 with speed 𝑣 and leaving time 𝑠 with speed 𝑢, arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑣, 𝑢) ∈ 𝐴 𝒂𝒄𝒄̅̅ ̅̅ ̅(𝒊, 𝒋, 𝒕, 𝒔, 𝒖, 𝒗) Average acceleration associated with train traction force on STS arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣) 𝒆(𝒊, 𝒋, 𝒕, 𝒔, 𝒖, 𝒗) Mechanical energy consumption amount on traveling arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣) 
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 1 

To succeed in meeting a number of study objectives for joint scheduling of train schedule and 2 

movement, the construction of the STS network will be guided by the following set of network construction 3 

principles. 4 

1. Similar to the finite difference method used in cellular automata models for traffic flow simulation 5 

(Daganzo, 2006), the space along the rail corridor is discretized in increment 𝛥𝑑, so the location of 6 

any node 𝑖  can be denoted as 𝑛𝑖 ∙ 𝛥𝑑 , where 𝑛𝑖  is an integer number. As a result, the distance 7 

between any node pair (𝑖, 𝑗) should be an integer multiple of 𝛥𝑑.   8 

2. The time along the planning horizon is discretized in increment 𝛥𝑡, the mapped time stamp for 9 

index 𝑡 is 𝑡 ∙ 𝛥𝑡.   10 

3. If we consider the high-speed train constantly accelerates/decelerates during time interval or time 11 

step 𝛥𝑡, the speed along the speed dimension is discretized in increment 𝛥𝑑/𝛥𝑡. This property can 12 

meet the following proposition: for any arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣) between time index 𝑡 to time index 𝑠 =13 𝑡 + 𝛥𝑡, when 𝑣 is a feasible value (as an integral multiple of 𝛥𝑑/𝛥𝑡), then the ending speed 𝑢 is 14 

uniquely determined as a feasible value as well. During speed holding process with the acceleration 15 

of zero, the speed 𝑢 equals to 𝑣.  16 

4. The upper bound speed at node 𝑖 for train 𝑘 is the minimum value of the maximum speed of train 17 𝑘 and speed limit at node 𝑖. 18 

5. For node 𝑖 which is not an intermediate stop for train 𝑘, the corresponding STS vertex (𝑖, 𝑡, 0) for 19 

any time 𝑡 and its connected arcs should be set to invalid for train 𝑘. That is the vertex and arc are 20 

eliminated from train 𝑘’s STS network and thus not usable by train 𝑘. 21 

6. To model the must-stop train activity, for node 𝑖′ which is an intermediate stop for train 𝑘, we should 22 

eliminate any non-stop passing arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣), where the intermediate stop node 𝑖′ is between node 23 𝑖 and 𝑗 (i.e., 𝑖 < 𝑖′ < 𝑗). Additionally, when a desired stop time window [𝑡′, 𝑠′] is given, the arcs with 24 

arrival time earlier than 𝑡′ or departure time later than 𝑠′at node 𝑖′ should be eliminated.   25 

7. There are three types of arcs: (i) traveling arcs (𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣) moving from node 𝑖 to node 𝑗 with a 26 

unit time interval from 𝑡  to time 𝑠 ; (ii) waiting arc (𝑖, 𝑖, 𝑡, 𝑠, 0, 0)  for node 𝑖  that is the origin or 27 

destination node of train 𝑘; (iii) dwell arc (𝑖, 𝑖, 𝑡, 𝑠, 0, 0) for node 𝑖 where 𝑖 is an intermediate stop 28 

for train 𝑘 and time duration (𝑠 − 𝑡) is the required stopping time. 29 

8. A traveling arc with a speed change from 𝑢  to 𝑣  is only feasible when the corresponding 30 

acceleration/deceleration value falls in the range between maximum acceleration determined by 31 

traction power, and maximum deceleration determined by braking force. Traveling arcs consist of 32 

four subclasses of arcs, namely full power traction, cruising, coasting and full braking arcs. 33 

 34 

The proof for guiding principle 3 can be briefly described as follows. The travel distance between (𝑖, 𝑗) 35 

is (𝑛𝑗  − 𝑛𝑖) × 𝛥𝑑, the average speed is (𝑢 + 𝑣)/2, so that (𝑢 + 𝑣)/2 ∙ 𝛥𝑡 = (𝑛𝑗  − 𝑛𝑖) ∙ 𝛥𝑑, that is 𝑢 =36 2(𝑛𝑗  − 𝑛𝑖) ∙ (𝛥𝑑/𝛥𝑡) + 𝑣. Since we have setup the space-time lattice with the space increment 𝛥𝑑 and the 37 

time increment 𝛥𝑡, we can easily show that if 𝑣 is an integer multiple of (𝛥𝑑/𝛥𝑡) then 𝑢 must definitely be 38 

an integer multiple of (𝛥𝑑/𝛥𝑡). 39 

By recognizing the above network construction principles, we now present a few remarks on the STS 40 

grid network. By adding the speed dimension into the space-time network, where each vertex is now 41 

associated with location, time, and speed, the acceleration/deceleration rate between two vertexes can be 42 

uniquely determined. More importantly, from a state-space representation perspective (typically for 43 

dynamic programming), the STS network can clearly define the speed state and the associated stop status 44 

of the train movement. This enables modelers to be flexible in assigning the feasible arcs or arc transitions 45 

for different practical rules such as speed limits, maximum acceleration/deceleration rates, as well as the 46 

required stopping stages at the origin, destination and intermediate stations.  47 

Within the proposed STS framework, train overtaking is allowed at intermediate stations as part of the 48 

network building process, namely principle 6. First, at the scheduled intermediate stops, we build dwell 49 

STS arcs and eliminate the non-stopping STS arcs. When a train stays at its scheduled intermediate stops 50 
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(by selecting the corresponding dwell arcs), other trains can overtake it (by using a non-stopping STS arc 1 

through the station). When deciding the pattern of overtaking, the optimization process selects a solution 2 

that could lead to a better system performance measure (e.g., energy consumption). 3 

Specifically, an STS network is able to systematically incorporate many modeling methods based on 4 

(i) the space-time network used in the general area of train scheduling and (ii) the train speed profiles used 5 

in the area of an optimal train control problem. For example, the space-time network based train routing 6 

and scheduling algorithm (e.g., Meng and Zhou, 2014) can be further applied to the STS network 7 

representation, while the specific constraints on train motion and energy cost functional form (e.g., Yang et 8 

al., 2012) can be also adopted.  9 

In the current space-time discretization scheme, which linearly interpolates inside the grid, the cost 10 

functions associated with the trajectories might be discontinuous at the boundary between two rectangles. 11 

More importantly, there could be different degrees of truncation errors in the space and time discretization, 12 

especially where there are non-uniform acceleration and higher order derivatives along the trajectories. We 13 

refer to Kushner and Dupuis (1992) on various techniques for discretizing a continuous time and space 14 

using finite-element (FE) or finite difference (FD) methods, and future research should address the 15 

consistency, stability, and convergence issues associated with different numerical approximation schemes. 16 

One promising direction is to use a variable resolution policy and value function representations proposed 17 

by Munos and Moore (2002) to dynamically implement the state-space triangulation using a tree structure. 18 

The example in Fig 4 depicts a simple train motion trajectory in an STS grid network, where a train 19 

departing at time 𝑡 from node 𝑖 with an initial speed 0 stops at node 𝑖 + 4 at time 𝑡 + 3. By using this STS 20 

network representation, we can also account for the location-specific attributes related to train running states, 21 

such as gradient resistances, curve resistances, speed limits, and power supply constraints. For instance, for 22 

varying speed limits at different rail segments, one can simply eliminate the STS vertexes beyond the speed 23 

limits from the feasible solution domain. These unreachable vertexes cannot be chosen during the train 24 

movement optimization process. Fig 4, where green cycles represent the candidate STS vertexes and gray 25 

circles represent the infeasible vertexes, illustrates the spatial speed limit requirement of 𝑣 = 2 (e.g., due 26 

to construction zone) at location 𝑖 + 2 and 𝑖 + 3, compared to the other segments with a normal speed limit 27 

of 𝑣 = 5.  28 

 29 
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Candidate vertex Non-candidate vertex Selected vertex
Train trajectory

(selected arc)  30 

Fig 4. A train trajectory in an STS grid network (with a speed limit between nodes 𝑖 + 2 and 𝑖 + 3) 31 

 32 

Using a post-processing step, we can further map the (optimized or selected) three-dimensional train 33 

trajectory from the STS network to the two-dimensional driver-oriented train speed profiles (one speed-34 

space plane) and scheduling-relevant train timetables (on space-time plane). As shown in Fig 5, the 35 

projection of the train trajectory onto the 2-dimensional space-speed network clearly shows the acceleration, 36 
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cruising, and deceleration stages in the train speed profile for various sections of rail track. Similarly, the 1 

projection of the train trajectory onto the 2-dimensional space-time plane indicates train timetables.  2 

Time
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Space/Distance
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i+5
i+6
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1
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4

5

Train trajectory (selected arc) Projection
 3 

Fig 5. Projections of a train STS trajectory to the space-time and speed-space planes 4 

 5 

For a better illustration, Table 4 lists sample values associated with STS traveling arcs. Given a 6 

constant speed limit of 7 units, different types of arcs are built by following the STS network construction 7 

principles and listed in Table 4. 1) During the acceleration process, a train travels 230 distance units and 8 

takes 42 time units for acceleration from standstill to the maximum speed. The full power traction arcs 9 (0,230, 𝑡, 𝑡 + 42, 0,7) are built at node 0 for each time 𝑡, whose cost equals the energy consumption for 10 

acceleration. 2) Cruising arcs (𝑖, 𝑖 + 8, 𝑡, 𝑡 + 1, 7,7) describe the speed-holding stage where a train moves 11 

8 distance units within 1 time unit at the maximum speed. The arc cost equals the energy consumed against 12 

resistance. 3) Train coasting occurs before the braking. Its corresponding arcs, e.g., (𝑖, 𝑖 + 106, 𝑡, 𝑡 +13 12, 7,6), are constructed at each node. 4) Full braking arcs allow trains to stop at their destinations. The 14 

time and distance taken vary according to when and where the train begins to brake. Moreover, as the 15 

mechanical power is not required in the last two types of arcs, their arc costs are set to zero in our proposed 16 

model. 17 

 18 

Table 4 Sample values associated with STS arcs 19 

Arc type 
Arc Sample 

Arc cost 𝑖 𝑗 𝑡 𝑠 𝑢 𝑣 

Full power traction 0 230 𝑡 𝑡 + 42 0 7 1772 

Cruising 𝑖 𝑖 + 8 𝑡 𝑡 + 1 7 7 24 

Coasting 𝑖 𝑖 + 106 𝑡 𝑡 + 12 7 6 0 

Full braking 𝑖 𝑖 + 41 𝑡 𝑡 + 11 6 0 0 

  20 

 21 

2.4 Energy consumption function for train traveling arcs 22 

By entering the corresponding values for STS traveling arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣) for the continuous presentation 23 

of speed change in Eq. (2), that is, d𝑣(𝑡)d𝑡 ≅ 𝑣−𝑢𝑠−𝑡 ; 𝑤(𝑣(𝑡)) ≅  𝑤 (𝑢+𝑣2 ); ℎ(𝑑(𝑡)) ≅ ℎ(𝑖)+ℎ(𝑗)2 , we can derive 24 

the average acceleration 𝑎𝑐𝑐̅̅ ̅̅̅(𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣) by Eq. (4).  25 𝑎𝑐𝑐̅̅ ̅̅̅(𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣) = 𝑚𝑎𝑥 {(𝑣−𝑢𝑠−𝑡 + 𝑤 (𝑢+𝑣2 ) + ℎ(𝑖)+ℎ(𝑗)2 ) , 0}   (4) 26 
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 1 

According to Eq. (4), we can compute the mechanical energy consumption 𝑒(𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣) on STS arc 2 (𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣) of each lattice in Eq. (5) (as an integral from time 𝑡 to time 𝑠).  3 𝑒(𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣) = 𝑚 × 𝑎𝑐𝑐̅̅ ̅̅̅(𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣) × 𝑢+𝑣2 × (𝑠 − 𝑡)      (5) 4 

For train waiting and stopping arcs, the corresponding energy consumption is assumed to be zero. For 5 

travel arcs with deceleration, we assume zero consumed energy. For a more sophisticated train operating 6 

mode with regenerative energy sources, one can further determine a negative value for 𝑒(𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣) to 7 

feed the energy from braking back to the power supply system.  8 

 9 

 10 

3 A Model and an algorithm for the joint train trajectory and scheduling optimization 11 

 12 

3.1 Model 13 

The optimization model aims to incorporate train speed control into the timetable design process 14 

considering realistic operating constraints. Table 5 lists notations used in the optimization model. 15 

 16 

Table 5 Notations used in the joint train control and scheduling optimization model 17 

Symbols  Definition 𝒐𝒌, 𝒅𝒌 Origin and destination of train 𝑘 𝑬𝑫𝑻𝒌, 𝑳𝑨𝑻𝒌 Earliest departure time and latest arrival time of train 𝑘 𝑷 Set of power supply districts  𝒑 Index of power supply district, 𝑝 ∈ 𝑃 𝑹𝒑 Power supply capacity per time unit (e.g., KW/h) of power supply district 𝑝 𝑮𝒑,𝒕 Set of vertices in power supply district 𝑝 at time 𝑡 𝒉 Safety time headway 𝝋(𝒊, 𝒋, 𝒕) Set of incompatible STS arcs of link (𝑖, 𝑗) at time 𝑡 𝒄𝒊,𝒋,𝒕,𝒔,𝒖,𝒗 Cost on arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣) 𝒙𝒊,𝒋,𝒕,𝒔,𝒖,𝒗(𝒌) 
=1 if the STS arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣) is used in the trajectory of train 𝑘  
=0 otherwise 

 18 

Objective function 19 

The joint train control and scheduling problem aims to find the speed profiles and timetables under 20 

specific optimization goals (e.g., minimizing energy consumption). Within the STS network framework, 21 

the objective function to minimize the total cost of all high-speed trains is stated in Eq. (6), where the seven-22 

dimensional binary variable 𝑥𝑖,𝑗,𝑡,𝑠,𝑢,𝑣(𝑘)  is 1 if the STS arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣)  is used by train 𝑘  and 0, 23 

otherwise. The parameter 𝑐𝑖,𝑗,𝑡,𝑠,𝑢,𝑣 represents the cost when the corresponding STS arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣) is 24 

selected.  25 min  𝑍 =∑ ∑ (𝑐𝑖,𝑗,𝑡,𝑠,𝑢,𝑣 ∙ 𝑥𝑖,𝑗,𝑡,𝑠,𝑢,𝑣(𝑘))(𝑖,𝑗,𝑡,𝑠,𝑢,𝑣)∈𝐴𝑘∈𝐾   (6) 26 

The generic cost structure in our model provides a flexible way to apply the STS network modeling 27 

framework to various objective functions, such as energy consumption and time consumption. For the 28 

energy-optimal objective under consideration in this paper, 𝑐𝑖,𝑗,𝑡,𝑠,𝑢,𝑣 is identical to the mechanical power 29 

consumption 𝑒(𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣) defined in Section 2.4. In fact, the high-dimensional label cost matrix from 30 

the final DP solution provides a vector of energy use cost across time index 𝑡 = 𝐸𝐴𝑇𝑘 to 𝐿𝐴𝑇𝑘 at the final 31 

destination station.  32 

 33 

STS flow balance constraint 34 

To depict a feasible train trajectory in the STS network, a set of flow balance constraints is constructed 35 

as follows. For each individual train 𝑘, its feasible flow needs to be satisfied at all vertices, starting from 36 

the source vertex (𝑜𝑘 , 𝐸𝐷𝑇𝑘 , 0) and ending at the sink vertex (𝑑𝑘 , 𝐿𝐴𝑇𝑘 , 0). We can state the flow balance 37 

constraints formally as follows. 38 
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∑ 𝑥𝑖,𝑗,𝑡,𝑠,𝑢,𝑣(𝑘)(𝑗,𝑠,𝑣)∈𝑄 − ∑ 𝑥𝑗,𝑖,𝑠,𝑡,𝑣,𝑢(𝑘)(𝑗,𝑠,𝑣)∈𝑄 = {  1,      𝑖 = 𝑜𝑘 , 𝑡 = 𝐸𝐷𝑇𝑘, 𝑣 = 0−1,     𝑖 =  𝑑𝑘 , 𝑡 = 𝐿𝐴𝑇𝑘, 𝑣 = 0  0,                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒            𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ∈ 𝐾 (7) 1 

  2 

Power supply constraint 3 

Due to the capacity limitation of transformers illustrated in Section 2.2, the total mechanical power 4 

required by trains cannot exceed the power supply capacity 𝑅𝑝 at any time in power supply district 𝑝. Let 5 

vertex set 𝐺𝑝,𝑡 represent all STS vertices in power supply district 𝑝 at time 𝑡. Then we present the power 6 

supply constraints by Eq. (8). The unit on two sides of Eq. (8) could be KW per hour or per second. On the 7 

other hand, Appendix A intends to convey the fact that the practical computation of railway power supply 8 

is quite complex as it involves current, voltage and resistance states of different vertical wires in a 9 

sophisticated multi-conductor traction network. This complexity calls for a simulation-based solution 10 

algorithm in which we are able to model a large number of nonlinear transformations and constraints 11 

realistically and practically.  12 ∑ ∑ 𝑒(𝑖,𝑗,𝑡,𝑠,𝑢,𝑣)𝑠−𝑡 ∙ 𝑥𝑖,𝑗,𝑡,𝑠,𝑢,𝑣(𝑘)(𝑖,𝑗,𝑡,𝑠,𝑢,𝑣)∈𝐺𝑝,𝑡𝑘∈𝐾 ≤ 𝑅𝑝  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝 ∈ 𝑃, 𝑡 ∈ 𝐻 (8) 13 

 14 

Train safety constraint (time headway) 15 

As the time headway ℎ must be enforced between any pair of vehicle trajectories according to railroad 16 

safety operational rules, we define the time headway-related train safety constraints using the incompatible 17 

arc set 𝜑(𝑖, 𝑗, 𝑡). That is, if a train uses an STS arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣), denoted as arc 𝑎0, other trains are not 18 

permitted to use any STS arcs from the set of arcs on physical link (𝑖, 𝑗), say arcs 𝑎1, 𝑎2,⋯ , 𝑎𝑀, within the 19 

time range [𝑡 − ℎ, 𝑡 + ℎ]  at node 𝑖  and time range [𝑠 − ℎ, 𝑠 + ℎ]  at node 𝑗 , respectively. Thus, the 20 

incompatible arc set 𝜑(𝑖, 𝑗, 𝑡) includes all the potentially conflicting STS arcs 𝑎0, 𝑎1, 𝑎2, ⋯ , 𝑎𝑀, and only 21 

one of the arcs can be selected. The definition of  𝜑(𝑖, 𝑗, 𝑡)  is similar to the concept of cliques with 22 

incompatible arcs due to safety headway constrains introduced by the seminar paper by Caprara et al. (2002). 23 

That is, in our paper, a certain pair of different STS arcs associated with different trains cannot be selected 24 

together as shown in constraint (10), while Caprara et al. (2002) previously defined the similar set to denote 25 

incompatible space-time arcs, but without speed dimension.  26 ∑ ∑ 𝑥𝑖,𝑗,𝑡,𝑠,𝑢,𝑣(𝑘)𝑘∈𝐾(𝑖,𝑗,𝑡,𝑠,𝑢,𝑣)∈𝜑(𝑖′,𝑗′,𝜏) ≤ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑖′, 𝑗′) ∈ 𝐿, 𝜏 ∈ 𝐻  (9) 27 

 28 

Binary variable constraint 29 

There is also binary definitional constraints for variables 𝑥𝑖,𝑗,𝑡,𝑠,𝑢,𝑣(𝑘).  30 𝑥𝑖,𝑗,𝑡,𝑠,𝑢,𝑣(𝑘) ∈ {0, 1}  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ∈ 𝐾, (𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣) ∈ 𝐴 (10) 31 

 32 

3.2 Problem decomposition through a set of single-train optimization problems based on Lagrangian 33 

relaxation 34 

Compared with classic mathematic models for the shortest path problem, our joint train control and 35 

scheduling optimization problem has two additional side constraints (8) and (9). Instead of solving this 36 

problem directly, we relax these difficult constraints by incorporating them into the objective function with 37 

power supply multipliers 𝜋𝑝,𝑡 and safety multipliers 𝜌𝑖′,𝑗′,𝜏 following the Lagrangian relaxation procedure. 38 

The Lagrangian relaxation problem derived in Eq. (11) can be treated as a generalized least cost/shortest 39 

path problem in a time-expended network (Caprara et al., 2002; Cacchiani et al., 2012; Fischer and 40 

Helmberg, 2014). The dualized cost 𝑐𝑖,𝑗,𝑡,𝑠,𝑢,𝑣′ (𝑘) is defined in Eq. (12).  41 

 42 min  Z′ =∑ ∑ (𝑐𝑖,𝑗,𝑡,𝑠,𝑢,𝑣(𝑘) ∙ 𝑥𝑖,𝑗,𝑡,𝑠,𝑢,𝑣(𝑘))(𝑖,𝑗,𝑡,𝑠,𝑢,𝑣)∈𝐴𝑘∈𝐾 + ∑ ∑ [𝜋𝑝,𝑡 (∑ ∑ 𝑒(𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣) ∙(𝑖,𝑗,𝑡,𝑠,𝑢,𝑣)∈𝐺𝑝,𝑡𝑘∈𝐾𝑡∈𝐻𝑝∈𝑃43 𝑥𝑖,𝑗,𝑡,𝑠,𝑢,𝑣(𝑘) − 𝑅𝑝)] + ∑ ∑ 𝜌𝑖′ ,𝑗′,𝜏(∑ ∑ 𝑥𝑖,𝑗,𝑡,𝑠,𝑢,𝑣(𝑘)(𝑖,𝑗,𝑡,𝑠,𝑢,𝑣)∈𝜑(𝑖′ ,𝑗′,𝜏)𝑘∈𝐾 − 1)𝜏∈𝐻(𝑖′ ,𝑗′)∈𝐿     44 
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               =∑ ∑ 𝑐𝑖,𝑗,𝑡,𝑠,𝑢,𝑣′ (𝑘) ⋅ 𝑥𝑖,𝑗,𝑡,𝑠,𝑢,𝑣(𝑘)(𝑖,𝑗,𝑡,𝑠,𝑢,𝑣)∈𝐴𝑘∈𝐾 − ∑ ∑ 𝜋𝑝,𝑡 ∙ 𝑅𝑝𝑡∈𝐻𝑝∈𝑃 − ∑ ∑ 𝜌𝑖′,𝑗′ ,𝜏𝜏∈𝐻(𝑖′,𝑗′)∈𝐿   (11) 1 𝑐𝑖,𝑗,𝑡,𝑠,𝑢,𝑣′ (𝑘) = 𝑐𝑖,𝑗,𝑡,𝑠,𝑢,𝑣(𝑘) + ∑ ∑ 𝜋𝑝,𝑡 ∙ 𝑒(𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣)𝑡∈𝐻 ∶(𝑖,𝑗,𝑡,𝑠,𝑢,𝑣)∈𝐺𝑝,𝑡𝑝∈𝑃 + ∑ ∑ 𝜌𝑖′,𝑗′,𝜏𝜏∈𝐻 ∶(𝑖,𝑗,𝑡,𝑠,𝑢,𝑣)∈𝜑(𝑖′,𝑗′,𝜏)(𝑖′,𝑗′)∈𝐿  (12) 2 

 3 

3.3 Dynamic programming algorithm 4 

As the proposed STS network has three dimensions, the search space of the joint timetabling and train 5 

control problem becomes extremely large. In order to find the optimal solution in reasonable time, it is 6 

important to design an efficient algorithm. We refer interested readers to a number of important studies on 7 

how to solve the time-dependent shortest path problem on a network with time-dependent arc costs 8 

(Ziliaskopoulos and Mahmassani, 1993; Chabini, 1998; Fischer and Helmberg, 2014). Our proposed DP 9 

method is essentially a state-dependent and time-dependent least cost algorithm where the speed is treated 10 

as an additional state dimension embedded in the path search process in time-expanded networks. In our 11 

study, a forward dynamic programming algorithm is designed to solve the large scale joint train timetabling 12 

and speed control problem. Let 𝜆𝑘(𝑖, 𝑡, 𝑢) denote the label cost of train 𝑘 at STS vertex (𝑖, 𝑡, 𝑢). We also 13 

define 𝐿𝐵∗ , and 𝑈𝐵∗ , respectively, as the objective functions obtained from the best available lower 14 

bound/upper bound solutions. The proposed solution algorithm includes the following five steps.  15 

 16 

 17 

Algorithm 1: DP algorithm based on Lagrangian relaxation 18 

Input: STS network 𝐺 = (𝑄, 𝐴) built specifically for train 𝑘 19 

Desired earliest departure vertex (𝑜𝑘 , 𝐸𝐷𝑇𝑘, 0) and latest arrival vertex (𝑑𝑘 , 𝐿𝐴𝑇𝑘 , 0) of each train 𝑘 ∈20 𝐾, where  𝐸𝐷𝑇𝑘 and 𝐿𝐴𝑇𝑘 denote the earliest departure time and latest arrival time of train 𝑘, repectively  21 

 22 

Output: The least cost train trajectory in an STS network for each train 𝑘 ∈ 𝐾 (i.e., train running speed 23 

profile and timetable) 24 

 25 

Step 1. Initialization 26 

 Set label cost on each vertex 𝜆𝑘(𝑖, 𝑡, 𝑢) to +∞ and set its predecessor 𝑝𝑟𝑒𝑘(𝑖, 𝑡, 𝑢) to (−1,−1,−1) 27 

for each train 𝑘 ∈ 𝐾 28 

 Set label cost on vertex 𝜆𝑘(𝑜𝑘, 𝐸𝐷𝑇𝑘, 0) = 0 for each train 𝑘 ∈ 𝐾 29 

 Set the values of Lagrangian multipliers: 𝜋𝑝,𝑡 = 0 for all 𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇, 𝜌𝑖′,𝑗′,𝜏 = 0 for all (𝑖′, 𝑗′) ∈30 𝐿′, 𝜏 ∈ 𝐻 31 

 Set Lagrangian iteration number 𝑞 = 0, best lower bound 𝐿𝐵∗ = −∞, and the best upper bound 32 𝑈𝐵∗ can be set to +∞ or obtained from a published train timetable 33 

 34 

Step 2. Label updating in dynamic programming 35 

 For train 𝑘 ∈ 𝐾 do 36 

  For 𝑡 = 𝐸𝐷𝑇𝑘 to 𝐿𝐴𝑇𝑘 do 37 

   For each vertex (𝑖, 𝑡, 𝑢) ∈ 𝑉 do 38 

    For each arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣) ∈ 𝐴 do 39 

        If 𝜆𝑘(𝑖, 𝑡, 𝑢) + 𝑐𝑖,𝑗,𝑡,𝑠,𝑢,𝑣′ (𝑘) < 𝜆𝑘(𝑗, 𝑠, 𝑣) 40 

Then 𝜆𝑘(𝑗, 𝑠, 𝑣) = 𝜆𝑘(𝑖, 𝑡, 𝑢) + 𝑐𝑖,𝑗,𝑡,𝑠,𝑢,𝑣′ (𝑘)  41 𝑝𝑟𝑒𝑘(𝑗, 𝑠, 𝑣) = (𝑖, 𝑡, 𝑢)  42 

    End // for each arc 43 

   End // for each vertex 44 

End // for each time 45 

End // for each train 46 

 47 

Step 3. Obtaining the least cost STS train trajectory 48 

Step 3.1: Obtain optimal DP solutions 49 
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For train 𝑘 ∈ 𝐾 do 1 

  Find the sink vertex (𝑑𝑘 , 𝐿𝐴𝑇𝑘 , 0) and back trace to generate space-time trajectory and the 2 

solution results of variable 𝑥𝑖,𝑗,𝑡,𝑠,𝑢,𝑣(𝑘) 3 

End // for each train 4 

Step 3.2: Update the lower bound 5 

By substituting the solution results that include 𝑥𝑖,𝑗,𝑡,𝑠,𝑢,𝑣(𝑘)  for all trains into the 6 

dualized problem, the lower bound 𝐿𝐵𝑞 is generated; if 𝐿𝐵𝑞 > 𝐿𝐵∗,  set 𝐿𝐵∗ = 𝐿𝐵𝑞  7 

Step 3.3: Update the upper bound 8 

-  Sort all trains in train set 𝐾 based on a priority rule (e.g., a train having earlier earliest 9 

departure time 𝐸𝐷𝑇𝑘 or latest arrival time 𝐿𝐴𝑇𝑘 ranked as a higher priority) 10 

-  Set previously scheduled train set 𝑃𝑆𝑇 = ∅ 11 

-  For each train 𝑘 ∈ 𝐾, check the DP solution do 12 

 (1) Generate feasible solution space for train k 13 

 (1.1) Check headway conflicts with each train 𝑘′ ∈ 𝑃𝑆𝑇 14 

If trains 𝑘  and 𝑘′  have conflicts with each other, for train 𝑘′  with higher 15 

priority keep the same solution, mark the infeasible time vertex and infeasible 16 

arcs for the other trains in the restricted STS space, denoted as 𝑅𝑆(𝑘) , 17 

associated with the safety constraint. That is, in this 𝑅𝑆(𝑘) , the STS 18 

vertices/arcs violating time headway constraints are removed or disabled 19 

(1.2) Check power supply conflicts for each power supply district 𝑝 ∈ 𝑃, time 𝑡 ∈ 𝐻 20 

Based on the scheduled train set 𝑆𝑇, calculate the cumulative power usage 21 𝑅𝑡(𝑝) at power supply district 𝑝 time 𝑡, and obtain the available power that 22 

can be used by train 𝑘, denoted by 𝑅𝑆𝑡(𝑝, 𝑘) =  𝑅𝑝 − 𝑅𝑡(𝑝) 23 

(2) Update train 𝑘’s schedule 24 

Then compute time-dependent STS least cost path and the cost by calling DP 25 

algorithm within the feasible solution space, which could lead to a shift in train 𝑘’s 26 

departure time at the previous intermediate station or adjustment of incoming speed 27 

profiles in the restricted STS space 𝑅𝑆(𝑘) considering available power 𝑅𝑆𝑡(𝑝, 𝑘) 28 

(3) Add train 𝑘 to the previously scheduled train set 𝑃𝑆𝑇 29 

End // for each train 30 

-  Update upper bound objective function  𝑈𝐵𝑞 31 

Compute the actual transportation costs along the path solution for vehicle 𝑘, update 32 

upper bound objective function 𝑈𝐵𝑞  33 

If 𝑈𝐵𝑞 < 𝑈𝐵∗,  set 𝑈𝐵∗ = 𝑈𝐵𝑞 34 

Step 3.4: Calculate solution gap 35 

Find the relative solution gap between 𝐿𝐵∗ and 𝑈𝐵∗ by 𝑈𝐵∗−𝐿𝐵∗𝑈𝐵∗  36 

If the gap = 0, an optimal solution is found and exit 37 

 38 

Step 4. Updating the Lagrangian multipliers based on sub-gradient calculation 39 

For each power supply district 𝑝 ∈ 𝑃 at time 𝑡 ∈ 𝐻 do 40 𝜋𝑝,𝑡 = 𝜋𝑝,𝑡 + 𝜃𝑞([∑ ∑ 𝑒(𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣) ∙ 𝑥𝑖,𝑗,𝑡,𝑠,𝑢,𝑣(𝑘)(𝑖,𝑗,𝑡,𝑠,𝑢,𝑣)∈𝐺𝑝,𝑡𝑘∈𝐾 ] − 𝑅𝑝)  41 

End // for each power supply district at each time 42 

For each basic physical track segment (𝑖′, 𝑗’)  ∈ 𝐿′ at time 𝜏 ∈ 𝐻  43 

  𝜌𝑖′,𝑗′,𝜏 = 𝜌𝑖′,𝑗′,𝜏  + 𝜃𝑞([∑ ∑ 𝑥𝑖,𝑗,𝑡,𝑠,𝑢,𝑣(𝑘)(𝑖,𝑗,𝑡,𝑠,𝑢,𝑣)∈𝜑(𝑖′,𝑗′,𝜏)𝑘∈𝐾 ] − 1) do 44 

End // for each basic physical track segment at each time 45 

(𝜃𝑞 is the Lagrangian sub-gradient step size at iteration 𝑞 (Fisher, 1985; Ahuja et al., 1993) 46 

 47 

Step 5: Termination condition test 48 
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If 𝑞 is greater than a predetermined maximum value, terminate the algorithm; otherwise 𝑞 = 𝑞 + 1 1 

and go back to Step 2. 2 

 3 

In the lower bound solution, the complex constraints are only recognized through LR multipliers, so 4 

we do not expect the DP algorithm could resolve all conflicts, and in many cases, we still obtain possibly 5 

infeasible lower bound solutions. Note that, in the upper bound updating process in Step 3.3, by working 6 

on a partial complete schedule with previously scheduled trains, the DP algorithm is able to find the 7 

headway-feasible and energy-feasible train STS paths for a single train to be scheduled. Due to the nature 8 

of Lagrangian relaxation, we also do not expect the final lower bound is exactly equal to the best upper 9 

bound available, but this framework offers a systematic way to quantify the optimality gap, and to support 10 

other path search-based heuristic method development in the future. 11 

 12 

3.4  Search space reduction 13 

We now analyze the complexity of the dynamic programming algorithm of the label updating procedure. 14 

In this multi-loop framework, the algorithm first performs train selection operations for |𝐾| times and for 15 

each train it searches along the time, space and speed axes. Therefore, an apparent estimation for the worst 16 

computational time could be 𝑂([|𝐻| × |𝑁| × |𝑉|]2) for each train. We need to recognize the following fact 17 

to further precisely estimate the complexity. The structure of STS transportation network leads to a very 18 

limited outgoing degree for each STS node. For instance, the change of time index from 𝑡 to 𝑠 along its 19 

outgoing arcs is simply defined as a constant number of options, namely, second-by-second travel time and 20 

dwell time. The change of space index and speed index is defined in the same way. As a result, instead of 21 

having a complicated quadratic form that considers all three dimension changes, the complexity in a real-22 

life example should be 𝑂(|𝐻| × |𝐸|), where |𝐸| is the maximum outgoing degree of the STS nodes.  23 

High-dimensional time-expanded networks are typically complex to build, and storing such a network 24 

externally as an algorithm input for a general-purpose optimization package such as CPLEX, could lead to 25 

prohibitive memory space requirements. The computational challenges for large-scale experiments can be 26 

tackled through a search region reduction process by adopting the space-time prism concept (Tang et al., 27 

2016). In this space-time-speed prism based reduction framework, a potential STS trajectory area for a train 28 

consists of all accessible STS vertices and arcs that the train can reach when traveling from its desired 29 

earliest departure vertex to its latest arrival vertex. That is, an STS vertex (𝑖, 𝑡, 𝑢)  is within train 𝑘 ’s 30 

accessible STS trajectory area if 1) train 𝑘 can reach this vertex from its original vertex (𝑜𝑘 , 𝐸𝐷𝑇𝑘, 0) and 31 

2) train 𝑘 can arrive at the destination vertex (𝑑𝑘 , 𝐿𝐴𝑇𝑘, 0) from this vertex. By finding the feasible directed 32 

out-tree from the original vertex (𝑜𝑘 , 𝐸𝐷𝑇𝑘 , 0) and in-tree towards the destination vertex (𝑑𝑘 , 𝐿𝐴𝑇𝑘 , 0), we 33 

determine the forward energy label cost  𝜋𝑖,𝑡,𝑢𝐹 (𝑘) and backward energy label cost 𝜋𝑖,𝑡,𝑢𝐵 (𝑘). Accordingly, 34 

the set of possible vertices 𝑉(𝑘) and 𝐴(𝑘) for train 𝑘 can be defined by the following inequalities and sets, 35 

where Θ denotes a large number of energy cost.  36 𝑉(𝑘) = {(𝑖, 𝑡, 𝑢) ∈ 𝑉| 𝜋𝑖,𝑡,𝑢𝐹 (𝑘) + 𝜋𝑖,𝑡,𝑢𝐵 (𝑘) < Θ} (13) 37 𝐴(𝑘) = {(𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣) ∈ 𝐴| (𝑖, 𝑡, 𝑢) ∈ 𝑉(𝑘) 𝑎𝑛𝑑 (𝑗, 𝑠, 𝑣) ∈ 𝑉(𝑘)} (14) 38 

 39 

The process of determining potential STS trajectory areas is illustrated in Algorithm 2. 40 

Algorithm 2: Search region reduction algorithm based on STS feasible prism 41 

Step 1. Initialization  42 

Set 𝜋𝑖,𝑡,𝑢𝐹 (𝑘) = +∞,  𝜋𝑖,𝑡,𝑢𝐵 (𝑘) = +∞ for all 𝑖 ∈ 𝑁, 𝑡 ∈ 𝐻, 𝑢 ∈ 𝑉 43 

Set 𝑉(𝑘) = ∅, 𝐴(𝑘) = ∅ 44 

Set 𝜋𝑜𝑘,𝐸𝐷𝑇𝑘,0𝐹 (𝑘) = 0, 𝜋𝑑𝑘,𝐿𝐴𝑇𝑘,0𝐵 (𝑘) = 0 45 

Set 𝑉(𝑘) = {(𝑜𝑘, 𝐸𝐷𝑇𝑘 , 0), (𝑑𝑘 , 𝐿𝐴𝑇𝑘 , 0)} 46 

Step 2. Forward label updating  47 

   For each time 𝑡 ∈ [𝐸𝐷𝑇(𝑘), 𝐿𝐴𝑇(𝑘)] do 48 
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For each STS arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣) ∈ 𝐴 do 1 

If 𝜋𝑗,𝑠,𝑣𝐹 > 𝜋𝑖,𝑡,𝑢𝐹 + 𝑒(𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣)  2 

Then 𝜋𝑗,𝑠,𝑣𝐹 = 𝜋𝑖,𝑡,𝑢𝐹 + 𝑒(𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣)  3 

End // for each STS arc 4 

   End // for each time  5 

Step 3. Backward label updating  6 

   For each time 𝑡 ∈ [𝐿𝐴𝑇(𝑘), 𝐸𝐷𝑇(𝑘)] do 7 

For each STS arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣) ∈ 𝐴 do 8 

If 𝜋𝑖,𝑡,𝑢𝐹 > 𝜋𝑗,𝑠,𝑣𝐹 + 𝑒(𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣)  9 

Then 𝜋𝑖,𝑡,𝑢𝐹 = 𝜋𝑗,𝑠,𝑣𝐹 + 𝑒(𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣)  10 

End //for each STS arc 11 

   End // for each time 12 

Step 4. Construct set of accessible STS vertices 13 

For each STS vertex (𝑖, 𝑡) ∈ 𝑉 do 14 

If 𝜋𝑖,𝑡,𝑢𝐹 + 𝜋𝑖,𝑡,𝑢𝐵 < Θ  15 

Then 𝑉(𝑘) = 𝑉(𝑘) ∪ {(𝑖, 𝑡, 𝑢)}  16 

End // for each vertex 17 

Step 5. Construct set of accessible STS arcs 18 

For each STS arc (𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣) ∈ 𝐴 do 19 

If (𝑖, 𝑡, 𝑢) ∈ 𝑉(𝑘) and (𝑗, 𝑠, 𝑣) ∈ 𝑉(𝑘) 20 

Then 𝐴(𝑘) = 𝐴(𝑘) ∪ {(𝑖, 𝑗, 𝑡, 𝑠, 𝑢, 𝑣)}  21 

End // for each STS arc 22 

 23 

It is also important to understand that the proposed optimization framework can find an optimal 24 

solution only if the feasible solution region is non-empty. In contrast, if a feasible solution does not exist, 25 

with respect to the all defined constraints, the proposed dynamic programming based search algorithm can 26 

report empty solution as the ending boundary condition cannot be accessible for any space-time-speed 27 

feasible trajectories. To further reduce the search space, one can also adopt shooting heuristics, which have 28 

been widely used in the vehicle trajectory numerical optimization field. Interested readers in shooting 29 

heuristics are referred to the survey by Von Stryk and Bulirsch (1992), a dissertation by Tang (2012) on a 30 

full-scale simulation-based platform, and a recent study by Zhou et al. (2016) for emerging automated 31 

vehicle trajectory optimization applications. 32 

 33 

4 Numerical experiments 34 

 35 

4.1 Small-scale illustrative examples 36 

We first illustrate the proposed space-time-speed grid network concept using a simple example on a small 37 

rail network (3 stations, 2 sections, and 1 power supply district). Consider a case where the safety headway 38 

between trains is set to 180 s (i.e., 3 minutes) and one power supply district can support a maximum of 10 39 

energy units (i.e., 10 kwh). The discretized spacing along the space axis is 100 m, 10 sec along time axis, 40 

which further leads to a speed of 36 km/h. The algorithms described in this paper were implemented in C++ 41 

and the experiments were performed on a computer workstation running two Xeon E5-2680 processors 42 

clocked at 2.80 GHz with 20 cores and 192GB RAM running Windows Server 2008 x64 Edition. 43 

Table 6 presents four scenarios examined with various number of trains and different planned stops 44 

and departure time patterns. Specifically, in scenario I, three trains depart from station 1 with very tight 45 

time interval and trains 1 and 2 have the same origin-destination pairs with potentially overlapping time 46 
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windows. In this case, we can obtain energy-optimal timetables for individual trains, but need to resolve 1 

potential safety headway conflicts within their preferred time windows. In scenario II, train 2 may overtake 2 

train 1 at station 2 in order to get a better train trajectory. In scenario III, the power supply district constraint 3 

needs to be met by adjusting individual train trajectories/departure times, as serving four operational trains 4 

in one district may be impossible. Finally, in scenario IV with five trains, conflicts due to both the headway 5 

and power supply constraints should be considered.  6 

 7 

Table 6 Input of the three-station illustrative example including number of trains, pre-planned train stop 8 

pattern (Y denoting yes, N denoting no), and desired time windows (by minute) 9 

Scenario I II III IV 

Number of trains 3 3 4 5 

Stop pattern of train 1  Y-N-Y Y-Y-Y Y-N-Y Y-Y-Y 

Stop pattern of train 2 Y-N-Y Y-N-Y Y-N-Y Y-N-Y 

Stop pattern of train 3 Y-Y-Y Y-N-Y Y-Y-Y Y-N-Y 

Stop pattern of train 4 - - Y-N-Y Y-Y-Y 

Stop pattern of train 5 - - - Y-N-Y 𝐸𝐷𝑇𝑘 and 𝐿𝐴𝑇𝑘of train 1 4, 51 4, 58 4, 51 4, 58 𝐸𝐷𝑇𝑘 and 𝐿𝐴𝑇𝑘 of train 2 6, 53 6, 52 8, 54 6, 52 𝐸𝐷𝑇𝑘 and 𝐿𝐴𝑇𝑘 of train 3 10, 61 12, 57 12, 62 10, 56 𝐸𝐷𝑇𝑘 and 𝐿𝐴𝑇𝑘 of train 4 - - 20, 66 18, 69 𝐸𝐷𝑇𝑘 and 𝐿𝐴𝑇𝑘 of train 5 - - - 25, 72 

Departure time window of train 1 [4, 9] [6, 9] [6, 9] [6, 9] 
Departure time window of train 2 [6, 11] [6, 11] [8, 13] [6, 11] 
Departure time window of train 3 [10, 15] [11, 16] [12, 22] [10, 15] 
Departure time window of train 4 - - [20, 30] [18, 28] 
Departure time window of train 5 - - - [24, 34] 
Potential safety headway conflict Y Y N Y 

Potential power supply conflict N N Y Y 

Potential overtaking at station N Y Y Y 

 10 

Fig 6-9 present train STS trajectories and timetables obtained through the proposed DP algorithm.  In 11 

scenario I, the first iteration yields a headway conflict between trains 1 and 2 at a distance of 50 km along 12 

the track. This conflict is resolved through five iterations by delaying the departure time of train 2 so that 13 

headway constraints are satisfied. For scenario II, travel time in iteration 5 (compared to iteration 4) 14 

increases from 7120 to 7420 but the energy cost remains at 15991. The reason is that the cost here is only 15 

associated with mechanical power, as a result when a train stops/dwells at stations, there is no extra energy 16 

cost. In the last iteration, the departure time of the third train is postponed in order to avoid safety conflicts. 17 

As the train speed profiles do not change within the sections, the energy cost keeps the same as the value 18 

in iteration 4. For scenarios III and IV with power supply conflicts, the energy consumption value is also 19 

provided in figures 8 and 9, respectively. In the first iteration, the power consumption of both scenarios 20 

exceeds the capacity of the power supply district. By optimizing the train STS trajectories, the power 21 

consumption in the final solution falls below the available power threshold of 10 energy units throughout 22 

the time horizon. As a specific example, we obtain a feasible timetable for scenario IV, after 5 iterations, 23 

by trading off train 1’s travel cost for the overall system cost, that is, letting it wait at station 2 for an 24 

extended time period. Table 7 and Fig 10 also demonstrate the computational efficiency and solution quality 25 

of our developed algorithm. 26 
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 1 

Fig 6. Train STS trajectories for scenario I 2 

 3 

 4 

Fig 7. Train STS trajectories with overtaking for scenario II 5 

 6 

 

  

(a) With headway conflicts at the 1st iteration 

(b) Without headway conflicts at the 5th iteration 

 

 

(a) With headway conflicts at the 1st iteration 

(b) Without headway conflicts at the 5th iteration 
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 1 

 2 

Fig 8. Train STS trajectories and energy consumption for scenario III 3 

 4 

 

 

(a) Train trajectories with power supply conflicts at the 1st iteration 

(b) Train trajectories without power supply conflicts at the 5th iteration (by shifting train departure time) 

(c) Train power consumption (left: with conflicts at the 1st iteration; right: without conflicts at the 5th iteration) 
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   1 

Fig 9. Train STS trajectories and energy consumption with overtaking for scenario IV 2 

 3 

 4 

Table 7  Results of the 3-station railroad corridor on 4 different scenarios 5 

Scenario Iteration 𝑳𝑩∗ 𝑼𝑩∗ Gap (%) Total coasting 
time (s) 

Power 
consumption (kwh) 

Travel time 

(s) 
CPU 

time (s) 

I 

1 22388 40000 44.0% 960 15568 6820 

4.369 

2 22513 22513 0.0% 960 15573 6940 

3 22513 22513 0.0% 960 15573 6940 

4 22513 22513 0.0% 960 15573 6940 

5 22513 22513 0.0% 960 15573 6940 

II 

1 22633 40000 43.4% 980 15573 7060 

4.398 

2 22885 23011 0.5% 980 15585 7300 

3 22706 23011 1.3% 980 15586 7120 

4 22711 23011 1.3% 980 15591 7120 

5 23011 23011 0.0% 980 15591 7420 

III 

1 29393 40000 26.5% 1440 20383 9010 

6.039 
2 30405 30993 1.9% 1320 20795 9610 

3 30593 30993 1.3% 1440 20983 9610 

4 30993 30993 0.0% 1440 21383 9610 

 
(a) Train trajectories with both headway and power supply conflicts at the 1st iteration 

(b) Train trajectories without conflicts at the 5th iteration  

(c) Train power consumption (left: with conflicts at the 1st iteration; right: without conflicts at the 5th iteration) 
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5 30993 30993 0.0% 1440 21383 9610 

IV 

1 38016 40000 5.0% 1440 26326 11690 

6.971 

2 38941 39619 1.7% 1320 26651 12290 

3 39287 39619 0.8% 1120 26757 12530 

4 39219 39619 1.0% 1320 26869 12350 

5 39619 39619 0.0% 1440 26969 12650 

 1 

 2 

Fig 10. 5-iteration series of solution optimality gaps for the illustrative example 3 

 4 

As our proposed model aims to represent train movements in a time-space-speed network on 5 

discretized states, it is critically important to understand the effect of finer discretization on output and 6 

potential impacts on different coarseness levels. For scenario IV, we further evaluate several finer 7 

resolutions of distance and time and obtain the computational efficiency and solution optimality, which 8 

have been presented in Table 8. Obviously, a finer space and/or time discretization leads to increased 9 

memory space and CPU time. For instance, a setting of 10 meters and 1 second uses about 188G RAM, and 10 

takes about 12 minutes to find optimal solutions (after 5 iterations). Compared to the base setting of 100 11 

meters and 10 seconds, the discretization of the former scenario is about 10 times finer, while it requires 12 

approximately 100 times more memory and computational time. An extreme discretization case (1 meter 13 

and 1 second) results in insufficient memory with the existing computer configuration of 192 GB RAM. As 14 

it is relatively difficult to construct unified cost functions across different space-time-speed resolutions, 15 

comparison of solution quality improvement associated with a finer discretization is beyond the scope of 16 

this paper. 17 

 18 

  Table 8  RAM usage and CPU time consumption test for finding exact solution, for scenario IV with 19 

various resolutions of distance and time 20 

Unit of space 
(meter) 

Unit of time 
(second) 

Unit of speed 
(km/h) 

RAM usage 
(GB) CPU time(s) 

100 10 36 2.38 6.971 

50 5 36 8.19 18.921 

20 2 36 43.01 124.338 

10 1 36 188.45 722.87 

50 10 18 5.02 13.492 

20 10 7.2 12.633 47.981 

10 10 3.6 29.04 64.31 

1 1 3.6 out of memory -- 
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By applying the search region reduction algorithm, the number of possible STS arcs for each train 1 

decreases by approximately 85% on average. Table 9 provides the results of search space reduction for 2 

four scenarios.  The joint train trajectory and scheduling optimization model is also implemented in the 3 

general-purpose optimization package GAMS (Rosenthal, 2015). The sample GAMS codes for four 4 

scenarios can be downloaded at 5 

https://www.researchgate.net/publication/310328190_Sample_GAMS_codes_for_joint_optimization_of_6 

high-speed_train_time-tables_and_speed_profiles.  7 

 8 

Table 9 Search space reduction results based on space-time-speed prism 9 

Scenario Train Time range 
Original number 

of arcs  
Number of arcs  
after reduction 

Percentage of 
reduction 

I 

Train 1 

[0,65] 59689 

8650 85.51% 

Train 2 8763 85.32% 

Train 3 8542 85.69% 

II 

Train 1 

[0,60] 59401 

8748 85.27% 

Train 2 8890 85.03% 

Train 3 8632 85.47% 

III 

Train 1 

[0,70] 79683 

11718 85.29% 

Train 2 12093 84.82% 

Train 3 11689 85.33% 

Train 4 12585 84.21% 

IV 

Train 1 

[0,75] 98521 

15347 84.42% 

Train 2 14520 85.26% 

Train 3 14421 85.36% 

Train 4 13914 85.88% 

Train 5 14463 85.32% 

 10 

 11 

4.2 Large-scale example using the Beijing-Shanghai high-speed rail corridor 12 

The following large-scale example focuses on the Beijing-Shanghai (Jinghu) high-speed rail corridor, 13 

shown in Fig 11. This corridor is well established starting commercial train services on June 30, 2011 and 14 

has served more than 200 million passengers in April, 2014 (He et al., 2015). Fig 12 shows a simplified 15 

traction characteristic and the running resistance of trains used in our example, with the speed limit of 300 16 

km/h and the power supply capacity of 50 mega volt amps (MVA) for each power supply district. 17 

 18 
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 1 

Fig 11. Spatial coverage of Beijing-Shanghai high-speed railroad corridor  2 
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Fig 12. Traction characteristics of high-speed trains (from CRRC Corporation Limited, China) 5 

 6 

We now consider the entire Beijing-Shanghai high-speed rail line that is approximately 1,300 km, has 7 

23 passenger stations, powered by 26 substations. The corresponding real-world timetable shown in Fig. 8 

12, specifies the train normal running time per segment and required dwell times for our optimization 9 

algorithm. A fully discretized space-time-speed grid network (i.e., 1 meter and 1 second) with the exact 10 

dynamic programming algorithm requires extremely demanding computational space and time. For this 11 

case, we need to reduce the search space and improve the search speed dramatically to achieve a solution 12 
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in a feasible timeframe and computational resources. An approximate dynamic programming method is 1 

adopted within a rolling horizon-based decomposition to optimize the STS trajectories by synchronizing 2 

train departure and dwell time. The overall CPU time for this heuristic-oriented algorithm (Tang, 2012) is 3 

about 2 hours for a total of 188 trains. An outline of this search algorithm is presented in Appendix B.   4 

Given a real-world schedule of Beijing-Shanghai high-speed rail line shown in Fig 13, we generate an 5 

optimized real-world train timetable in Fig 14. The overall total energy consumption is reduced from 6 

6,169.85 MWh to 5,429.47 MWh (with an equivalent energy-savings of about 12%).  7 

 8 

Fig 13. A real-world timetable of Beijing-Shanghai high-speed rail line 9 

 10 

 11 

Fig 14. One optimized train schedule solution for Beijing-Shanghai high-speed rail line 12 

 13 

Under different speed limit conditions, Table 10 details the per-train optimization changes in terms of 14 

end-to-end travel time (i.e., traveling speed) and used energy, with an energy saving range of 7.2% to 15.5%. 15 

The case “before optimization” is the real-world timetable used in year 2013. Using this real-world 16 

timetable as a starting point, we allow about 10% increases in trip travel times for each train, and then use 17 

the approximate DP algorithm to adjust 82 trains’ departure times and smooth their driving trajectories to 18 

improve energy efficiency. It is relatively complicated to report average travel times as there are different 19 

OD pairs along the corridor with different travel distance, so we highlight the energy saving percentages 20 

and average speed change percentages in the last two columns of Table 10. We can observe an interesting 21 

tradeoff from this set of experiments: by allowing a slight reduction in average speed by 5%, we are able 22 

to reach a significant energy saving with an average of 12.5%. Future research needs to exploit the tradeoff 23 

curves between traveler time values and overall energy savings to obtain better Pareto optimal solutions for 24 

both system operators and users, as shown in a multi-criterial scheduling approach by Zhou and Zhong 25 

(2005).  26 
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It is important to note that different speed limit settings could be associated with different minimum 1 

or preferred cruising speed requirements. That is, the search space for a higher speed limit does not always 2 

contain the search space for a lower speed limit. It is possible that the solution with a higher speed limit 3 

could be worse than that with a lower speed limit, as they operate at overlapping but different feasible 4 

regions. What we could observe from Table 10 is that, with the increased average speed, energy 5 

consumption per train per kilometer also significantly increases, due to the fact that a higher speed limit 6 

could lead to significantly shorter end-to-end travel time and more energy consumption demands.  7 

 8 

Table 10 Per-train measure of effectiveness for entire corridor test case under different speed limit conditions  9 

Speed limit 

(km/h) 

Before Optimization  After Optimization 
Percentage 

decrease of 

average speed 

Percentage 

reduction of energy 

consumption 

Average 

speed 

(km/h) 

Energy consumption 

per train per 

kilometer (kwh)  

Average 

speed(km/h)  

Energy consumption 

per train per 

kilometer (kwh) 

200 178.5 35.8 163.6 30.8 8.3% 13.9% 

220 192.7 40.1 182.3 33.9 5.4% 15.5% 

240 223.1 43.1 212.8 37.4 4.6% 13.2% 

260 244.3 46.5 242.5 41.7 0.7% 10.2% 

280 263.7 50.2 251.6 46.6 4.6% 7.2% 

300 286.6 62.8 270.8 55.1 5.5% 12.3% 

 10 

5 Conclusions and future research 11 

 12 

Many recent research aims to address the important problem of joint train trajectory and timetable 13 

optimization method to reduce system-wide energy consumption with sufficient flexibility within the 14 

schedule constraints. This paper presents a carefully discretized space-time-speed network framework to 15 

characterize both train timetables and speed profiles simultaneously at different space and time resolutions. 16 

To the best of our knowledge, there are a few prior studies using space-time-speed constructs to illustrate 17 

the importance of tracking vehicle location, movements, and speed, jointly. For example, Kuijpers et al. 18 

(2011) proposed kinetic space-time prisms to consider acceleration limits on the top of classical space-time 19 

prisms. Zhao et al. (2015) used an interesting 3-dimensional continuous space-time-speed representation to 20 

graphically illustrate the detailed time-step based vehicle movement simulation. In our research, by fully 21 

discretizing the speed levels and synchronizing the entering and leaving speed levels u and v according to 22 

the space-time grid network, we are able to enable a feasible high-dimensional search path algorithm, 23 

through Lagrangian relaxation, for timetabling and trajectory optimization applications. This network 24 

construction method could offer a good unified representation scheme for simultaneous optimization of 25 

train timetables and energy consumption in a railway network.  26 

Through using a dynamic programming based algorithm and priority rule-based upper generation 27 

methods, we tested the proposed approach on a number of small-scale hypothetic examples.  This study 28 

also adapts the proposed STS network search framework to construct and evaluate a heuristic 29 

approximation DP algorithm in a case study for the Beijing-Shanghai high-speed rail line. The simulation 30 

results demonstrate that the obtainable energy consumption saving reaches a range of 7% to 15%.  31 

There are a few important remarks about possible extensions of the proposed research. First, the 32 

trajectories to be optimized in our proposed space-time-speed grid network can be mapped to both speed 33 

profile and space-time dimensions, and the space-time network can be systematically extended from a 34 

single corridor to n-track or multi-route cases.  Thus, a future research extension could be how to construct 35 

a joint optimization model with train routes, timetable and speed-based trajectories, so that one can improve 36 

solution optimality with additional feasibility. To consider moving block signaling, it is also possible to 37 

further define a dynamic headway of moving blocks based on the state variables (distance and speed) defined 38 

in the STS network, but handling of the dynamic headway is a very challenging modeling issue by its own. 39 

Interested readers can find a recent paper by Fu and Dessouky (2016) on optimization models and 40 

algorithms for dynamic headway control.  41 
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The proposed space-time-speed network modeling framework can be also extended to consider as an 1 

enhancement for many existing studies on the green vehicle routing problem, e.g., Bektaş and Laporte 2 

(2011), Dekker et al. (2012) and Fukasawa et al. (2015). Specifically, our proposed framework offers a 3 

flexible way to explicitly model both speed and acceleration as major energy consumption factors, while 4 

the acceleration rate is represented as a derivative of the speed changes in the STS network.  One can also 5 

consider heterogeneous traffic with different types of trains with distinctive driving characteristics, and 6 

each train type corresponds to its own STS graph with different configurations of traveling arcs, speed 7 

limits and acceleration constraints. In this case with different types of trains, we might need to carefully 8 

design the space-time-speed discretization scheme so that the headway and priority constraints between 9 

trains can be matched across networks with different resolutions. Our constructed STS grid network can be 10 

also viewed as a sophisticated adaption of the broader state-space-time network-based modeling framework 11 

proposed by Mahmoudi and Zhou (2016) for the vehicle routing problem with vehicle carrying capacity 12 

with time window constraints.   13 

In our future research, we are interested in developing different effective heuristics to further reduce 14 

the search space and memory requirement for maintaining high-dimensional networks in the memory, for 15 

example, using a hash table-based data structure or using a continuous or semi-discretized time-expanded 16 

network representation (Boland et al, 2015). A more practically useful integrated optimization process 17 

should consider the complicated energy consumption calculations and constraints, different stochastic 18 

disturbances, and other realistic train operating scenarios. In this paper, by taking a simplified set of 19 

assumptions about energy consumption, the developed STS based approach aims to provide important 20 

theoretical insights on the joint optimization of high-speed train timetables and speed profiles. Our future 21 

research needs to refine the value function to better resolve the complicated energy consumption calculation 22 

and other practical constraints. The measure of timetable robustness has not been integrated into the 23 

proposed model in this study. We can improve the reliability of high-speed train timetables and speed 24 

profiles by considering buffer time and probabilistic delay propagation together with the high-resolution 25 

STS network. Currently, our research teams are also working on extending the STS modeling framework 26 

to better control and smooth speed changes in emerging applications of autonomous vehicle routing, 27 

platooning in highway and urban arterial networks (Li et al. 2015; Lu et al. 2016; Ruan et al. 2016).  28 
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 39 

Appendix A: Calculation of traction power supply in real-world applications  40 

The practically useful integrated train scheduling and traction power supply optimization program 41 

involves a large number of parameters across different knowledge domains. Based on terminologies from 42 

power engineering, Fig A1 and Table A1 below list a set of important parameters and briefly describe 43 

matrix-oriented equations in calculating traction power supply in real-world applications. 44 
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power plant
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Rails(horizontal wire)
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(vertical wire)

Station Room

Signal Machine

Booster Transformer

 Return Wire

(vertical wire)  1 

Fig A1. Electric power system to electrified railway power supply 2 

 3 

Table A1 Definition of symbols in high-speed rail power supply system 4 

Symbol Definition 𝒊, 𝒋 Indices of horizontal wires (include catenary wire, contact wire, 
running rails)  𝒌 
Index of vertical wires (include pantographs, substation supply wire, 
return wire) 𝒎 Number of horizontal wires 𝒏 Number of vertical wires 𝒛𝒌𝒊𝒋 Resistance per unit length,  if (𝑖 = 𝑗), wire 𝑖is self-resistance, if (𝑖 ≠ 𝑗), 
there is a mutual resistance between wires 𝑖and 𝑗  [𝒀]𝒌 Admittance matrix of vertical wire 𝑘, = {𝑌𝑘1, 𝑌𝑘2, ⋯ , 𝑌𝑘𝑚} [𝒁]𝒌 Resistance matrix of vertical wire 𝑘, = {𝑍𝑘1, 𝑍𝑘2 ,⋯ , 𝑍𝑘𝑚} [𝝍]𝒌 Current vectors of vertical wire 𝑘, = {𝜓𝑘1 , 𝜓𝑘2, ⋯ , 𝜓𝑘𝑚} [𝑼]𝒌 Voltage vectors of vertical wire 𝑘, = {𝑈𝑘1, 𝑈𝑘2, ⋯ , 𝑈𝑘𝑚} 

 5 

First, a multi-conductor model is adapted to consider different traction net distribution forms, and a 6 

parallel transmission line theory can be used to calculate variable length and precision of the traction net 7 

impedance. Specifically, the unit distance traction net impedance needs to be represented as a 𝑚 × 𝑚 8 

complex matrix. Fig A2 shows a multi-conductor circuit net which is a transformation form of the power 9 

supply system in Fig A1.  10 
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Fig A2. Multi-conductor traction net 2 

 3 

Based on a multi-conductor traction net, a current analytical model is used to calculate train catenary 4 

voltage. We further transform a multi-conductor traction net into a dynamic abstract network. Based on a 5 

node voltage method, this method can quickly find solutions for the traction power supply system. 6 

Interested readers can refer to the classical paper by Carson (1926) and more recent textbooks such as 7 

Grainger and Stevenson (1994) to calculate and update matrices [𝑍]𝑘 and [𝑌]𝑘 using Eqs. (A1) and (A2). 8 

 9 [𝑍]𝑘 = [𝑧𝑘11 ⋯ 𝑧𝑘1𝑚⋮ ⋱ ⋮𝑧𝑘𝑚1 ⋯ 𝑧𝑘𝑚𝑚]𝑚×𝑚，[𝑌]𝑘 = [𝑦𝑘11 ⋯ 𝑦𝑘1𝑚⋮ ⋱ ⋮𝑦𝑘𝑚1 ⋯ 𝑦𝑘𝑚𝑚]𝑚×𝑚          (A1)  10 

[  
   
   
 [𝑌]1 + [𝑍]1−1  [𝑍]1−1 0 ⋯ ⋯ ⋯ ⋯ ⋯ 0[𝑍]1−1 [𝑍]1−1 + [𝑌]2 + [𝑍]2−1 −𝑍2−1 0 ⋯ ⋯ ⋯ ⋯ 00 −𝑍2−1 [𝑍]2−1 + [𝑌]3 + [𝑍]3−1 −[𝑍]3−1 0 ⋯ ⋯ ⋯ 0. . . . . . .. . . . . . .. . . . . . .. . . . . 00 ⋯ ⋯ ⋯ ⋯ 0 −[𝑍]𝑁−2−1 [𝑍]𝑁−2−1 + [𝑌]𝑁−1 + [𝑍]𝑁−1−1 −[𝑍]𝑁−1−10 ⋯ ⋯ ⋯ ⋯ ⋯ 0 −[𝑍]𝑁−1−1 [𝑍]𝑁−1−1 + [𝑌]𝑁]  

   
   
 

[  
   
   
 [𝑈]1[𝑈]2....[𝑈]𝑁−1[𝑈]𝑁 ]  

   
   
 
=

[  
   
   
 [𝜓]1[𝜓]1.....[𝜓]𝑁−1[𝜓]𝑁 ]  

   
   
 
（A2） 11 

 12 

 13 

Appendix B: Approximate dynamic programming algorithm 14 

       For 𝑡 = 0 to 𝑇 do 15 

For train 𝑘 ∈ 𝐾 do 16 

Step 1: Select possible state vertex from promising set at time 𝑡 17 

Step 2: Cost label updating based on forward dynamic programming  18 𝐶𝑘,𝑠,𝑣,𝑔′ = min {𝑐𝑖,𝑗,𝑡,𝑠,𝑢,𝑣,𝑔,𝑔′(𝑘) + 𝐶𝑘,𝑡,𝑢,𝑔}  for promising or non-dominated 19 

vertex set Ω𝑡 = { 𝑘, 𝑡, 𝑢, 𝑔 } and possible gear level actions 20 

Step 3: Applying priority rules for ensuring safety headway and power supply limit 21 

across multiple trains  22 

If safety conflict or energy supply conflict exists, apply priority rule-based 23 

heuristics to adjustment promising vertex state set in Ω𝑡 24 

Step 4: Check next available state for each train to ensure a safe stop at next station 25 

along fuel-efficient trajectories 26 

Apply single-shooting rules to predict or simulate the train trajectories from state 27 



30 

 

vertex 𝑘, 𝑡′, 𝑢, 𝑔  to the end of power supply district, if the next available state 1 

{𝑘, 𝑡′, 𝑢, 𝑔   is infeasible, then adjust this state by either changing the driving 2 

speed or adjusting to a different possible gear level.  3 

Step 5: Size reduction for promising state vertex  4 

Reduce the size of Ω𝑡′=𝑡+1 for the next time step 𝑡′  5 

End // for each train 6 

End // for each time 7 

 8 

 9 

 10 
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